1
|
Verma S, Verma S, Siddiqi Z, Raza ST, Faruqui T, Ansari AI, Abbas M, Mahdi F. Association of VDR and TMPRSS2 gene polymorphisms with COVID-19 severity: a computational and clinical study. Mol Biol Rep 2025; 52:327. [PMID: 40106000 DOI: 10.1007/s11033-025-10417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND COVID-19 manifestations range from asymptomatic to severe, and are influenced by host genetic factors. This study examined the association between vitamin D receptor (VDR) polymorphisms (TaqI and FokI) and transmembrane serine protease 2 (TMPRSS2) gene polymorphisms (rs12329760) and COVID-19 severity. METHODS AND RESULTS 242 COVID-19 patients underwent genotyping using PCR-RFLP. Statistical analysis were conducted using SPSS v.21 and SHesis software, and validated by Sanger sequencing. The association of the VDR TaqI, FokI, and TMPRSS2 rs12329760 polymorphisms with COVID-19 severity was investigated. Computational analysis of TMPRSS2 was used to determine the pathogenicity and structural effects of these SNPs. For VDR TaqI, the 'TC' genotype showed higher prevalence in severe cases (50.5%) compared to mild cases (41.4%); however, no statistically significant association was observed [OR: 1.545 (0.893-2.675), p > 0.05]. Similar patterns were noted for the 'CC' genotype and 'C' allele, without statistical significance. For VDR FokI, the 'Ff' genotype showed higher prevalence in severe cases (25.8%) compared to mild cases (20.0%) [OR: 0.766 (0.199-2.951), p = 0.69], with no significant association. In haplotype analysis, elevated frequencies of 'Tf' and 'ft' haplotypes were observed in severe cases, but without statistical significance. For TMPRSS2 rs12329760, the 'CT' genotype showed a marginally higher prevalence in severe cases (50.5%) than in mild cases (49.7%) [OR: 0.805 (0.276-2.345), p > 0.05], without significant association. Computational analysis indicated that the variant does not demonstrate pathogenic effects but may influence protein stability. CONCLUSION This study revealed no statistically significant association between VDR (TaqI and FokI) and TMPRSS2 (rs12329760) polymorphisms and COVID-19 severity. Large-scale investigations and functional analysis are required to delineate the impact of these genetic variations on COVID-19 susceptibility and severity.
Collapse
Affiliation(s)
- Shrikant Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Sushma Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Zeba Siddiqi
- Department of Medicine, Eras Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Syed Tasleem Raza
- Department of Biochemistry, Eras Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Tabrez Faruqui
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Asma Imran Ansari
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| | - Mohammad Abbas
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India.
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, 226003, India.
| | - Farzana Mahdi
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, 226003, India
| |
Collapse
|
2
|
Mózner O, Szabó E, Kulin A, Várady G, Moldvay J, Vass V, Szentesi A, Jánosi Á, Hegyi P, Sarkadi B. Potential associations of selected polymorphic genetic variants with COVID-19 disease susceptibility and severity. PLoS One 2025; 20:e0316396. [PMID: 39752416 PMCID: PMC11698323 DOI: 10.1371/journal.pone.0316396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
In this study, we analyzed the potential associations of selected laboratory and anamnestic parameters, as well as 12 genetic polymorphisms (SNPs), with clinical COVID-19 occurrence and severity in 869 hospitalized patients. The SNPs analyzed by qPCR were selected based on population-wide genetic (GWAS) data previously indicating association with the severity of COVID-19, and additional SNPs that have been shown to be important in cellular processes were also examined. We confirmed the associations of COVID-19 with pre-existing diabetes and found an unexpected association between less severe disease and the loss of smell and taste. Regarding the genetic polymorphisms, a higher allele frequency of the LZTFL1 and IFNAR2 minor variants significantly correlated with greater COVID-19 disease susceptibility (hospitalization) and severity, and a similar tendency was observed for the RAVER1 and the MUC5B variants. Interestingly, the ATP2B4 minor haplotype, protecting against malaria, correlated with an increased disease susceptibility, while in diabetic patients disease susceptibility was lower in the presence of a reduced-function ABCG2 transporter variant. Our current results, which should be reinforced by larger studies, indicate that together with laboratory and anamnestic parameters, genetic polymorphisms may have predictive value for the clinical occurrence and severity of COVID-19.
