1
|
Iwanowitsch A, Diessner J, Bergmann B, Rudel T. The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development. Vaccines (Basel) 2024; 12:687. [PMID: 38932416 PMCID: PMC11209359 DOI: 10.3390/vaccines12060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Salmonella enterica Serovar Typhi Ty21a (Ty21a) is the only licensed oral vaccine against typhoid fever. Due to its excellent safety profile, it has been used as a promising vector strain for the expression of heterologous antigens for mucosal immunization. As the efficacy of any bacterial live vector vaccine correlates with its ability to express and present sufficient antigen, the genes for antigen expression are traditionally located on plasmids with antibiotic resistance genes for stabilization. However, for use in humans, antibiotic selection of plasmids is not applicable, leading to segregational loss of the antigen-producing plasmid. Therefore, we developed an oral Ty21a-based vaccine platform technology, the JMU-SalVac-system (Julius-Maximilians-Universität Würzburg) in which the antigen delivery plasmids (pSalVac-plasmid-series) are stabilized by a ΔtyrS/tyrS+-based balanced-lethal system (BLS). The system is made up of the chromosomal knockout of the essential tyrosyl-tRNA-synthetase gene (tyrS) and the in trans complementation of tyrS on the pSalVac-plasmid. Further novel functional features of the pSalVac-plasmids are the presence of two different expression cassettes for the expression of protein antigens. In this study, we present the construction of vaccine strains with BLS plasmids for antigen expression. The expression of cytosolic and secreted mRFP and cholera toxin subunit B (CTB) proteins as model antigens is used to demonstrate the versatility of the approach. As proof of concept, we show the induction of previously described in vivo inducible promoters cloned into pSalVac-plasmids during infection of primary macrophages and demonstrate the expression of model vaccine antigens in these relevant human target cells. Therefore, antigen delivery strains developed with the JMU-SalVac technology are promising, safe and stable vaccine strains to be used against mucosal infections in humans.
Collapse
Affiliation(s)
| | - Joachim Diessner
- Department of Obstetrics and Gynecology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Birgit Bergmann
- Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany;
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany;
| |
Collapse
|
2
|
Pourhassan N Z, Smits SHJ, Ahn JH, Schmitt L. Biotechnological applications of type 1 secretion systems. Biotechnol Adv 2021; 53:107864. [PMID: 34767962 DOI: 10.1016/j.biotechadv.2021.107864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Bacteria have evolved a diverse range of secretion systems to export different substrates across their cell envelope. Although secretion of proteins into the extracellular space could offer advantages for recombinant protein production, the low secretion titers of the secretion systems for some heterologous proteins remain a clear drawback of their utility at commercial scales. Therefore, a potential use of most of secretion systems as production platforms at large scales are still limited. To overcome this limitation, remarkable efforts have been made toward improving the secretion efficiency of different bacterial secretion systems in recent years. Here, we review the progress with respect to biotechnological applications of type I secretion system (T1SS) of Gram-negative bacteria. We will also focus on the applicability of T1SS for the secretion of heterologous proteins as well as vaccine development. Last but not least, we explore the employed engineering strategies that have enhanced the secretion efficiencies of T1SS. Attention is also paid to directed evolution approaches that may offer a more versatile approach to optimize secretion efficiency of T1SS.
Collapse
Affiliation(s)
- Zohreh Pourhassan N
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jung Hoon Ahn
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, South Korea
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Toussaint B, Chauchet X, Wang Y, Polack B, Le Gouëllec A. Live-attenuated bacteria as a cancer vaccine vector. Expert Rev Vaccines 2014; 12:1139-54. [PMID: 24124876 DOI: 10.1586/14760584.2013.836914] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the emerging field of active and specific cancer immunotherapy, strategies using live-attenuated bacterial vectors have matured in terms of academic and industrial development. Different bacterial species can be genetically engineered to deliver antigen to APCs with strong adjuvant effects due to their microbial origin. Proteic or DNA-encoding antigen delivery routes and natural bacterial tropisms might differ among species, permitting different applications. After many academic efforts to resolve safety and efficacy issues, some firms have recently engaged clinical trials with live Listeria or Salmonella spp. We describe here the main technological advances that allowed bacteria to become one of the most promising vectors in cancer immunotherapy.
