1
|
Quan S, Tian X, Sun Y, Qi H, Jiao W, Sun B, Xu F, Fang M, Yang X, Zeng X, Duan K, Wang J, Fu X, Duan L, Sun L, Shen A. Cell-free DNA next-generation sequencing for Mycobacterium tuberculosis obtained from plasma of children with active tuberculosis. BMC Pediatr 2025; 25:164. [PMID: 40033239 DOI: 10.1186/s12887-025-05526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Difficulties in microbiologically confirming childhood tuberculosis (TB) can result in delayed treatment and increased disease severity. METHODS In this study, we for the first time used whole genome next-generation sequencing (NGS) to detect cell-free DNA (cfDNA) from Mycobacterium tuberculosis (MTB) in plasma from children. RESULTS We enrolled 94 children with active TB and 32 children with other respiratory infections. Combining NGS with probe capture enrichment (targeted cfNGS) showed higher coverage and detecting capability than did NGS alone. The targeted cfNGS showed slightly lower sensitivity (31.9% vs. 44.7%, P = 0.072) and specificity (96.9% vs. 100.0%, P = 0.236) to those of sputum tested using Xpert. Agreement between cfNGS-plasma and Xpert-sputum was weak (κ = 0.217). Concordant results were obtained for only 85 children (67.5%; 16 cases positive by both tests and 69 cases negative by both tests). A total of 40 children with MTB culture negative results were tested to have positive cfNGS-plasma or Xpert-sputum outcomes, yielding a significantly increased percentage of children with bacteriological evidence (20.2% [19/94] for MTB culture-positive only vs. 62.8% [59/94] for cfNGS-plasma, Xpert-sputum or culture positive). CONCLUSIONS These data suggest that cfNGS performed well for diagnosing TB using plasma from children. cfNGS may be a new method for diagnosing patients with paucibacillary TB.
Collapse
Affiliation(s)
- Shuting Quan
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Xue Tian
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Yuting Sun
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Hui Qi
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Weiwei Jiao
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Baixu Sun
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Fang Xu
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Min Fang
- The No. 1 People's Hospital of Liangshan Yizu Autonomous Prefecture, Liangshan, Sichuan, China
| | - Xuemei Yang
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Xi Zeng
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China
| | - Kun Duan
- Hangzhou MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Jichao Wang
- Hangzhou MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Xue Fu
- Hangzhou MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Li Duan
- The No. 1 People's Hospital of Liangshan Yizu Autonomous Prefecture, Liangshan, Sichuan, China
| | - Lin Sun
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China.
| | - Adong Shen
- Laboratory of Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China.
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Bhambhani C, Kang Q, Hovelson DH, Sandford E, Olesnavich M, Dermody SM, Wolfgang J, Tuck KL, Brummel C, Bhangale AD, He K, Gutierrez MG, Lindstrom RH, Liu CJ, Tuck M, Kandarpa M, Mierzwa M, Casper K, Prince ME, Krauss JC, Talpaz M, Henry NL, Giraldez MD, Ramnath N, Tomlins SA, Swiecicki PL, Brenner JC, Tewari M. ctDNA transiting into urine is ultrashort and facilitates noninvasive liquid biopsy of HPV+ oropharyngeal cancer. JCI Insight 2024; 9:e177759. [PMID: 38516891 PMCID: PMC11018327 DOI: 10.1172/jci.insight.177759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUNDTransrenal cell-free tumor DNA (TR-ctDNA), which transits from the bloodstream into urine, has the potential to enable noninvasive cancer detection for a wide variety of nonurologic cancer types.MethodsUsing whole-genome sequencing, we discovered that urine TR-ctDNA fragments across multiple cancer types are predominantly ultrashort (<50 bp) and, therefore, likely to be missed by conventional ctDNA assays. We developed an ultrashort droplet digital PCR assay to detect TR-ctDNA originating from HPV-associated oropharyngeal squamous cell carcinoma (HPV+ OPSCC) and confirmed that assaying ultrashort DNA is critical for sensitive cancer detection from urine samples.ResultsTR-ctDNA was concordant with plasma ctDNA for cancer detection in patients with HPV+ OPSCC. As proof of concept for using urine TR-ctDNA for posttreatment surveillance, in a small longitudinal case series, TR-ctDNA showed promise for noninvasive detection of recurrence of HPV+ OPSCC.ConclusionOur data indicate that focusing on ultrashort fragments of TR-ctDNA will be important for realizing the full potential of urine-based cancer diagnostics. This has implications for urine-based detection of a wide variety of cancer types and for facilitating access to care through at-home specimen collections.FundingNIH grants R33 CA229023, R21 CA225493; NIH/National Cancer Institute grants U01 CA183848, R01 CA184153, and P30CA046592; American Cancer Society RSG-18-062-01-TBG; American Cancer Society Mission Boost grant MBGI-22-056-01-MBG; and the A. Alfred Taubman Medical Research Institute.