Collapse
Affiliation(s)
- Orsolya Mózner
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| | - Edit Szabó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kulin
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| | - György Várady
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Moldvay
- 1 Department of Pulmonology, National Korányi Institute of Pulmonology
- Department of Pulmonology, University of Szeged Albert Szent-Györgyi Medical School
| | - Vivien Vass
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
- Institute of Pancreatic Diseases and Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Ágoston Jánosi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
- Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, Pécs, Hungary
- Institute of Pancreatic Diseases and Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Yaghmouri M, Izadi P. Role of the Neanderthal Genome in Genetic Susceptibility to COVID-19: 3p21.31 Locus in the Spotlight. Biochem Genet 2024; 62:4239-4263. [PMID: 38345759 DOI: 10.1007/s10528-024-10669-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
Since the outbreak of COVID-19, genome-wide association studies have tried to discover the role of genetic predisposition in the clinical variability of this viral infection. The findings of various investigations have led to several loci for COVID-19 genetic susceptibility. Among candidate regions, the 3p21.31 locus has been in the spotlight among scientists, as it can increase the risk of severe COVID-19 by almost two fold. In addition to its substantial association with COVID-19 severity, this locus is related to some common diseases, such as diabetes, malignancies, and coronary artery disease. This locus also harbors evolutionary traces of Neanderthal genomes, which is believed to be the underlying reason for its association with COVID-19 severity. Additionally, the inheritance of this locus from Neanderthals seems to be under positive selection. This review aims to summarize a collection of evidence on the 3p21.31 locus and its impact on COVID-19 outcomes by focusing on the risk variants originated from the Neanderthal genome. Moreover, we discuss candidate genes at this locus and the possible mechanisms by which they influence the progression of COVID-19 symptoms. Better insights into human genetic susceptibility to newly emerging diseases such as COVID-19 and its evolutionary origin can provide fundamentals for risk assessment of different populations as well as the development of personalized prevention and treatments based on genomic medicine.
Collapse
Affiliation(s)
- Mohammad Yaghmouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Chávez-Vélez E, Álvarez-Nava F, Torres-Vinueza A, Balarezo-Díaz T, Pilataxi K, Acosta-López C, Peña IZ, Narváez K. Single nucleotide variants in the CCL2, OAS1 and DPP9 genes and their association with the severity of COVID-19 in an Ecuadorian population. Front Cell Infect Microbiol 2024; 14:1322882. [PMID: 38694517 PMCID: PMC11061356 DOI: 10.3389/fcimb.2024.1322882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/15/2024] [Indexed: 05/04/2024] Open
Abstract
COVID-19 has a broad clinical spectrum, ranging from asymptomatic-mild form to severe phenotype. The severity of COVID-19 is a complex trait influenced by various genetic and environmental factors. Ethnic differences have been observed in relation to COVID-19 severity during the pandemic. It is currently unknown whether genetic variations may contribute to the increased risk of severity observed in Latin-American individuals The aim of this study is to investigate the potential correlation between gene variants at CCL2, OAS1, and DPP9 genes and the severity of COVID-19 in a population from Quito, Ecuador. This observational case-control study was conducted at the Carrera de Biologia from the Universidad Central del Ecuador and the Hospital Quito Sur of the Instituto Ecuatoriano de Seguridad Social (Quito-SUR-IESS), Quito, Ecuador. Genotyping for gene variants at rs1024611 (A>G), rs10774671 (A>G), and rs10406145 (G>C) of CCL2, OAS1, and DPP9 genes was performed on 100 COVID-19 patients (43 with severe form and 57 asymptomatic-mild) using RFLP-PCR. The genotype distribution of all SNVs throughout the entire sample of 100 individuals showed Hardy Weinberg equilibrium (P=0.53, 0.35, and 0.4 for CCL2, OAS1, and DPP9, respectively). The HWE test did not find any statistically significant difference in genotype distribution between the study and control groups for any of the three SNVs. The multivariable logistic regression analysis showed that individuals with the GG of the CCL2 rs1024611 gene variant had an increased association with the severe COVID-19 phenotype in a recessive model (P = 0.0003, OR = 6.43, 95% CI 2.19-18.89) and for the OAS1 rs10774671 gene variant, the log-additive model showed a significant association with the severe phenotype of COVID-19 (P=0.0084, OR=3.85, 95% CI 1.33-11.12). Analysis of haplotype frequencies revealed that the coexistence of GAG at CCL2, OAS1, and DPP9 variants, respectively, in the same individual increased the presence of the severe COVID-19 phenotype (OR=2.273, 95% CI: 1.271-4.068, P=0.005305). The findings of the current study suggests that the ethnic background affects the allele and genotype frequencies of genes associated with the severity of COVID-19. The experience with COVID-19 has provided an opportunity to identify an ethnicity-based approach to recognize genetically high-risk individuals in different populations for emerging diseases.
