1
|
Sagheb E, Wi CI, King KS, Agnikula Kshatriya BS, Ryu E, Liu H, Park MA, Seol HY, Overgaard SM, Sharma DK, Juhn YJ, Sohn S. AI model for predicting asthma prognosis in children. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100429. [PMID: 40091884 PMCID: PMC11908553 DOI: 10.1016/j.jacig.2025.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 03/19/2025]
Abstract
Background Childhood asthma often continues into adulthood, but some children experience remission. Utilizing electronic health records (EHRs) to predict asthma prognosis can aid health care providers and patients in developing effective prioritized care plans. Objective We aimed to develop artificial intelligence (AI) models using various clinical variables extracted from EHRs to predict childhood asthma prognosis (remission vs no remission) in different age groups. Methods We developed AI models utilizing patients' EHRs during the first 6, 9, or 12 years of their lives to predict their asthma prognosis status at ages 6 to 9, 9 to 12, or 12 to 15 years, respectively. We first developed the models based on a manually annotated birth cohort (n = 900). We then leveraged a larger birth cohort (n = 29,594) labeled automatically (with weak labels) by a previously validated natural language processing algorithm for asthma prognosis. Different models (logistic regression, random forest, and XGBoost [eXtreme Gradient Boosting]) were tested with diverse clinical variables from structured and unstructured EHRs. Results The best AI models of each age group produced a prediction performance with areas under the receiver operating characteristic curve ranging from 0.85 to 0.93. The prediction model at age 12 showed the highest performance. Most of the AI models with weak labels showed enhanced performance, and models using the top 10 variables performed similarly to those using all of the variables. Conclusions The AI models effectively predicted asthma prognosis for children by using EHRs with a relatively small number of variables. This approach demonstrates the potential to enhance prioritized care plans and patient education, improving disease management and quality of life for asthmatic patients.
Collapse
Affiliation(s)
- Elham Sagheb
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minn
| | - Chung-Il Wi
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minn
| | - Katherine S. King
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minn
| | | | - Euijung Ryu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minn
| | - Hongfang Liu
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minn
- UTHealth Houston, Houston, Tex
| | - Miguel A. Park
- Department of Allergy and Immunology, Mayo Clinic, Rochester, Minn
| | - Hee Yun Seol
- Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, Korea
| | | | | | - Young J. Juhn
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minn
| | - Sunghwan Sohn
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minn
| |
Collapse
|
2
|
Zhou C, Shuai L, Hu H, Ung COL, Lai Y, Fan L, Du W, Wang Y, Li M. Applications of machine learning approaches for pediatric asthma exacerbation management: a systematic review. BMC Med Inform Decis Mak 2025; 25:170. [PMID: 40251545 PMCID: PMC12008861 DOI: 10.1186/s12911-025-02990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/27/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Pediatric asthma is a common chronic respiratory disease worldwide, and its acute exacerbation events significantly impact children's health and quality of life. Machine learning, an advanced data analysis technique, has shown great potential in healthcare applications in recent years. This systematic review aims to assess the application of ML techniques in pediatric asthma exacerbation and explore their effectiveness and potential value. METHODS Studies from four electronic databases, including PubMed, EBSCO, Elsevier, and Web of Science, from Jan 2000 to Jan 2025, were searched. Studies applying the ML methods for pediatric asthma exacerbation and published in English were eligible. The risk of bias and applicability of the included studies was assessed using the Effective Public Health Practice Project (EPHPP) quality assessment tool. RESULTS A total of 23 studies were selected for inclusion in this review, covering different ML models such as decision trees, neural networks, and support vector machines. These studies focused on analyzing risk factors for asthma exacerbation, diagnosing and predicting, optimizing and allocating healthcare resources, and comprehensive asthma management. The results show that ML techniques have significant advantages in the application of pediatric asthma exacerbation and in the provision of personalized health care. CONCLUSIONS ML techniques show great promise for application in pediatric asthma exacerbations. With further research and clinical validation, these techniques are expected to provide strong support for diagnosis, personalized treatment, and long-term management of pediatric asthma exacerbation. CLINICAL TRIAL NUMBER Not applicable, Prospero registration number CRD42024559232.