Collapse
Affiliation(s)
- Bertrand Toussaint
- Laboratoire TIMC-IMAG/TheREx (UMR 5525 CNRS-UJF), UFR de médecine, Université Joseph Fourier Grenoble I, 38700 La Tronche Cedex, France
| | | | | | | | | |
Collapse
|
4
|
|
5
|
Linton E, Walsh MK, Sims RC, Miller CD. Translocation of green fluorescent protein by comparative analysis with multiple signal peptides. Biotechnol J 2011; 7:667-76. [PMID: 21834133 DOI: 10.1002/biot.201100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/17/2011] [Accepted: 08/01/2011] [Indexed: 11/06/2022]
Abstract
Type I and II secretory pathways are used for the translocation of recombinant proteins from the cytoplasm of Escherichia coli. The purpose of this study was to evaluate four signal peptides (HlyA, TorA, GeneIII, and PelB), representing the most common secretion pathways in E. coli, for their ability to target green fluorescent protein (GFP) for membrane translocation. Signal peptide-GFP genetic fusions were designed in accordance with BioFusion standards (BBF RFC 10, BBF RFC 23). The HlyA signal peptide targeted GFP for secretion to the extracellular media via the type I secretory pathway, whereas TAT-dependent signal peptide TorA and Sec-dependent signal peptide GeneIII exported GFP to the periplasm. The PelB signal peptide was inefficient in translocating GFP. The use of biological technical standards simplified the design and construction of functional signal peptide-recombinant protein genetic devices for type I and II secretion in E. coli. The utility of the standardized parts model is further illustrated as constructed biological parts are available for direct application to other studies on recombinant protein translocation.
Collapse
Affiliation(s)
- Elisabeth Linton
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | | | | | | |
Collapse
|
6
|
Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunit B. Cancer Gene Ther 2007; 15:85-93. [PMID: 18084243 DOI: 10.1038/sj.cgt.7701109] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is the most common malignant tumor in men and is normally associated with increased serum levels of prostate-specific antigen (PSA). Therefore, PSA is one potential target for a prostate cancer vaccine. In this study we analyzed the functionality of new bacterial PSA vaccines, expressed and secreted via the hemolysin (HlyA) secretion system of Escherichia coli, the prototype of Type I secretion systems (T1SS) using an attenuated Salmonella enterica serovar Typhimurium aroA strain as carrier. The data demonstrate that a bacterial live vaccine encompassing T1SS in combination with cholera toxin subunit B can be successfully used for delivery of PSA to induce cytotoxic CD8+ T-cell responses resulting in an efficient prevention of tumor growth in mice.
Collapse
|
7
|
Roland KL, Cloninger C, Kochi SK, Thomas LJ, Tinge SA, Rouskey C, Killeen KP. Construction and preclinical evaluation of recombinant Peru-15 expressing high levels of the cholera toxin B subunit as a vaccine against enterotoxigenic Escherichia coli. Vaccine 2007; 25:8574-84. [DOI: 10.1016/j.vaccine.2007.09.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/18/2007] [Accepted: 09/25/2007] [Indexed: 11/27/2022]
|
8
|
Fraillery D, Baud D, Pang SYY, Schiller J, Bobst M, Zosso N, Ponci F, Nardelli-Haefliger D. Salmonella enterica serovar Typhi Ty21a expressing human papillomavirus type 16 L1 as a potential live vaccine against cervical cancer and typhoid fever. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1285-95. [PMID: 17687110 PMCID: PMC2168124 DOI: 10.1128/cvi.00164-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human papillomavirus (HPV) vaccines based on L1 virus-like particles (VLPs) can prevent HPV-induced genital neoplasias, the precursors of cervical cancer. However, most cervical cancers occur in developing countries, where the implementation of expensive vaccines requiring multiple injections will be difficult. A live Salmonella-based vaccine could be a lower-cost alternative. We previously demonstrated that high HPV type 16 (HPV16)-neutralizing titers are induced after a single oral immunization of mice with attenuated Salmonella enterica serovar Typhimurium strains expressing a codon-optimized version of HPV16 