Collapse
Affiliation(s)
- Erik Chávez-Vélez
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Francisco Álvarez-Nava
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Alisson Torres-Vinueza
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Thalía Balarezo-Díaz
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Kathya Pilataxi
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Camila Acosta-López
- Carrera de Biología, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Ivonne Z. Peña
- Unidad de Cuidados Críticos de Adultos, Hospital Quito Sur del Instituto Ecuatoriano de Securidad Social, Quito, Ecuador
| | - Katherin Narváez
- Unidad de Cuidados Críticos de Adultos, Hospital Quito Sur del Instituto Ecuatoriano de Securidad Social, Quito, Ecuador
| |
Collapse
|
5
|
Perez-Favila A, Sanchez-Macias S, De Lara SAO, Garza-Veloz I, Araujo-Espino R, Castañeda-Lopez ME, Mauricio-Gonzalez A, Vazquez-Reyes S, Velasco-Elizondo P, Trejo-Ortiz PM, Montaño FEM, Castruita-De la Rosa C, Martinez-Fierro ML. Gene Variants of the OAS/RNase L Pathway and Their Association with Severity of Symptoms and Outcome of SARS-CoV-2 Infection. J Pers Med 2024; 14:426. [PMID: 38673053 PMCID: PMC11051515 DOI: 10.3390/jpm14040426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION The interferon pathway plays a critical role in triggering the immune response to SARS-CoV-2, and these gene variants may be involved in the severity of COVID-19. This study aimed to analyze the frequency of three gene variants of OAS and RNASEL with the occurrence of COVID-19 symptoms and disease outcome. METHODS This cross-sectional study included 104 patients with SARS-CoV-2 infection, of which 34 were asymptomatic COVID-19, and 70 were symptomatic cases. The variants rs486907 (RNASEL), rs10774671 (OAS1), rs1293767 (OAS2), and rs2285932 (OAS3) were screened and discriminated using a predesigned 5'-nuclease assay with TaqMan probes. RESULTS Patients with the allele C of the OAS2 gene rs1293767 (OR = 0.36, 95% CI: 0.15-0.83, p = 0.014) and allele T of the OAS3 gene rs2285932 (OR = 0.39, 95% CI: 0.2-0.023, p = 0.023) have lower susceptibility to developing symptomatic COVID-19. The genotype frequencies (G/G, G/C, and C/C) of rs1293767 for that comparison were 64.7%, 29.4%, and 5.9% in the asymptomatic group and 95.2%, 4.8%, and 0% in severe disease (p < 0.05). CONCLUSIONS Our data indicate that individuals carrying the C allele of the OAS2 gene rs1293767 and the T allele of the OAS3 gene rs2285932 are less likely to develop symptomatic COVID-19, suggesting these genetic variations may confer a protective effect among the Mexican study population. Furthermore, the observed differences in genotype frequencies between asymptomatic individuals and those with severe disease emphasize the potential of these variants as markers for disease severity. These insights enhance our understanding of the genetic factors that may influence the course of COVID-19 and underscore the potential for genetic screening in identifying individuals at increased risk for severe disease outcomes.
