1
|
Hu Y, Zhou L, Du Q, Shi W, Meng Q, Yuan L, Hu H, Ma L, Li D, Yao K. Sharp rise in high-virulence Bordetella pertussis with macrolides resistance in Northern China. Emerg Microbes Infect 2025; 14:2475841. [PMID: 40042368 PMCID: PMC11921162 DOI: 10.1080/22221751.2025.2475841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE To elucidate the evolution of antigen genotype and antimicrobial resistance distribution of Bordetella pertussis (B. pertussis) from 2019 to 2023 in northern China. METHODS Polymerase chain reaction (PCR) amplification and sequencing were utilized to identify the seven antigen genotypes (ptxA, ptxC, ptxP, prn, fim2, fim3, tcfA). E-test and Kirby-Bauer (K-B) disc diffusion were employed to determine the minimum inhibitory concentration (MIC) and zone of inhibition for B. pertussis against antimicrobial agents. Subsequently, 50 isolates were chosen for multi-locus variable-number tandem-repeat analysis (MLVA) typing and whole-genome sequencing. RESULTS A total of 442 B. pertussis isolates were determined. The strains with high virulence harbouring ptxP3 allele surged from 13.5% (21/155) in 2019-2021 to 93.0% (267/287) in 2022-2023. Concurrently, the erythromycin resistance B. pertussis (ERBP) in ptxP3 isolates markedly rose from 42.9% (9/21) in 2019-2021 to 100% (267/267) in 2022-2023. The majority of ptxP3 isolates (76.0%,219/288) exhibited the ptxA1/ptxC1/prn2/fim2-1/fim3A/tcfA-2 genotype. Among the 442 confirmed patients, the children aged 3-14 years escalated rapidly from 13.5% in 2019 to 45.6% in 2023. The MT28 strains were responsible for 66.0% (33/50) of the tested ones, in which ERBP was prevalent at 87.9% (29/33). All the present sequenced ptxP3-ERBP strains (31/31) were clustered into the sub-lineage IVd. CONCLUSIONS These results suggested the clonal spread of the ptxP3-ERBP lineage of B. pertussis with high virulence and macrolides resistance could be an important cause of the recent pertussis resurgence in China. Furthermore, the increased cases among pre-school and school-aged children underscore the importance of booster vaccination in this population.
Collapse
Affiliation(s)
- Yahong Hu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Lin Zhou
- Department of Clinical Laboratory, Capital Institute of, Beijing, People’s Republic of China
| | - Qianqian Du
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Wei Shi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Qinghong Meng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Lin Yuan
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Huili Hu
- Department of Pediatrics, Beijing Shijingshan Hospital, Shijingshan Teaching Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lijuan Ma
- Department of Clinical Laboratory, Capital Institute of, Beijing, People’s Republic of China
| | | | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Li Z, Xiao F, Hou Y, Jia B, Zhuang J, Cao Y, Ma J, Zhao J, Xu Z, Jia Z, Liu F, Pang L, Liu J. Genomic epidemiology and evolution of Bordetella pertussis under the vaccination pressure of acellular vaccines in Beijing, China, 2020-2023. Emerg Microbes Infect 2025; 14:2447611. [PMID: 39725566 PMCID: PMC11721623 DOI: 10.1080/22221751.2024.2447611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Pertussis (or whooping cough) has experienced a global resurgence despite widespread vaccine efforts. In China, the incidence of pertussis has rapidly increased, particularly following the COVID-19 pandemic. Whole-genome sequencing analysis was performed on 60 Bordetella pertussis strains isolated in Beijing from 2020-2023, and the sequences were compared with those of 635 strains from China and 943 strains from other countries. In this study, the genetic evolution of B. pertussis was investigated, focusing on key virulence genes (ptxP, ptxA, prn, fim2, fim3, tcfA) and the resistance-related locus A2047 across different periods and regions. The dominant antigen genotype among the 60 isolates was ptxP3/prn2/ptxA1/fim2-1/fim3-1/tcfA2 (88.3%), differing from the prevalent genotype ptxP-1/prn-1/ptxA-1 in Beijing prior to 2019 and the vaccine strain genotype ptxP-1/prn-1/ptxA-2/fim2-1/fim3-1/tcfA2. Evolutionary analysis revealed significant genetic shifts associated with the introduction of vaccines, particularly acellular vaccines. Initially, the prevalent genotypes included ptxP-1, prn-1, ptxA-2, fim2-2, and fim3-2. However, currently, ptxP-3, prn-2 and ptxA-1 have become predominant globally, indicating vaccine-induced selection pressure. Additionally, all 60 isolated strains (100%) presented the A2047G mutation associated with erythromycin resistance, of which ptxP3 accounted for 91.7%. Macrolide-resistant Bordetella pertussis (MRBP) is widespread in China, and the prevalence of ptxP3-MRBP may be increasing. The significant changes of dominance of subtypes in Beijing in recent years underscore the need for continuous surveillance and adaptation of pertussis vaccination strategies.