L1 (L1S). To allow the testing of this type of vaccine in women, we constructed a new L1-expressing plasmid, kanL1S, and tested kanL1S recombinants of three Salmonella enterica serovar Typhi vaccine strains shown to be safe in humans, i.e., Ty21a, the actual licensed typhoid vaccine, and two highly immunogenic typhoid vaccine candidates, Ty800 and CVD908-htrA. In an intranasal mouse model of Salmonella serovar Typhi infection, Ty21a kanL1S was unique in inducing HPV16-neutralizing antibodies in serum and genital secretions, while anti-Salmonella responses were similar to those against the parental Ty21a vaccine. Electron microscopy examination of Ty21a kanL1S lysates showed that L1 assembled in capsomers and capsomer aggregates but not well-ordered VLPs. Comparison to the neutralizing antibody response induced by purified HPV16 L1 VLP immunizations in mice suggests that Ty21a kanL1S may be an effective prophylactic HPV vaccine. Ty21a has been widely used against typhoid fever in humans with a remarkable safety record. These finds encourage clinical testing of Ty21a kanL1S as a combined typhoid fever/cervical cancer vaccine with the potential for worldwide application.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cells, Cultured
- Female
- Genetic Vectors
- Human papillomavirus 16/immunology
- Humans
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Plasmids/genetics
- Plasmids/immunology
- Polysaccharides, Bacterial/administration & dosage
- Polysaccharides, Bacterial/genetics
- Polysaccharides, Bacterial/immunology
- Salmonella typhi/genetics
- Salmonella typhi/immunology
- Typhoid Fever/immunology
- Typhoid Fever/prevention & control
- Typhoid-Paratyphoid Vaccines/administration & dosage
- Typhoid-Paratyphoid Vaccines/genetics
- Typhoid-Paratyphoid Vaccines/immunology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/prevention & control
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/genetics
- Vaccines, Combined/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Dominique Fraillery
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gentschev I, Spreng S, Sieber H, Ures J, Mollet F, Collioud A, Pearman J, Griot-Wenk ME, Fensterle J, Rapp UR, Goebel W, Rothen SA, Dietrich G. Vivotif--a 'magic shield' for protection against typhoid fever and delivery of heterologous antigens. Chemotherapy 2007; 53:177-80. [PMID: 17347563 DOI: 10.1159/000100515] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 04/24/2006] [Indexed: 11/19/2022]
Abstract
The attenuated Salmonella typhi strain Ty21a is the main constituent of Vivotif, the only attenuated live oral vaccine against typhoid fever. In comparison with antibiotics, the 'magic bullets' which Paul Ehrlich was striving for to treat infectious diseases, this vaccine should be viewed as a 'magic shield', because rather than treating typhoid fever after the infection has started, immunisation with this vaccine strain prevents infection and disease by the induction of specific immune responses. Ty21a is also an attractive carrier for the delivery of heterologous antigens. Recently, we successfully used Ty21a for antigen delivery via the haemolysin secretion system of Escherichia coli, which allows efficient protein secretion from the carrier bacteria.
Collapse
|
10
|
Parsa S, Pfeifer B. Engineering bacterial vectors for delivery of genes and proteins to antigen-presenting cells. Mol Pharm 2007; 4:4-17. [PMID: 17233543 DOI: 10.1021/mp0600889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial vectors offer a biological route to gene and protein delivery with this article featuring delivery to antigen-presenting cells (APCs). Primarily in the context of immune stimulation against infectious disease or cancer, the goal of bacterially mediated delivery is to overcome the hurdles to effective macromolecule delivery. This review will present several bacterial vectors as macromolecule (protein or gene) delivery devices with both innate and acquirable (or engineered) biological features to facilitate delivery to APCs. The review will also present topics related to large-scale manufacture, storage, and distribution that must be considered if the bacterial delivery devices are ever to be used in a global market.