Collapse
Affiliation(s)
- Aurelio Perez-Favila
- Laboratorio de Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (S.S.-M.); (S.A.O.D.L.); (I.G.-V.); (C.C.-D.l.R.)
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Sonia Sanchez-Macias
- Laboratorio de Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (S.S.-M.); (S.A.O.D.L.); (I.G.-V.); (C.C.-D.l.R.)
| | - Sergio A. Oropeza De Lara
- Laboratorio de Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (S.S.-M.); (S.A.O.D.L.); (I.G.-V.); (C.C.-D.l.R.)
| | - Idalia Garza-Veloz
- Laboratorio de Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (S.S.-M.); (S.A.O.D.L.); (I.G.-V.); (C.C.-D.l.R.)
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Roxana Araujo-Espino
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Maria E. Castañeda-Lopez
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Alejandro Mauricio-Gonzalez
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Sodel Vazquez-Reyes
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Perla Velasco-Elizondo
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Perla M. Trejo-Ortiz
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Fabiana E. Mollinedo Montaño
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| | - Claudia Castruita-De la Rosa
- Laboratorio de Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (S.S.-M.); (S.A.O.D.L.); (I.G.-V.); (C.C.-D.l.R.)
| | - Margarita L. Martinez-Fierro
- Laboratorio de Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (S.S.-M.); (S.A.O.D.L.); (I.G.-V.); (C.C.-D.l.R.)
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (R.A.-E.); (M.E.C.-L.); (A.M.-G.); (S.V.-R.); (P.V.-E.); (P.M.T.-O.); (F.E.M.M.)
| |
Collapse
|
6
|
Yin Y, Zhang Y, Sun L, Wang S, Zeng Y, Gong B, Huang L, He Y, Yang Z. Association analysis of genetic variants in critical patients with COVID-19 and validation in a Chinese population. Virol Sin 2024; 39:347-350. [PMID: 38403118 DOI: 10.1016/j.virs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Yi Yin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lelin Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shuqiang Wang
- Infectious Disease Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yong Zeng
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yongquan He
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Zhenglin Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Skerenova M, Cibulka M, Dankova Z, Holubekova V, Kolkova Z, Lucansky V, Dvorska D, Kapinova A, Krivosova M, Petras M, Baranovicova E, Baranova I, Novakova E, Liptak P, Banovcin P, Bobcakova A, Rosolanka R, Janickova M, Stanclova A, Gaspar L, Caprnda M, Prosecky R, Labudova M, Gabbasov Z, Rodrigo L, Kruzliak P, Lasabova Z, Matakova T, Halasova E. Host genetic variants associated with COVID-19 reconsidered in a Slovak cohort. Adv Med Sci 2024; 69:198-207. [PMID: 38555007 DOI: 10.1016/j.advms.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
We present the results of an association study involving hospitalized coronavirus disease 2019 (COVID-19) patients with a clinical background during the 3rd pandemic wave of COVID-19 in Slovakia. Seventeen single nucleotide variants (SNVs) in the eleven most relevant genes, according to the COVID-19 Host Genetics Initiative, were investigated. Our study confirms the validity of the influence of LZTFL1 and 2'-5'-oligoadenylate synthetase (OAS)1/OAS3 genetic variants on the severity of COVID-19. For two LZTFL1 SNVs in complete linkage disequilibrium, rs17713054 and rs73064425, the odds ratios of baseline allelic associations and logistic regressions (LR) adjusted for age and sex ranged in the four tested designs from 2.04 to 2.41 and from 2.05 to 3.98, respectively. The OAS1/OAS3 haplotype 'gttg' carrying a functional allele G of splice-acceptor variant rs10774671 manifested its protective function in the Delta pandemic wave. Significant baseline allelic associations of two DPP9 variants in all tested designs and two IFNAR2 variants in the Omicron pandemic wave were not confirmed by adjusted LR. Nevertheless, adjusted LR showed significant associations of NOTCH4 rs3131294 and TYK2 rs2304256 variants with severity of COVID-19. Hospitalized patients' reported comorbidities were not correlated with genetic variants, except for obesity, smoking (IFNAR2), and hypertension (NOTCH4). The results of our study suggest that host genetic variations have an impact on the severity and duration of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Considering the differences in allelic associations between pandemic waves, they support the hypothesis that every new SARS-CoV-2 variant may modify the host immune response by reconfiguring involved pathways.