Collapse
Affiliation(s)
- Zhen Li
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Fei Xiao
- Experimental research center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Yue Hou
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Bin Jia
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ji Zhuang
- School of Public Health, Bao Tou Medical College, Baotou, People’s Republic of China
| | - Yang Cao
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianxin Ma
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianhong Zhao
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zengquan Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhe Jia
- School of Public Health, Bao Tou Medical College, Baotou, People’s Republic of China
| | - Fang Liu
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lin Pang
- Department of Pediatrics, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jie Liu
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
3
|
He B, Jia Z, Zheng F, Zhang W, Duan S, Wang L, Zhang H, Zhang H, Wang R, Gao Y, Sun Y. Molecular characterization and antimicrobial susceptibility for 62 isolates of Bordetella pertussis from children. Front Microbiol 2024; 15:1498638. [PMID: 39723144 PMCID: PMC11668733 DOI: 10.3389/fmicb.2024.1498638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Pertussis is a highly contagious respiratory disease caused by Bordetella pertussis (BP). Despite global control of pertussis cases through the Expanded Programme on Immunization (EPI), there has been a significant increase in the incidence of pertussis in recent years, characterized by a "resurgence" in developed countries with high immunization rates as well as a comparable reemergence in certain areas of China. We aim to explore the genotypes and antimicrobial susceptibility of circulating BP from children in Hebei. Study design Children diagnosed with BP infection from 2019 to 2020 in Hebei, China were enrolled. We performed antimicrobial susceptibility testing (AST), whole-genome sequencing (WGS) analysis, single nucleotide polymorphism (SNP) detection, mltilocus sequence typing (MLST), multilocus antigen sequence typing (MAST), multilevel genome typing (MGT). A total of 313 international BP genomes were selected for comparison to examine the genomic diversity and evolutionary traits of Chinese strains within a global framework. Results Sixty-two individuals were identified with BP infection via culture, yielding a positive rate of 15.62% (62/397) for BP. Two phylogenetic groups were identified, each carrying a dominating genotype. The two vaccine strains, CS and Tohama I, exhibited a distant relationship to these two groups. This study identified 56 erythromycin-resistant isolates, 55 azithromycin-resistant isolates, 58 sulfamethoxazole-sensitive isolates, and 53 cefotaxime-sensitive isolates. All BP isolates were sensitive to levofloxacin, amoxicillin, ceftriaxone, and meropenem. Meanwhile, all erythromycin-resistant strains, which belonged to lineage I and MGT2 sequence type 7 (ST7), shared the ptxP1 gene and contained the 23S rRNA A2047G mutation. The major MAST was prn1/ptxP1/ptxA1/fim3-1/fim2-1 (75.81%). All 62 BP strains were divided into 1, 2, 3, 14, and 52 types at the MGT1, MGT2, MGT3, MGT4, and MGT5 levels, respectively. Conclusion This work showed that there may be a link between antimicrobial resistance and alterations in specific molecular types, and the isolates showed a clear change when compared with the vaccine strain and that selection pressure from both antibiotics and immunization may be responsible for driving Chinese BP evolution, and necessitate a reevaluation of the immunization strategy and the development of novel vaccines in China to halt the resurgence and medication resistance of pertussis.