Collapse
Affiliation(s)
- Chunni Zhou
- School of Public Health, Southeast University, 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Liu Shuai
- School of Public Health, Southeast University, 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yunfeng Lai
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Fan
- School of Public Health, Southeast University, 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Wei Du
- School of Public Health, Southeast University, 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China
| | - Yan Wang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, 172, Jiangsu Road, Gulou District, Nanjing, 210009, China.
| | - Meng Li
- School of Public Health, Southeast University, 87, Dingjiaqiao Road, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
3
|
Ojha T, Patel A, Sivapragasam K, Sharma R, Vosoughi T, Skidmore B, Pinto AD, Hosseini B. Exploring Machine Learning Applications in Pediatric Asthma Management: Scoping Review. JMIR AI 2024; 3:e57983. [PMID: 39190449 PMCID: PMC11387921 DOI: 10.2196/57983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND The integration of machine learning (ML) in predicting asthma-related outcomes in children presents a novel approach in pediatric health care. OBJECTIVE This scoping review aims to analyze studies published since 2019, focusing on ML algorithms, their applications, and predictive performances. METHODS We searched Ovid MEDLINE ALL and Embase on Ovid, the Cochrane Library (Wiley), CINAHL (EBSCO), and Web of Science (core collection). The search covered the period from January 1, 2019, to July 18, 2023. Studies applying ML models in predicting asthma-related outcomes in children aged <18 years were included. Covidence was used for citation management, and the risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool. RESULTS From 1231 initial articles, 15 met our inclusion criteria. The sample size ranged from 74 to 87,413 patients. Most studies used multiple ML techniques, with logistic regression (n=7, 47%) and random forests (n=6, 40%) being the most common. Key outcomes included predicting asthma exacerbations, classifying asthma phenotypes, predicting asthma diagnoses, and identifying potential risk factors. For predicting exacerbations, recurrent neural networks and XGBoost showed high performance, with XGBoost achieving an area under the receiver operating characteristic curve (AUROC) of 0.76. In classifying asthma phenotypes, support vector machines were highly effective, achieving an AUROC of 0.79. For diagnosis prediction, artificial neural networks outperformed logistic regression, with an AUROC of 0.63. To identify risk factors focused on symptom severity and lung function, random forests achieved an AUROC of 0.88. Sound-based studies distinguished wheezing from nonwheezing and asthmatic from normal coughs. The risk of bias assessment revealed that most studies (n=8, 53%) exhibited low to moderate risk, ensuring a reasonable level of confidence in the findings. Common limitations across studies included data quality issues, sample size constraints, and interpretability concerns. CONCLUSIONS This review highlights the diverse application of ML in predicting pediatric asthma outcomes, with each model offering unique strengths and challenges. Future research should address data quality, increase sample sizes, and enhance model interpretability to optimize ML utility in clinical settings for pediatric asthma management.
Collapse
Affiliation(s)
- Tanvi Ojha
- Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Atushi Patel
- Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Krishihan Sivapragasam
- Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Radha Sharma
- Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tina Vosoughi
- Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | | | - Andrew D Pinto
- Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Department of Family and Community Medicine, St. Michael's Hospital, Toronto, ON, Canada
- Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Clinical Public Health & Institute for Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Banafshe Hosseini
- Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Clinical Public Health & Institute for Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Thirunavukarasu AJ, Elangovan K, Gutierrez L, Hassan R, Li Y, Tan TF, Cheng H, Teo ZL, Lim G, Ting DSW. Clinical performance of automated machine learning: A systematic review. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2024; 53:187-207. [PMID: 38920245 DOI: 10.47102/annals-acadmedsg.2023113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Introduction Automated machine learning (autoML) removes technical and technological barriers to building artificial intelligence models. We aimed to summarise the clinical applications of autoML, assess the capabilities of utilised platforms, evaluate the quality of the evidence trialling autoML, and gauge the performance of autoML platforms relative to conventionally developed models, as well as each other. Method This review adhered to a prospectively registered protocol (PROSPERO identifier CRD42022344427). The Cochrane Library, Embase, MEDLINE and Scopus were searched from inception to 11 July 2022. Two researchers screened abstracts and full texts, extracted data and conducted quality assessment. Disagreement was resolved through discussion and if required, arbitration by a third researcher. Results There were 26 distinct autoML platforms featured in 82 studies. Brain and lung disease were the most common fields of study of 22 specialties. AutoML exhibited variable performance: area under the receiver operator characteristic curve (AUCROC) 0.35-1.00, F1-score 0.16-0.99, area under the precision-recall curve (AUPRC) 0.51-1.00. AutoML exhibited the highest AUCROC in 75.6% trials; the highest F1-score in 42.3% trials; and the highest AUPRC in 83.3% trials. In autoML platform comparisons, AutoPrognosis and Amazon Rekognition performed strongest with unstructured and structured data, respectively. Quality of reporting was poor, with a median DECIDE-AI score of 14 of 27. Conclusion A myriad of autoML platforms have been applied in a variety of clinical contexts. The performance of autoML compares well to bespoke computational and clinical benchmarks. Further work is required to improve the quality of validation studies. AutoML may facilitate a transition to data-centric development, and integration with large language models may enable AI to build itself to fulfil user-defined goals.