Collapse
Affiliation(s)
- Maria Skerenova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolkova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Michaela Krivosova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Petras
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Baranova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Elena Novakova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Liptak
- Clinic of Internal Medicine- Gastroenterology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Banovcin
- Clinic of Internal Medicine- Gastroenterology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Anna Bobcakova
- Clinic of Pneumology and Phthisiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Robert Rosolanka
- Clinic of Infectology and Travel Medicine, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Maria Janickova
- Clinic of Stomatology and Maxillofacial Surgery, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Stanclova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne'S University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Monika Labudova
- Faculty of Health Care and Social Work, University of Trnava in Trnava, Slovakia
| | - Zufar Gabbasov
- National Medical Research Centre for Cardiology, Moscow, Russia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo and Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Faculty of Medicine, University of Oviedo and Central University Hospital of Asturias (HUCA), Oviedo, Spain; Research and Development Services, Olomouc, Czech Republic.
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tatiana Matakova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
8
|
Hubáček JA, Šedová L, Hellerová V, Adámková V, Tóthová V. Increased prevalence of the COVID-19 associated Neanderthal mutations in the Central European Roma population. Ann Hum Biol 2024; 51:2341727. [PMID: 38771659 DOI: 10.1080/03014460.2024.2341727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and subsequent COVID-19 has spread world-wide and become pandemic with about 7 million deaths reported so far. Interethnic variability of the disease has been described, but a significant part of the differences remain unexplained and may be attributable to genetic factors. AIM To analyse genetic factors potentially influencing COVID-19 susceptibility and severity in European Roma minority. SUBJECTS AND METHODS Two genetic determinants, within OAS-1 (2-prime,5-prime-oligoadenylate synthetase 1, a key protein in the defence against viral infection; it activates RNases that degrade viral RNAs; rs4767027 has been analysed) and LZTFL1 (leucine zipper transcription factor-like 1, expressed in the lung respiratory epithelium; rs35044562 has been analysed) genes were screened in a population-sample of Czech Roma (N = 302) and majority population (N = 2,559). RESULTS For both polymorphisms, Roma subjects were more likely carriers of at least one risky allele for both rs4767027-C (p < 0.001) and rs35044562-G (p < 0.00001) polymorphism. There were only 5.3% Roma subjects without at least one risky allele in comparison with 10.1% in the majority population (p < 0.01). CONCLUSIONS It is possible that different genetic background plays an important role in increased prevalence of COVID-19 in the Roma minority.
Collapse
Affiliation(s)
- Jaroslav A Hubáček
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Šedová
- Faculty of Health and Social Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Věra Hellerová
- Faculty of Health and Social Sciences, University of South Bohemia, České Budějovice, Czech Republic
| | - Věra Adámková
- Department of Preventive Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Valérie Tóthová
- Faculty of Health and Social Sciences, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Azarfar F, Abbasi B, Jalali A, Abbasian MH. Investigation of the relationship between monocyte chemoattractant protein 1 rs1024611 variant and severity of COVID-19. Cytokine 2023; 171:156367. [PMID: 37713941 DOI: 10.1016/j.cyto.2023.156367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Higher expression of Monocyte Chemoattractant Protein 1 (MCP-1) was reported in several studies. The clinical severity of Coronavirus disease 2019 (COVID-19) could be affected by genetic polymorphisms in MCP-1. This study aimed to examine the impact of MCP-1 2518A/G polymorphism and clinical parameters with COVID-19 severity. METHODS The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for MCP-1 rs1024611 (A/G) genotyping in 116 outpatients, hospitalized, and ICU patients. The biochemical and hematological profiles were collected from the patient's medical records. RESULTS Based on the statistical analysis, there was no significant relationship between the -2518A/G (rs1024611) genetic polymorphism in the regulatory region of the MCP-1 gene and the severity of the COVID-19. Multivariate logistic regression analysis has shown that the severity of COVID-19 infection was associated with decreased levels of eosinophils, neutrophils, lymphocytes, and, monocyte and higher levels of SGPT, SGOT, NLR, CRP, ferritin, urea, and D-Dimer (P < 0.05). CONCLUSION The MCP-1 gene polymorphism had no impact on COVID-19 severity. However, to confirm these results, a large-scale study needs to be conducted.