Collapse
Affiliation(s)
- Baohua He
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, HeBei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Zhaoyi Jia
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, HeBei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Fei Zheng
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | | | - Suxia Duan
- Hebei Children's Hospital, Shijiazhuang, China
| | - Leyu Wang
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, HeBei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Haixia Zhang
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, HeBei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Hongbin Zhang
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, HeBei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| | - Ruoxuan Wang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yuan Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yinqi Sun
- Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, HeBei Provincial Center for Disease Control and Prevention, Shijiazhuang, China
| |
Collapse
|
4
|
Fu P, Yan G, Li Y, Xie L, Ke Y, Qiu S, Wu S, Shi X, Qin J, Zhou J, Lu G, Yang C, Wang C. Pertussis upsurge, age shift and vaccine escape post-COVID-19 caused by ptxP3 macrolide-resistant Bordetella pertussis MT28 clone in China. Clin Microbiol Infect 2024; 30:1439-1446. [PMID: 39209267 DOI: 10.1016/j.cmi.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES China has experienced a notable upsurge in pertussis cases post-COVID-19, alongside an age shift to older children, increased vaccine escape, and a notable rise in the prevalence of macrolide-resistant Bordetella pertussis. Here, we present a genomic epidemiological investigation of these events. METHODS We performed a retrospective observational study using culture-positive B pertussis isolated in Shanghai, China, from 2016 to 2024. We analysed strain and pertussis epidemiology dynamics by integrating whole-genome sequencing of 723 strains with antimicrobial susceptibility, transcriptomic profile, and clinical data. We compared the genome sequences of Shanghai strains with 6450 Chinese and global strains. RESULTS From pre-COVID-19 (before December 2019) to post-COVID-19, patients shifted from predominantly infants (90%, 397/442) to a higher proportion of infections in older children (infant: 16%, 132/844), with the share of vaccinated individuals surging from 31% (107/340) to 88% (664/756). The macrolide-resistant Bordetella pertussis prevalence increased from 60% (267/447) to 98% (830/845). The emergence and expansion of a ptxP3-lineage macrolide-resistant clone, MR-MT28, which is uniquely capable of causing substantial infections among older children and vaccinated individuals, was temporally strongly associated with the pertussis upsurge and epidemiological transition. Although MR-MT28 showed increased expression of genes encoding pertussis toxin, it was associated with significantly milder clinical symptoms and a lower hospitalization rate. MR-MT28 likely originated in China around 2016, after acquiring several key mutations, including a novel prn150 allele, and has been detected across multiple regions in China. In addition, 26% (50/195) of MR-MT28 has evolved into predicted Pertactin (PRN)-deficient strains, with an IS481 insertion being the predominant mechanism. DISCUSSION We report that the post-COVID-19 upsurge of pertussis in China is associated with ptxP3-MR-MT28, and provide evidence that pathogen evolution is likely the primary factor driving + pertussis upsurge, age shift, and vaccine escape. MR-MT28 poses a high risk of global spread and warrants global surveillance.
Collapse
Affiliation(s)
- Pan Fu
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Gangfen Yan
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yijia Li
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Li Xie
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuxiang Qiu
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jie Qin
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jinlan Zhou
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Chao Yang
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Chuanqing Wang
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
5
|
Fu P, Li Y, Qin J, Xie L, Yang C, Wang C. Molecular epidemiology and genomic features of Bordetella parapertussis in Shanghai, China, 2017-2022. Front Microbiol 2024; 15:1428766. [PMID: 39044958 PMCID: PMC11263204 DOI: 10.3389/fmicb.2024.1428766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Background Pertussis is a highly contagious respiratory illness mainly caused by Bordetella pertussis (BP). Bordetella parapertussis (BPP) can induce symptoms compatible with pertussis, but has been underdiagnosed and underreported. The current pertussis vaccines offer low protection against BPP. Herein, we aim to reveal the epidemiology and genomic evolution of BPP in Shanghai, China. Methods Children diagnosed with BPP infection from January 2017 to December 2022 in Shanghai, China were enrolled. We performed antimicrobial susceptibility testing (AST), multiple locus variable-number tandem repeat analysis (MLVA), and whole genome sequencing (WGS) analysis. A total of 260 international BPP genomes were chosen for comparison to investigate the genomic diversity and phylogenetic characteristics of Chinese strains within a global context. Results Sixty patients were diagnosed with BPP infection by culture, with the positive ratio of 3.5‰ (60/17337) for BPP in nasopharyngeal swap samples. The average age of patients was 4.5 ± 0.3 years. BPPs contained four MLVA types including MT6 (65.0%), MT4 (26.7%), untype-1 (6.7%) and MT5 (1.7%), and none of strains showed resistance to macrolides. All strains carried virulence genotype of ptxP37/ptxA13/ptxB3/ptxC3/ptxD3/ptxE3/fim2-2/fim3-10. MT4 and MT5 strains carried prn54, whereas MT6 and untype-1 BPPs expressed prn101. We identified two outbreaks after 2020 caused by MT4 and MT6 strains, each corresponding to distinct WGS-based phylogenetic lineages. The MT4-lineage is estimated to have originated around 1991 and has since spread globally, being introduced to China between 2005 and 2010. In contrast, the MT6-lineage was exclusively identified in China and is inferred to have originated around 2002. Conclusion We revealed the genomic diversity of BPPs circulating in Shanghai, China, and reported the outbreaks of MT6 and MT4 BPPs after 2020. This is the first report on the emergence and regional outbreak of MT6 BPPs in the world, indicating that continuous surveillance on BPPs are thus required.