Collapse
Affiliation(s)
| | - Qing Kang
- Department of Internal Medicine, Division of Hematology/Oncology
| | - Daniel H. Hovelson
- Michigan Center for Translational Pathology
- Department of Computational Medicine & Bioinformatics
| | - Erin Sandford
- Department of Internal Medicine, Division of Hematology/Oncology
| | - Mary Olesnavich
- Department of Internal Medicine, Division of Hematology/Oncology
| | | | - Jenny Wolfgang
- Department of Internal Medicine, Division of Hematology/Oncology
| | - Kirsten L. Tuck
- Department of Internal Medicine, Division of Hematology/Oncology
| | | | | | - Kuang He
- Department of Internal Medicine, Division of Hematology/Oncology
| | | | | | - Chia-Jen Liu
- Michigan Center for Translational Pathology
- Department of Pathology
| | - Melissa Tuck
- Department of Internal Medicine, Division of Hematology/Oncology
| | - Malathi Kandarpa
- Department of Internal Medicine, Division of Hematology/Oncology
| | - Michelle Mierzwa
- Department of Radiation Oncology, and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Keith Casper
- Department of Otolaryngology
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark E. Prince
- Department of Otolaryngology
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - John C. Krauss
- Department of Internal Medicine, Division of Hematology/Oncology
| | - Moshe Talpaz
- Department of Internal Medicine, Division of Hematology/Oncology
| | - N. Lynn Henry
- Department of Internal Medicine, Division of Hematology/Oncology
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria D. Giraldez
- Department of Internal Medicine, Division of Hematology/Oncology
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, University of Seville, Seville, Spain
| | - Nithya Ramnath
- Department of Internal Medicine, Division of Hematology/Oncology
| | - Scott A. Tomlins
- Michigan Center for Translational Pathology
- Department of Pathology
- Department of Urology
| | - Paul L. Swiecicki
- Department of Internal Medicine, Division of Hematology/Oncology
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - J. Chad Brenner
- Department of Otolaryngology
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, and
- Center for Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
He YG, Huang YH, Yi XL, Qian KL, Wang Y, Cheng H, Hu J, Liu Y. Soft tissue tuberculosis detected by next-generation sequencing: A case report and review of literature. World J Clin Cases 2023; 11:709-718. [PMID: 36793633 PMCID: PMC9923867 DOI: 10.12998/wjcc.v11.i3.709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Soft tissue tuberculosis is rare and insidious, with most patients presenting with a localized enlarged mass or swelling, which may be factors associated with delayed diagnosis and treatment. In recent years, next-generation sequencing has rapidly evolved and has been successfully applied to numerous areas of basic and clinical research. A literature search revealed that the use of next-generation sequencing in the diagnosis of soft tissue tuberculosis has been rarely reported.
CASE SUMMARY A 44-year-old man presented with recurrent swelling and ulcers on the left thigh. Magnetic resonance imaging suggested a soft tissue abscess. The lesion was surgically removed and tissue biopsy and culture were performed; however, no organism growth was detected. Finally, Mycobacterium tuberculosis was confirmed as the pathogen responsible for infection through next-generation sequencing analysis of the surgical specimen. The patient received a standardized anti-tuberculosis treatment and showed clinical improvement. We also performed a literature review on soft tissue tuberculosis using studies published in the past 10 years.
CONCLUSION This case highlights the importance of next-generation sequencing for the early diagnosis of soft tissue tuberculosis, which can provide guidance for clinical treatment and improve prognosis.