Collapse
Affiliation(s)
- Arun James Thirunavukarasu
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
- University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kabilan Elangovan
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
| | - Laura Gutierrez
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
| | - Refaat Hassan
- University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yong Li
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
| | - Ting Fang Tan
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
| | - Haoran Cheng
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Gilbert Lim
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
| | - Daniel Shu Wei Ting
- Artificial Intelligence and Digital Innovation Research Group, Singapore Eye Research Institute, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore
- Singapore National Eye Centre, Singapore
| |
Collapse
|
5
|
Rezaeiahari M, Brown CC, Eyimina A, Perry TT, Goudie A, Boyd M, Mick Tilford J, Jefferson AA. Predicting pediatric severe asthma exacerbations: an administrative claims-based predictive model. J Asthma 2024; 61:203-211. [PMID: 37725084 PMCID: PMC11195303 DOI: 10.1080/02770903.2023.2260881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE Previous machine learning approaches fail to consider race and ethnicity and social determinants of health (SDOH) to predict childhood asthma exacerbations. A predictive model for asthma exacerbations in children is developed to explore the importance of race and ethnicity, rural-urban commuting area (RUCA) codes, the Child Opportunity Index (COI), and other ICD-10 SDOH in predicting asthma outcomes. METHODS Insurance and coverage claims data from the Arkansas All-Payer Claims Database were used to capture risk factors. We identified a cohort of 22,631 children with asthma aged 5-18 years with 2 years of continuous Medicaid enrollment and at least one asthma diagnosis in 2018. The goal was to predict asthma-related hospitalizations and asthma-related emergency department (ED) visits in 2019. The analytic sample was 59% age 5-11 years, 39% White, 33% Black, and 6% Hispanic. Conditional random forest models were used to train the model. RESULTS The model yielded an area under the curve (AUC) of 72%, sensitivity of 55% and specificity of 78% in the OOB samples and AUC of 73%, sensitivity of 58% and specificity of 77% in the training samples. Consistent with previous literature, asthma-related hospitalization or ED visits in the previous year (2018) were the two most important variables in predicting hospital or ED use in the following year (2019), followed by the total number of reliever and controller medications. CONCLUSIONS Predictive models for asthma-related exacerbation achieved moderate accuracy, but race and ethnicity, ICD-10 SDOH, RUCA codes, and COI measures were not important in improving model accuracy.