Collapse
Affiliation(s)
- Pan Fu
- Laboratory of Microbiology, Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Nosocomial Infection Control Department, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yijia Li
- Laboratory of Microbiology, Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jie Qin
- Laboratory of Microbiology, Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Li Xie
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Chao Yang
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Chuanqing Wang
- Laboratory of Microbiology, Department of Clinical Laboratory, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Nosocomial Infection Control Department, Children’s Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
6
|
Hua CZ, He HQ, Shu Q. Resurgence of pertussis: reasons and coping strategies. World J Pediatr 2024; 20:639-642. [PMID: 38954137 DOI: 10.1007/s12519-024-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024]
Affiliation(s)
- Chun-Zhen Hua
- Department of Infectious Diseases, National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Han-Qing He
- Department of Immunization Program, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
7
|
Koide K, Uchitani Y, Yamaguchi T, Otsuka N, Goto M, Kenri T, Kamachi K. Whole-genome comparison of two same-genotype macrolide-resistant Bordetella pertussis isolates collected in Japan. PLoS One 2024; 19:e0298147. [PMID: 38359004 PMCID: PMC10868825 DOI: 10.1371/journal.pone.0298147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
The emergence of macrolide-resistant Bordetella pertussis (MRBP) is a significant problem because it reduces treatment options for pertussis and exacerbates the severity and spread of the disease. MRBP has been widely prevalent in mainland China since the 2010s and has been sporadically detected in other Asian countries. In Japan, two MRBP clinical strains were first isolated in Tokyo and Osaka between June and July 2018. The isolates BP616 in Osaka and BP625 in Tokyo harbored the same virulence-associated allelic genes (including ptxP1, ptxA1, prn1, fim3A, and fhaB3) and MT195 genotype and exhibited similar antimicrobial susceptibility profiles. However, despite their simultaneous occurrence, a distinguishable epidemiological link between these isolates could not be established. To gain further insight into the genetic relationship between these isolates in this study, we performed whole-genome analyses. Phylogenetic analysis based on genome-wide single-nucleotide polymorphisms revealed that the isolates belonged to one of the three clades of Chinese MRBP isolates, but there were 11 single-nucleotide polymorphism differences between BP616 and BP625. Genome structure analysis revealed two large inversions (202 and 523 kbp) and one small transposition (3.8 kbp) between the genomes. These findings indicate that the two Japanese MRBP isolates are closely related to Chinese MRBP isolates but are genomically distinct, suggesting that they were introduced into Japan from mainland China through different transmission routes.
Collapse
Affiliation(s)
- Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Uchitani
- Division of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masataka Goto
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Fu P, Zhou J, Yang C, Nijiati Y, Zhou L, Yan G, Lu G, Zhai X, Wang C. Molecular Evolution and Increasing Macrolide Resistance of Bordetella pertussis, Shanghai, China, 2016-2022. Emerg Infect Dis 2023; 30:29-38. [PMID: 38146984 PMCID: PMC10756392 DOI: 10.3201/eid3001.221588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
Resurgence and spread of macrolide-resistant Bordetella pertussis (MRBP) threaten global public health. We collected 283 B. pertussis isolates during 2016-2022 in Shanghai, China, and conducted 23S rRNA gene A2047G mutation detection, multilocus variable-number tandem-repeat analysis, and virulence genotyping analysis. We performed whole-genome sequencing on representative strains. We detected pertussis primarily in infants (0-1 years of age) before 2020 and older children (>5-10 years of age) after 2020. The major genotypes were ptxP1/prn1/fhaB3/ptxA1/ptxC1/fim2-1/fim3-1 (48.7%) and ptxP3/prn2/fhaB1/ptxA1/ptxC2/fim2-1/fim3-1 (47.7%). MRBP increased remarkably from 2016 (36.4%) to 2022 (97.2%). All MRBPs before 2020 harbored ptxP1, and 51.4% belonged to multilocus variable-number tandem-repeat analysis type (MT) 195, whereas ptxP3-MRBP increased from 0% before 2020 to 66.7% after 2020, and all belonged to MT28. MT28 ptxP3-MRBP emerged only after 2020 and replaced the resident MT195 ptxP1-MRBP, revealing that 2020 was a watershed in the transformation of MRBP.
Collapse
Affiliation(s)
| | | | - Chao Yang
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Yaxier Nijiati
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Lijun Zhou
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Gangfen Yan
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Guoping Lu
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Xiaowen Zhai
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Chuanqing Wang
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| |
Collapse
|