1
|
Cull B, Burkhardt NY, Khoo BS, Oliver JD, Wang XR, Price LD, Khanipov K, Fang R, Munderloh UG. Development of a Recombinase-Mediated Cassette Exchange System for Gene Knockout and Expression of Non-Native Gene Sequences in Rickettsia. Vaccines (Basel) 2025; 13:109. [PMID: 40006656 PMCID: PMC11861799 DOI: 10.3390/vaccines13020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Incidence of vector-borne diseases, including rickettsioses and anaplasmosis, has been increasing in many parts of the world. The obligate intracellular nature of rickettsial pathogens has hindered the development of robust genetic tools for the study of gene function and the identification of therapeutic targets. Transposon mutagenesis has contributed to recent progress in the identification of virulence factors in this important group of pathogens. METHODS Combining the efficiency of the himar1 transposon method with a recombinase-mediated system, we aimed to develop a genetic tool enabling the exchange of the transposon with a cassette encoding non-native sequences. RESULTS This approach was used in Rickettsia parkeri to insert a himar1 transposon encoding fluorescent protein and antibiotic resistance genes for visualization and selection, flanked by mismatched loxP sites to enable subsequent recombinase-mediated cassette exchange (RMCE). RMCE mediated by a plasmid-encoded Cre recombinase was then employed to replace the transposon with a different cassette containing alternate fluorescent and selection markers and epitopes of Anaplasma phagocytophilum antigens. The resulting genetically modified R. parkeri was trialed as a live-attenuated vaccine against spotted fever rickettsiosis and anaplasmosis in mice. CONCLUSIONS The use of this system provides a well-established and relatively efficient way of inserting non-native sequences into the rickettsial genome, with applications for the study of gene function and vaccine development.
Collapse
Affiliation(s)
- Benjamin Cull
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| | - Nicole Y. Burkhardt
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| | - Benedict S. Khoo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.K.); (J.D.O.)
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA; (B.S.K.); (J.D.O.)
| | - Xin-Ru Wang
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| | - Lisa D. Price
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ulrike G. Munderloh
- Department of Entomology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN 55108, USA; (N.Y.B.); (X.-R.W.); (L.D.P.); (U.G.M.)
| |
Collapse
|
2
|
Lin Z, Li R, Han Z, Liu Y, Gao L, Huang S, Miao Y, Miao R. The Universally Conserved Unconventional G Protein YchF Is Critical for Growth and Stress Response. Life (Basel) 2023; 13:life13041058. [PMID: 37109587 PMCID: PMC10144078 DOI: 10.3390/life13041058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The ancient guanine nucleotide-binding (G) proteins are a group of critical regulatory and signal transduction proteins, widely involved in diverse cellular processes of all kingdoms of life. YchF is a kind of universally conserved novel unconventional G protein that appears to be crucial for growth and stress response in eukaryotes and bacteria. YchF is able to bind and hydrolyze both adenine nucleoside triphosphate (ATP) and guanosine nucleoside triphosphate (GTP), unlike other members of the P-loop GTPases. Hence, it can transduce signals and mediate multiple biological functions by using either ATP or GTP. YchF is not only a nucleotide-dependent translational factor associated with the ribosomal particles and proteasomal subunits, potentially bridging protein biosynthesis and degradation, but also sensitive to reactive oxygen species (ROS), probably recruiting many partner proteins in response to environmental stress. In this review, we summarize the latest insights into how YchF is associated with protein translation and ubiquitin-dependent protein degradation to regulate growth and maintain proteostasis under stress conditions.
Collapse
Affiliation(s)
- Zhaoheng Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongfang Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiwei Han
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Liu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyang Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suchang Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
The Role of the Universally Conserved ATPase YchF/Ola1 in Translation Regulation during Cellular Stress. Microorganisms 2021; 10:microorganisms10010014. [PMID: 35056463 PMCID: PMC8779481 DOI: 10.3390/microorganisms10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The ability to respond to metabolic or environmental changes is an essential feature in all cells and involves both transcriptional and translational regulators that adjust the metabolic activity to fluctuating conditions. While transcriptional regulation has been studied in detail, the important role of the ribosome as an additional player in regulating gene expression is only beginning to emerge. Ribosome-interacting proteins are central to this translational regulation and include universally conserved ribosome interacting proteins, such as the ATPase YchF (Ola1 in eukaryotes). In both eukaryotes and bacteria, the cellular concentrations of YchF/Ola1 determine the ability to cope with different stress conditions and are linked to several pathologies in humans. The available data indicate that YchF/Ola1 regulates the stress response via controlling non-canonical translation initiation and via protein degradation. Although the molecular mechanisms appear to be different between bacteria and eukaryotes, increased non-canonical translation initiation is a common consequence of YchF/Ola1 regulated translational control in E. coli and H. sapiens. In this review, we summarize recent insights into the role of the universally conserved ATPase YchF/Ola1 in adapting translation to unfavourable conditions.