Collapse
Affiliation(s)
- Mandana Rezaeiahari
- College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Clare C. Brown
- College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Arina Eyimina
- College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tamara T. Perry
- Department of Pediatrics, Allergy & Immunology Division, University of Arkansas for Medical Sciences
- Arkansas Children’s Research Institute, Little Rock, Arkansas
| | - Anthony Goudie
- College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Melanie Boyd
- College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - J. Mick Tilford
- College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Akilah A. Jefferson
- Department of Pediatrics, Allergy & Immunology Division, University of Arkansas for Medical Sciences
- Arkansas Children’s Research Institute, Little Rock, Arkansas
| |
Collapse
|
6
|
Budiarto A, Tsang KCH, Wilson AM, Sheikh A, Shah SA. Machine Learning-Based Asthma Attack Prediction Models From Routinely Collected Electronic Health Records: Systematic Scoping Review. JMIR AI 2023; 2:e46717. [PMID: 38875586 PMCID: PMC11041490 DOI: 10.2196/46717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 06/16/2024]
Abstract
BACKGROUND An early warning tool to predict attacks could enhance asthma management and reduce the likelihood of serious consequences. Electronic health records (EHRs) providing access to historical data about patients with asthma coupled with machine learning (ML) provide an opportunity to develop such a tool. Several studies have developed ML-based tools to predict asthma attacks. OBJECTIVE This study aims to critically evaluate ML-based models derived using EHRs for the prediction of asthma attacks. METHODS We systematically searched PubMed and Scopus (the search period was between January 1, 2012, and January 31, 2023) for papers meeting the following inclusion criteria: (1) used EHR data as the main data source, (2) used asthma attack as the outcome, and (3) compared ML-based prediction models' performance. We excluded non-English papers and nonresearch papers, such as commentary and systematic review papers. In addition, we also excluded papers that did not provide any details about the respective ML approach and its result, including protocol papers. The selected studies were then summarized across multiple dimensions including data preprocessing methods, ML algorithms, model validation, model explainability, and model implementation. RESULTS Overall, 17 papers were included at the end of the selection process. There was considerable heterogeneity in how asthma attacks were defined. Of the 17 studies, 8 (47%) studies used routinely collected data both from primary care and secondary care practices together. Extreme imbalanced data was a notable issue in most studies (13/17, 76%), but only 38% (5/13) of them explicitly dealt with it in their data preprocessing pipeline. The gradient boosting-based method was the best ML method in 59% (10/17) of the studies. Of the 17 studies, 14 (82%) studies used a model explanation method to identify the most important predictors. None of the studies followed the standard reporting guidelines, and none were prospectively validated. CONCLUSIONS Our review indicates that this research field is still underdeveloped, given the limited body of evidence, heterogeneity of methods, lack of external validation, and suboptimally reported models. We highlighted several technical challenges (class imbalance, external validation, model explanation, and adherence to reporting guidelines to aid reproducibility) that need to be addressed to make progress toward clinical adoption.
Collapse
Affiliation(s)
- Arif Budiarto
- Asthma UK Center for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Kevin C H Tsang
- Asthma UK Center for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew M Wilson
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, United Kingdom
| | - Aziz Sheikh
- Asthma UK Center for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Syed Ahmar Shah
- Asthma UK Center for Applied Research, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Xu S, Deo RC, Soar J, Barua PD, Faust O, Homaira N, Jaffe A, Kabir AL, Acharya UR. Automated detection of airflow obstructive diseases: A systematic review of the last decade (2013-2022). COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 241:107746. [PMID: 37660550 DOI: 10.1016/j.cmpb.2023.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Obstructive airway diseases, including asthma and Chronic Obstructive Pulmonary Disease (COPD), are two of the most common chronic respiratory health problems. Both of these conditions require health professional expertise in making a diagnosis. Hence, this process is time intensive for healthcare providers and the diagnostic quality is subject to intra- and inter- operator variability. In this study we investigate the role of automated detection of obstructive airway diseases to reduce cost and improve diagnostic quality. METHODS We investigated the existing body of evidence and applied Preferred Reporting Items for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to search records in IEEE, Google scholar, and PubMed databases. We identified 65 papers that were published from 2013 to 2022 and these papers cover 67 different studies. The review process was structured according to the medical data that was used for disease detection. We identified six main categories, namely air flow, genetic, imaging, signals, and miscellaneous. For each of these categories, we report both disease detection methods and their performance. RESULTS We found that medical imaging was used in 14 of the reviewed studies as data for automated obstructive airway disease detection. Genetics and physiological signals were used in 13 studies. Medical records and air flow were used in 9 and 7 studies, respectively. Most papers were published in 2020 and we found three times more work on Machine Learning (ML) when compared to Deep Learning (DL). Statistical analysis shows that DL techniques achieve higher Accuracy (ACC) when compared to ML. Convolutional Neural Network (CNN) is the most common DL classifier and Support Vector Machine (SVM) is the most widely used ML classifier. During our review, we discovered only two publicly available asthma and COPD datasets. Most studies used private clinical datasets, so data size and data composition are inconsistent. CONCLUSIONS Our review results indicate that Artificial Intelligence (AI) can improve both decision quality and efficiency of health professionals during COPD and asthma diagnosis. However, we found several limitations in this review, such as a lack of dataset consistency, a limited dataset and remote monitoring was not sufficiently explored. We appeal to society to accept and trust computer aided airflow obstructive diseases diagnosis and we encourage health professionals to work closely with AI scientists to promote automated detection in clinical practice and hospital settings.