Collapse
Affiliation(s)
- Fatemeh Azarfar
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | - Bahareh Abbasi
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Jalali
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran.
| | - Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
10
|
Hubacek JA, Philipp T, Adamkova V, Majek O, Dusek L. ABCA3 and LZTFL1 Polymorphisms and Risk of COVID-19 in the Czech Population. Physiol Res 2023; 72:539-543. [PMID: 37795896 PMCID: PMC10634566 DOI: 10.33549/physiolres.935108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 01/05/2024] Open
Abstract
SARS-CoV-2 infection, which causes the respiratory disease COVID-19, has spread rapidly from Wuhan, China, since 2019, causing nearly 7 million deaths worldwide in three years. In addition to clinical risk factors such as diabetes, hypertension, and obesity, genetic variability is an important predictor of disease severity and susceptibility. We analyzed common polymorphisms within the LZTFL1 (rs11385942) and ABCA3 (rs13332514) genes in 519 SARS-CoV-2-positive subjects (164 asymptomatic, 246 symptomatic, and 109 hospitalized COVID-19 survivors) and a population-based control group (N?=?2,592; COVID-19 status unknown). Rare ABCA3 AA homozygotes (but not A allele carriers) may be at a significantly increased risk of SARS-CoV-2 infection [P?=?0.003; OR (95 % CI); 3.66 (1.47-9.15)]. We also observed a borderline significant difference in the genotype distribution of the LZTFL1 rs11385942 polymorphism (P?=?0.04) between the population sample and SARS-CoV-2-positive subjects. In agreement with previous studies, a nonsignificantly higher frequency of minor allele carriers was detected among hospitalized COVID-19 subjects. We conclude that a common polymorphism in the ABCA3 gene may be a significant predictor of susceptibility to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- J A Hubacek
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
11
|
Zhu D, Zhao R, Yuan H, Xie Y, Jiang Y, Xu K, Zhang T, Chen X, Suo C. Host Genetic Factors, Comorbidities and the Risk of Severe COVID-19. J Epidemiol Glob Health 2023; 13:279-291. [PMID: 37160831 PMCID: PMC10169198 DOI: 10.1007/s44197-023-00106-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was varied in disease symptoms. We aim to explore the effect of host genetic factors and comorbidities on severe COVID-19 risk. METHODS A total of 20,320 COVID-19 patients in the UK Biobank cohort were included. Genome-wide association analysis (GWAS) was used to identify host genetic factors in the progression of COVID-19 and a polygenic risk score (PRS) consisted of 86 SNPs was constructed to summarize genetic susceptibility. Colocalization analysis and Logistic regression model were used to assess the association of host genetic factors and comorbidities with COVID-19 severity. All cases were randomly split into training and validation set (1:1). Four algorithms were used to develop predictive models and predict COVID-19 severity. Demographic characteristics, comorbidities and PRS were included in the model to predict the risk of severe COVID-19. The area under the receiver operating characteristic curve (AUROC) was applied to assess the models' performance. RESULTS We detected an association with rs73064425 at locus 3p21.31 reached the genome-wide level in GWAS (odds ratio: 1.55, 95% confidence interval: 1.36-1.78). Colocalization analysis found that two genes (SLC6A20 and LZTFL1) may affect the progression of COVID-19. In the predictive model, logistic regression models were selected due to simplicity and high performance. Predictive model consisting of demographic characteristics, comorbidities and genetic factors could precisely predict the patient's progression (AUROC = 82.1%, 95% CI 80.6-83.7%). Nearly 20% of severe COVID-19 events could be attributed to genetic risk. CONCLUSION In this study, we identified two 3p21.31 genes as genetic susceptibility loci in patients with severe COVID-19. The predictive model includes demographic characteristics, comorbidities and genetic factors is useful to identify individuals who are predisposed to develop subsequent critical conditions among COVID-19 patients.