Collapse
Affiliation(s)
- Saba Parsa
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
11
|
Hammerschmidt S, Hacker J, Klenk HD. Threat of infection: microbes of high pathogenic potential--strategies for detection, control and eradication. Int J Med Microbiol 2005; 295:141-51. [PMID: 16044855 PMCID: PMC7129083 DOI: 10.1016/j.ijmm.2005.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infectious diseases due to microbes of high pathogenic potential remain a constant and variable threat for human and animal health. The emergence of new diseases or the re-emergence of diseases that were previously under control complicates the situation to date. Infectious disease research, which has undergone a dramatic progress in understanding disease mechanisms such as host-pathogen interactions, is now focusing increasingly on new strategies for prevention and therapy. Significant progress has been achieved in the development of delivery systems for protective heterologous protein antigens and in veterinary vaccinology. A landmark of infectious diseases research is the chemical synthesis of genomes, a major new field of research referred to as "synthetic biology", that to date has resulted in the chemical synthesis of the poliovirus and of phage phiX174 genomes and their expression as infectious viruses. On the molecular level the evolution of pathogens and mechanisms of genome flexibility, which account for several pathogenic properties of infectious agents, have received increased attention. Bacterial toxins are an additional threat to human health and their interference with host cells and cellular functions is receiving more attention.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Research Center for Infectious Diseases, University of Würzburg, Germany.
| | | | | |
Collapse
|
12
|
Gentschev I, Fensterle J, Schmidt A, Potapenko T, Troppmair J, Goebel W, Rapp UR. Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against C-Raf induced lung adenoma in mice. BMC Cancer 2005; 5:15. [PMID: 15703070 PMCID: PMC549196 DOI: 10.1186/1471-2407-5-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 02/09/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Serine-threonine kinases of the Raf family (A-Raf, B-Raf, C-Raf) are central players in cellular signal transduction, and thus often causally involved in the development of cancer when mutated or over-expressed. Therefore these proteins are potential targets for immunotherapy and a possible basis for vaccine development against tumors. In this study we analyzed the functionality of a new live C-Raf vaccine based on an attenuated Salmonella enterica serovar Typhimurium aroA strain in two Raf dependent lung tumor mouse models. METHODS The antigen C-Raf has been fused to the C-terminal secretion signal of Escherichia coli alpha-hemolysin and expressed in secreted form by an attenuated aroA Salmonella enterica serovar Typhimurium strain via the alpha-hemolysin secretion pathway. The effect of the immunization with this recombinant C-Raf strain on wild-type C57BL/6 or lung tumor bearing transgenic BxB mice was analyzed using western blot and FACS analysis as well as specific tumor growth assays. RESULTS C-Raf antigen was successfully expressed in secreted form by an attenuated Salmonella enterica serovar Typhimurium aroA strain using the E. coli hemolysin secretion system. Immunization of wild-type C57BL/6 or tumor bearing mice provoked specific C-Raf antibody and T-cell responses. Most importantly, the vaccine strain significantly reduced tumor growth in two transgenic mouse models of Raf oncogene-induced lung adenomas. CONCLUSIONS The combination of the C-Raf antigen, hemolysin secretion system and Salmonella enterica serovar Typhimurium could form the basis for a new generation of live bacterial vaccines for the treatment of Raf dependent human malignancies.
Collapse
Affiliation(s)
- Ivaylo Gentschev
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Wuerzburg, D-97078 Wuerzburg, Germany
| | - Joachim Fensterle
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Wuerzburg, D-97078 Wuerzburg, Germany
| | - Andreas Schmidt
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Wuerzburg, D-97078 Wuerzburg, Germany
| | - Tamara Potapenko
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Wuerzburg, D-97078 Wuerzburg, Germany
| | - Jakob Troppmair
- Daniel-Swarovski-Research Laboratory, Department of General and Transplant Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Goebel
- Department of Microbiology, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | - Ulf R Rapp
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), University of Wuerzburg, D-97078 Wuerzburg, Germany
| |
Collapse
|