Collapse
Affiliation(s)
- Shuting Xu
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield Central, QLD 4300, Australia; Cogninet Australia, Sydney, NSW 2010, Australia
| | - Ravinesh C Deo
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Jeffrey Soar
- School of Business, University of Southern Queensland, Australia
| | - Prabal Datta Barua
- Cogninet Australia, Sydney, NSW 2010, Australia; School of Business, University of Southern Queensland, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia; Australian International Institute of Higher Education, Sydney, NSW 2000, Australia; School of Science Technology, University of New England, Australia; School of Biosciences, Taylor's University, Malaysia; School of Computing, SRM Institute of Science and Technology, India; School of Science and Technology, Kumamoto University, Japan; Sydney School of Education and Social Work, University of Sydney, Australia.
| | - Oliver Faust
- School of Computing and Information Science, Anglia Ruskin University Cambridge Campus, UK
| | - Nusrat Homaira
- School of Clinical Medicine, University of New South Wales, Australia; Sydney Children's Hospital, Sydney, Australia; James P. Grant School of Public Health, Dhaka, Bangladesh
| | - Adam Jaffe
- School of Clinical Medicine, University of New South Wales, Australia; Sydney Children's Hospital, Sydney, Australia
| | | | - U Rajendra Acharya
- School of Mathematics Physics and Computing, University of Southern Queensland, Springfield Central, QLD 4300, Australia; School of Science and Technology, Kumamoto University, Japan
| |
Collapse
|
8
|
Shearah Z, Ullah Z, Fakieh B. Intelligent Framework for Early Detection of Severe Pediatric Diseases from Mild Symptoms. Diagnostics (Basel) 2023; 13:3204. [PMID: 37892025 PMCID: PMC10606417 DOI: 10.3390/diagnostics13203204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Children's health is one of the most significant fields in medicine. Most diseases that result in children's death or long-term morbidity are caused by preventable and treatable etiologies, and they appear in the child at the early stages as mild symptoms. This research aims to develop a machine learning (ML) framework to detect the severity of disease in children. The proposed framework helps in discriminating children's urgent/severe conditions and notifying parents whether a child needs to visit the emergency room immediately or not. The model considers several variables to detect the severity of cases, which are the symptoms, risk factors (e.g., age), and the child's medical history. The framework is implemented by using nine ML methods. The results achieved show the high performance of the proposed framework in identifying serious pediatric diseases, where decision tree and random forest outperformed the other methods with an accuracy rate of 94%. This shows the reliability of the proposed framework to be used as a pediatric decision-making system for detecting serious pediatric illnesses. The results are promising when compared to recent state-of-the-art studies. The main contribution of this research is to propose a framework that is viable for use by parents when their child suffers from any commonly developed symptoms.
Collapse
Affiliation(s)
- Zelal Shearah
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (Z.U.); (B.F.)