Collapse
Affiliation(s)
- Dongliang Zhu
- Department of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yijing Xie
- Department of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Yaocheng Road 799, Taizhou, Jiangsu, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Yaocheng Road 799, Taizhou, Jiangsu, China
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Department of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Yaocheng Road 799, Taizhou, Jiangsu, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Zhangjiang Fudan International Innovation Center, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Yaocheng Road 799, Taizhou, Jiangsu, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| | - Chen Suo
- Department of Epidemiology & Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Yaocheng Road 799, Taizhou, Jiangsu, China.
| |
Collapse
|
12
|
Mohammadi NG, Namaki S, Hashemi SM, Salehi M, Ghaffarpour S, Ghazanfari T. Impact of the MCP-1-2518A>G polymorphism on COVID-19 severity in the Iranian population: A case-control study. Int Immunopharmacol 2023; 119:110217. [PMID: 37148770 PMCID: PMC10123354 DOI: 10.1016/j.intimp.2023.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
As a result of SARS-CoV-2 infection, the host's immune system is disrupted, and chemokines and cytokines are intensified to eliminate the virus, resulting in cytokine storm syndrome and acute respiratory distress syndrome (ARDS). Patients with COVID-19 have been observed to have elevated levels of MCP-1, a chemokine associated with the severity of the disease. In some diseases, polymorphisms in the regulatory region of the MCP-1 gene correspond to serum levels and disease severity. An attempt was made in this study to assess the relationship between MCP-1 G-2518A and serum MCP-1 levels in Iranian COVID-19 patients and the severity of the disease. In this study, patients were randomly sampled from outpatients on the first day of diagnosis and from inpatients on the first day of their hospitalization. Patients were classified into the outpatient (without symptoms or with mild symptoms) and inpatient (with moderate, severe, and critical symptoms) groups. The serum level of MCP-1 was measured by ELISA and the frequency of MCP-1 G-2518A gene polymorphism genotypes in COVID-19 patients was checked by the RFLP-PCR method. Participants with COVID-19 infection had a higher rate of underlying diseases, such as diabetes, high blood pressure, kidney disease, and cardiovascular disease than the control group (P-value < 0.001). Also, the frequency of these factors in inpatients was significantly higher compared to outpatients (P-value < 0.001). Additionally, the level of MCP-1 in serum was significantly different with an average of 11.90 in comparison to 2.98 in the control group (P-value, 0.05), which is attributed to elevated serum levels among patients in hospitals with an average of 11.72 in comparison to 2.98 in the control group. Compared with outpatients, inpatients had a higher frequency of the G allele of the MCP-1-2518 polymorphism (P-value < 0.05), while a notable difference was observed in the serum level of MCP-1 in COVID-19 patients with the MCP-1-2518 AA genotype in the whole group in comparison to the control group (P-value: 0.024). Totally, the results showed that a high frequency of the G allele is related to hospitalization and poor outcome in COVID-19 cases.
Collapse
Affiliation(s)
- Niki Ghambari Mohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Namaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Department of Infection Disease and Tropical Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghaffarpour
- Immunoregulation Research Centre, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Centre, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| |
Collapse
|
13
|
Cappadona C, Rimoldi V, Paraboschi EM, Asselta R. Genetic susceptibility to severe COVID-19. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105426. [PMID: 36934789 PMCID: PMC10022467 DOI: 10.1016/j.meegid.2023.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Clinical manifestations of the disease range from an asymptomatic condition to life-threatening events and death, with more severe courses being associated with age, male sex, and comorbidities. Besides these risk factors, intrinsic characteristics of the virus as well as genetic factors of the host are expected to account for COVID-19 clinical heterogeneity. Genetic studies have long been recognized as fundamental to identify biological mechanisms underlying congenital diseases, to pinpoint genes/proteins responsible for the susceptibility to different inherited conditions, to highlight targets of therapeutic relevance, to suggest drug repurposing, and even to clarify causal relationships that make modifiable some environmental risk factors. Though these studies usually take long time to be concluded and, above all, to translate their discoveries to patients' bedside, the scientific community moved really fast to deliver genetic signals underlying different COVID-19 phenotypes. In this Review, besides a concise description of COVID-19 symptomatology and of SARS-CoV-2 mechanism of infection, we aimed to recapitulate the current literature in terms of host genetic factors that specifically associate with an increased severity of the disease.