Collapse
Affiliation(s)
- Yan-Gai He
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ya-Hui Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Lan Yi
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Kao-Liang Qian
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ying Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hui Cheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yuan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
4
|
Chang A, Mzava O, Djomnang LAK, Lenz JS, Burnham P, Kaplinsky P, Andama A, Connelly J, Bachman CM, Cattamanchi A, Steadman A, De Vlaminck I. Metagenomic DNA sequencing to quantify Mycobacterium tuberculosis DNA and diagnose tuberculosis. Sci Rep 2022; 12:16972. [PMID: 36216964 PMCID: PMC9551046 DOI: 10.1038/s41598-022-21244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a significant cause of mortality worldwide. Metagenomic next-generation sequencing has the potential to reveal biomarkers of active disease, identify coinfection, and improve detection for sputum-scarce or culture-negative cases. We conducted a large-scale comparative study of 428 plasma, urine, and oral swab samples from 334 individuals from TB endemic and non-endemic regions to evaluate the utility of a shotgun metagenomic DNA sequencing assay for tuberculosis diagnosis. We found that the composition of the control population had a strong impact on the measured performance of the diagnostic test: the use of a control population composed of individuals from a TB non-endemic region led to a test with nearly 100% specificity and sensitivity, whereas a control group composed of individuals from TB endemic regions exhibited a high background of nontuberculous mycobacterial DNA, limiting the diagnostic performance of the test. Using mathematical modeling and quantitative comparisons to matched qPCR data, we found that the burden of Mycobacterium tuberculosis DNA constitutes a very small fraction (0.04 or less) of the total abundance of DNA originating from mycobacteria in samples from TB endemic regions. Our findings suggest that the utility of a minimally invasive metagenomic sequencing assay for pulmonary tuberculosis diagnostics is limited by the low burden of M. tuberculosis and an overwhelming biological background of nontuberculous mycobacterial DNA.
Collapse
Affiliation(s)
- Adrienne Chang
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Omary Mzava
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Liz-Audrey Kounatse Djomnang
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Joan Sesing Lenz
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Philip Burnham
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Peter Kaplinsky
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| | - Alfred Andama
- grid.11194.3c0000 0004 0620 0548Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | | | - Adithya Cattamanchi
- grid.266102.10000 0001 2297 6811Center for Tuberculosis and Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA USA
| | | | - Iwijn De Vlaminck
- grid.5386.8000000041936877XNancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
| |
Collapse
|
5
|
Khimova E, Gonzalo X, Popova Y, Eliseev P, Andrey M, Nikolayevskyy V, Broda A, Drobniewski F. Urine biomarkers of pulmonary tuberculosis. Expert Rev Respir Med 2022; 16:615-621. [PMID: 35702997 DOI: 10.1080/17476348.2022.2090341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sputum-based tuberculosis diagnosis does not address the needs of certain categories of patients. Active development of a noninvasive urine-based diagnosis could provide an alternative approach. We reviewed publications covering more than 30 urine biomarkers proposed as significant for TB diagnosis. Analytical approaches were heterogeneous in design and methods; few studies on diagnostic outcome prediction described a formal specificity and sensitivity analysis. AREAS COVERED This review describes studies of non-sputum diagnostic approaches of pulmonary TB based on urine using specific TB biomarkers. The search was performed until December 2021, using terms [Tuberculosis] + [urine] + [biomarkers] in PubMed and Cochrane databases. Publications concerning LAM urine diagnostics were excluded as they have been described elsewhere. EXPERT OPINION Microbiological culture of sputum is considered to be the 'gold standard' diagnostic for pulmonary TB but the methodology is slow due to the slow growth of the TB bacteria. Urine provides a large volume of sample. Investigators have evaluated urine for either TB pathogen biomarkers or host biomarkers with some success as the review demonstrates. Detection sensitivity remains a significant problem. In future, combination of host and pathogen biomarkers could increase the sensitivity and specificity of TB diagnosis.
Collapse
Affiliation(s)
- Elena Khimova
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Ximena Gonzalo
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Yulia Popova
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Platon Eliseev
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | - Maryandyshev Andrey
- Department of Phthisiopulmonology, Northern State Medical University, Arkhangelsk, Russia
| | | | - Agnieszka Broda
- Department of Infectious Diseases, Imperial College London, London, UK
| | | |
Collapse
|