| | | | | |
Collapse
|
9
|
Ali SW, Asif M, Zia MYI, Rashid M, Syed SA, Nava E. CDSS for Early Recognition of Respiratory Diseases based on AI Techniques: A Systematic Review. WIRELESS PERSONAL COMMUNICATIONS 2023; 131:739-761. [DOI: 10.1007/s11277-023-10432-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 01/04/2025]
|
10
|
Data harnessing to nurture the human mind for a tailored approach to the child. Pediatr Res 2023; 93:357-365. [PMID: 36180585 DOI: 10.1038/s41390-022-02320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022]
Abstract
Big data in pediatrics is an ocean of structured and unstructured data. Big data analysis helps to dive into the ocean of data to filter out information that can guide pediatricians in their decision making, precision diagnosis, and targeted therapy. In addition, big data and its analysis have helped in the surveillance, prevention, and performance of the health system. There has been a considerable amount of work in pediatrics that we have tried to highlight in this review and some of it has been already incorporated into the health system. Work in specialties of pediatrics is still forthcoming with the creation of a common data model and amalgamation of the huge "omics" database. The physicians entrusted with the care of children must be aware of the outcome so that they can play a role to ensure that big data algorithms have a clinically relevant effect in improving the health of their patients. They will apply the outcome of big data and its analysis in patient care through clinical algorithms or with the help of embedded clinical support alerts from the electronic medical records. IMPACT: Big data in pediatrics include structured, unstructured data, waveform data, biological, and social data. Big data analytics has unraveled significant information from these databases. This is changing how pediatricians will look at the body of available evidence and translate it into their clinical practice. Data harnessed so far is implemented in certain fields while in others it is in the process of development to become a clinical adjunct to the physician. Common databases are being prepared for future work. Diagnostic and prediction models when incorporated into the health system will guide the pediatrician to a targeted approach to diagnosis and therapy.
Collapse
|
11
|
Chu T, Zhang H, Xu Y, Teng X, Jing L. Predicting the behavioral intentions of hospice and palliative care providers from real-world data using supervised learning: A cross-sectional survey study. Front Public Health 2022; 10:927874. [PMID: 36249257 PMCID: PMC9561131 DOI: 10.3389/fpubh.2022.927874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023] Open
Abstract
Background Hospice and palliative care (HPC) aims to improve end-of-life quality and has received much more attention through the lens of an aging population in the midst of the coronavirus disease pandemic. However, several barriers remain in China due to a lack of professional HPC providers with positive behavioral intentions. Therefore, we conducted an original study introducing machine learning to explore individual behavioral intentions and detect factors of enablers of, and barriers to, excavating potential human resources and improving HPC accessibility. Methods A cross-sectional study was designed to investigate healthcare providers' behavioral intentions, knowledge, attitudes, and practices in hospice care (KAPHC) with an indigenized KAPHC scale. Binary Logistic Regression and Random Forest Classifier (RFC) were performed to model impacting and predict individual behavioral intentions. Results The RFC showed high sensitivity (accuracy = 0.75; F1 score = 0.84; recall = 0.94). Attitude could directly or indirectly improve work enthusiasm and is the most efficient approach to reveal behavioral intentions. Continuous practice could also improve individual confidence and willingness to provide HPC. In addition, scientific knowledge and related skills were the foundation of implementing HPC. Conclusion Individual behavioral intention is crucial for improving HPC accessibility, particularly at the initial stage. A well-trained RFC can help estimate individual behavioral intentions to organize a productive team and promote additional policies.
Collapse
|
12
|
Koul A, Bawa RK, Kumar Y. Artificial Intelligence Techniques to Predict the Airway Disorders Illness: A Systematic Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 30:831-864. [PMID: 36189431 PMCID: PMC9516534 DOI: 10.1007/s11831-022-09818-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Airway disease is a major healthcare issue that causes at least 3 million fatalities every year. It is also considered one of the foremost causes of death all around the globe by 2030. Numerous studies have been undertaken to demonstrate the latest advances in artificial intelligence algorithms to assist in identifying and classifying these diseases. This comprehensive review aims to summarise the state-of-the-art machine and deep learning-based systems for detecting airway disorders, envisage the trends of the recent work in this domain, and analyze the difficulties and potential future paths. This systematic literature review includes the study of one hundred fifty-five articles on airway diseases such as cystic fibrosis, emphysema, lung cancer, Mesothelioma, covid-19, pneumoconiosis, asthma, pulmonary edema, tuberculosis, pulmonary embolism as well as highlights the automated learning techniques to predict them. The study concludes with a discussion and challenges about expanding the efficiency and machine and deep learning-assisted airway disease detection applications.