Collapse
Affiliation(s)
- Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
14
|
Lopes van den Broek S, García-Vázquez R, Andersen IV, Valenzuela-Nieto G, Shalgunov V, Battisti UM, Schwefel D, Modhiran N, Kramer V, Cheuquemilla Y, Jara R, Salinas-Varas C, Amarilla AA, Watterson D, Rojas-Fernandez A, Herth MM. Development and evaluation of an 18F-labeled nanobody to target SARS-CoV-2's spike protein. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:1033697. [PMID: 39354971 PMCID: PMC11440877 DOI: 10.3389/fnume.2022.1033697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/21/2022] [Indexed: 10/03/2024]
Abstract
COVID-19, caused by the SARS-CoV-2 virus, has become a global pandemic that is still present after more than two years. COVID-19 is mainly known as a respiratory disease that can cause long-term consequences referred to as long COVID. Molecular imaging of SARS-CoV-2 in COVID-19 patients would be a powerful tool for studying the pathological mechanisms and viral load in different organs, providing insights into the disease and the origin of long-term consequences and assessing the effectiveness of potential COVID-19 treatments. Current diagnostic methods used in the clinic do not allow direct imaging of SARS-CoV-2. In this work, a nanobody (NB) - a small, engineered protein derived from alpacas - and an Fc-fused NB which selectively target the SARS-CoV-2 Spike protein were developed as imaging agents for positron emission tomography (PET). We used the tetrazine ligation to 18F-label the NB under mild conditions once the NBs were successfully modified with trans-cyclooctenes (TCOs). We confirmed binding to the Spike protein by SDS-PAGE. Dynamic PET scans in rats showed excretion through the liver for both constructs. Future work will evaluate in vivo binding to the Spike protein with our radioligands.
Collapse
Affiliation(s)
- Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Guillermo Valenzuela-Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Umberto M. Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Schwefel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | | | - Yorka Cheuquemilla
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Ronald Jara
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Constanza Salinas-Varas
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Alberto A. Amarilla
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Alejandro Rojas-Fernandez
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
- Berking Biotechnology, Valdivia, Chile
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
15
|
Ji XS, Chen B, Ze B, Zhou WH. Human genetic basis of severe or critical illness in COVID-19. Front Cell Infect Microbiol 2022; 12:963239. [PMID: 36204639 PMCID: PMC9530247 DOI: 10.3389/fcimb.2022.963239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable morbidity and mortality worldwide. The clinical manifestation of COVID-19 ranges from asymptomatic or mild infection to severe or critical illness, such as respiratory failure, multi-organ dysfunction or even death. Large-scale genetic association studies have indicated that genetic variations affecting SARS-CoV-2 receptors (angiotensin-converting enzymes, transmembrane serine protease-2) and immune components (Interferons, Interleukins, Toll-like receptors and Human leukocyte antigen) are critical host determinants related to the severity of COVID-19. Genetic background, such as 3p21.31 and 9q34.2 loci were also identified to influence outcomes of COVID-19. In this review, we aimed to summarize the current literature focusing on human genetic factors that may contribute to the observed diversified severity of COVID-19. Enhanced understanding of host genetic factors and viral interactions of SARS-CoV-2 could provide scientific bases for personalized preventive measures and precision medicine strategies.
Collapse
Affiliation(s)
- Xiao-Shan Ji
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bin Chen
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bi Ze
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|