Collapse
Affiliation(s)
- Apeksha Koul
- Department of Computer Science and Engineering, Punjabi University, Patiala, Punjab India
| | - Rajesh K. Bawa
- Department of Computer Science, Punjabi University, Patiala, Punjab India
| | - Yogesh Kumar
- Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| |
Collapse
|
13
|
Filipow N, Main E, Sebire NJ, Booth J, Taylor AM, Davies G, Stanojevic S. Implementation of prognostic machine learning algorithms in paediatric chronic respiratory conditions: a scoping review. BMJ Open Respir Res 2022; 9:e001165. [PMID: 35297371 PMCID: PMC8928277 DOI: 10.1136/bmjresp-2021-001165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/06/2022] [Indexed: 11/23/2022] Open
Abstract
Machine learning (ML) holds great potential for predicting clinical outcomes in heterogeneous chronic respiratory diseases (CRD) affecting children, where timely individualised treatments offer opportunities for health optimisation. This paper identifies rate-limiting steps in ML prediction model development that impair clinical translation and discusses regulatory, clinical and ethical considerations for ML implementation. A scoping review of ML prediction models in paediatric CRDs was undertaken using the PRISMA extension scoping review guidelines. From 1209 results, 25 articles published between 2013 and 2021 were evaluated for features of a good clinical prediction model using the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines.Most of the studies were in asthma (80%), with few in cystic fibrosis (12%), bronchiolitis (4%) and childhood wheeze (4%). There were inconsistencies in model reporting and studies were limited by a lack of validation, and absence of equations or code for replication. Clinician involvement during ML model development is essential and diversity, equity and inclusion should be assessed at each step of the ML pipeline to ensure algorithms do not promote or amplify health disparities among marginalised groups. As ML prediction studies become more frequent, it is important that models are rigorously developed using published guidelines and take account of regulatory frameworks which depend on model complexity, patient safety, accountability and liability.
Collapse
Affiliation(s)
- Nicole Filipow
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Eleanor Main
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Neil J Sebire
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- GOSH NIHR BRC, Great Ormond Street Hospital for Children, London, UK
| | - John Booth
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- GOSH NIHR BRC, Great Ormond Street Hospital for Children, London, UK
| | - Andrew M Taylor
- GOSH NIHR BRC, Great Ormond Street Hospital for Children, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Gwyneth Davies
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- GOSH NIHR BRC, Great Ormond Street Hospital for Children, London, UK
| | - Sanja Stanojevic
- Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
14
|
Wu DT, Barrick L, Ozkaynak M, Blondon K, Zheng K. Principles for Designing and Developing a Workflow Monitoring Tool to Enable and Enhance Clinical Workflow Automation. Appl Clin Inform 2022; 13:132-138. [PMID: 35045584 PMCID: PMC8769810 DOI: 10.1055/s-0041-1741480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Automation of health care workflows has recently become a priority. This can be enabled and enhanced by a workflow monitoring tool (WMOT). OBJECTIVES We shared our experience in clinical workflow analysis via three cases studies in health care and summarized principles to design and develop such a WMOT. METHODS The case studies were conducted in different clinical settings with distinct goals. Each study used at least two types of workflow data to create a more comprehensive picture of work processes and identify bottlenecks, as well as quantify them. The case studies were synthesized using a data science process model with focuses on data input, analysis methods, and findings. RESULTS Three case studies were presented and synthesized to generate a system structure of a WMOT. When developing a WMOT, one needs to consider the following four aspects: (1) goal orientation, (2) comprehensive and resilient data collection, (3) integrated and extensible analysis, and (4) domain experts. DISCUSSION We encourage researchers to investigate the design and implementation of WMOTs and use the tools to create best practices to enable workflow automation and improve workflow efficiency and care quality.
Collapse
Affiliation(s)
- Danny T.Y. Wu
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Ohio, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States,Address for correspondence Danny T. Y. Wu, PhD, MSI, FAMIA Department of Biomedical Informatics, University of Cincinnati College of Medicine231 Albert Sabin Way, ML0840, Cincinnati, OH 45267United States
| | - Lindsey Barrick
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States,Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Mustafa Ozkaynak
- College of Nursing, University of Colorado-Anschutz Medical Campus, Aurora, Colorado, United States
| | - Katherine Blondon
- Medical and Quality Directorate, University Hospitals of Geneva, Geneva, Switzerland,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kai Zheng
- Department of Informatics, University of California, Irvine, Irvine, California, United States
| |
Collapse
|
15
|
Cilluffo G, Fasola S, Ferrante G, Licari A, Marseglia GR, Albarelli A, Marseglia GL, La Grutta S. Machine learning: A modern approach to pediatric asthma. Pediatr Allergy Immunol 2022; 33 Suppl 27:34-37. [PMID: 35080316 PMCID: PMC9303472 DOI: 10.1111/pai.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
Among modern methods of statistical and computational analysis, the application of machine learning (ML) to healthcare data has been gaining recognition in helping us understand the heterogeneity of asthma and predicting its progression. In pediatric research, ML approaches may provide rapid advances in uncovering asthma phenotypes with potential translational impact in clinical practice. Also, several accurate models to predict asthma and its progression have been developed using ML. Here, we provide a brief overview of ML approaches recently proposed to characterize pediatric asthma.
Collapse
Affiliation(s)
- Giovanna Cilluffo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Salvatore Fasola
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Giuliana Ferrante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Amelia Licari
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | | | - Andrea Albarelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Venice, Italy
| | - Gian Luigi Marseglia
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| |
Collapse
|
16
|
Park Y, Lee C, Jung JY. Digital Healthcare for Airway Diseases from Personal Environmental Exposure. Yonsei Med J 2022; 63:S1-S13. [PMID: 35040601 PMCID: PMC8790581 DOI: 10.3349/ymj.2022.63.s1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022] Open
Abstract
Digital technologies have emerged in various dimensions of human life, ranging from education to professional services to well-being. In particular, health products and services have expanded by the use and development of artificial intelligence, mobile health applications, and wearable electronic devices. Such advancements have enabled accurate and updated tracking and modeling of health conditions. For instance, digital health technologies are capable of measuring environmental pollution and predicting its adverse health effects. Several health conditions, including chronic airway diseases such as asthma and chronic obstructive pulmonary disease, can be exacerbated by pollution. These diseases impose substantial health burdens with high morbidity and mortality. Recently, efforts have been made to develop digital technologies to alleviate such conditions. Moreover, the COVID-19 pandemic has facilitated the application of telemedicine and telemonitoring for patients with chronic airway diseases. This article reviews current trends and studies in digital technology utilization for investigating and managing environmental exposure and chronic airway diseases. First, we discussed the recent progression of digital technologies in general environmental healthcare. Then, we summarized the capacity of digital technologies in predicting exacerbation and self-management of airway diseases. Concluding these reviews, we provided suggestions to improve digital health technologies' abilities to reduce the adverse effects of environmental exposure in chronic airway diseases, based on personal exposure-response modeling.
Collapse
Affiliation(s)
- Youngmok Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chanho Lee
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
17
|
Correction of the travel time estimation for ambulances of the red cross Tijuana using machine learning. Comput Biol Med 2021; 137:104798. [PMID: 34482200 DOI: 10.1016/j.compbiomed.2021.104798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
This paper addresses the problem of estimating the response time to a medical emergency, specifically from the Red Cross of Tijuana (RCT), which provides most of the emergency medical services (EMS) in the city of Tijuana, Mexico. For institutions with low funding, such as the RCT, relying on free or open source mapping systems to estimate travel times is necessary but also error prone because these systems are not tuned for ambulance movements within a city. Therefore, this work formulates a supervised machine learning problem where the goal is to predict the difference in travel time between the ground truth travel time provided by a GPS and the approximation offered by two mapping systems, Google Maps (GM) and Open Source Routing Machine (OSRM). To this end, this work develops a new dataset based on the EMS logs of the RCT, considering calls from January 2017 to April 2017. The posed learning problem is solved under different scenarios, including using an off-the-shelf default configuration of a Random Forest classifier, applying a hyper-parameter optimization process and using an Auto Machine Learning (AutoML) system. Considering all of the dataset for GM, test accuracy was 69.6% for the first two learning approaches and 71.6% using AutoML. For OSRM, performance was 64.6%, 65.2% and 66.4% for each of the learning approaches, respectively. Results show that it is possible to predict the level by which a mapping system over or under estimates the true travel time of an ambulance. Finally, the impact of the model is demonstrated by using it to solve the ambulance location problem, with notable differences in ambulance deployments and percentage of double coverage achieved relative to using the standard mapping system. Results show that without correcting the travel time the percentage of double coverage is 83.90%; on the other hand, double coverage reaches 100% when applying travel time correction.
Collapse
|