Collapse
|
4
|
Roig FJ, González-Candelas F, Sanjuán E, Fouz B, Feil EJ, Llorens C, Baker-Austin C, Oliver JD, Danin-Poleg Y, Gibas CJ, Kashi Y, Gulig PA, Morrison SS, Amaro C. Phylogeny of Vibrio vulnificus from the Analysis of the Core-Genome: Implications for Intra-Species Taxonomy. Front Microbiol 2018; 8:2613. [PMID: 29358930 PMCID: PMC5765525 DOI: 10.3389/fmicb.2017.02613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus (Vv) is a multi-host pathogenic species currently subdivided into three biotypes (Bts). The three Bts are human-pathogens, but only Bt2 is also a fish-pathogen, an ability that is conferred by a transferable virulence-plasmid (pVvbt2). Here we present a phylogenomic analysis from the core genome of 80 Vv strains belonging to the three Bts recovered from a wide range of geographical and ecological sources. We have identified five well-supported phylogenetic groups or lineages (L). L1 comprises a mixture of clinical and environmental Bt1 strains, most of them involved in human clinical cases related to raw seafood ingestion. L2 is formed by a mixture of Bt1 and Bt2 strains from various sources, including diseased fish, and is related to the aquaculture industry. L3 is also linked to the aquaculture industry and includes Bt3 strains exclusively, mostly related to wound infections or secondary septicemia after farmed-fish handling. Lastly, L4 and L5 include a few strains of Bt1 associated with specific geographical areas. The phylogenetic trees for ChrI and II are not congruent to one another, which suggests that inter- and/or intra-chromosomal rearrangements have been produced along Vv evolution. Further, the phylogenetic trees for each chromosome and the virulence plasmid were also not congruent, which also suggests that pVvbt2 has been acquired independently by different clones, probably in fish farms. From all these clones, the one with zoonotic capabilities (Bt2-Serovar E) has successfully spread worldwide. Based on these results, we propose a new updated classification of the species based on phylogenetic lineages rather than on Bts, as well as the inclusion of all Bt2 strains in a pathovar with the particular ability to cause fish vibriosis, for which we suggest the name "piscis."
Collapse
Affiliation(s)
- Francisco J Roig
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain.,Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit on Infection and Public Health FISABIO-Salud Pública and Universitat de Valencia-I2SysBio, Valencia, Spain.,CIBEResp, National Network Center for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Valencia, Spain
| | - Eva Sanjuán
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Belén Fouz
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - James D Oliver
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States.,Duke University Marine Lab, Beaufort, NC, United States
| | - Yael Danin-Poleg
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cynthia J Gibas
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Shatavia S Morrison
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
5
|
Abstract
Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of Vibrio species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various Vibrio MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by Vibrio species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.
Collapse
|
6
|
Hannemann L, Suppanz I, Ba Q, MacInnes K, Drepper F, Warscheid B, Koch HG. Redox Activation of the Universally Conserved ATPase YchF by Thioredoxin 1. Antioxid Redox Signal 2016; 24:141-56. [PMID: 26160547 PMCID: PMC4742990 DOI: 10.1089/ars.2015.6272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS YchF/Ola1 are unconventional members of the universally conserved GTPase family because they preferentially hydrolyze ATP rather than GTP. These ATPases have been associated with various cellular processes and pathologies, including DNA repair, tumorigenesis, and apoptosis. In particular, a possible role in regulating the oxidative stress response has been suggested for both bacterial and human YchF/Ola1. In this study, we analyzed how YchF responds to oxidative stress and how it potentially regulates the antioxidant response. RESULTS Our data identify a redox-regulated monomer-dimer equilibrium of YchF as a key event in the functional cycle of YchF. Upon oxidative stress, the oxidation of a conserved and surface-exposed cysteine residue promotes YchF dimerization, which is accompanied by inhibition of the ATPase activity. No dimers were observed in a YchF mutant lacking this cysteine. In vitro, the YchF dimer is dissociated by thioredoxin 1 (TrxA) and this stimulates the ATPase activity. The physiological significance of the YchF-thioredoxin 1 interaction was demonstrated by in vivo cross-linking, which validated this interaction in living cells. This approach also revealed that both the ATPase domain and the helical domain of YchF are in contact with TrxA. INNOVATION YchF/Ola1 are the first redox-regulated members of the universally conserved GTPase family and are inactivated by oxidation of a conserved cysteine residue within the nucleotide-binding motif. CONCLUSION Our data provide novel insights into the regulation of the so far ill-defined YchF/Ola1 family of proteins and stipulate their role as negative regulators of the oxidative stress response.
Collapse
Affiliation(s)
- Liya Hannemann
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Ida Suppanz
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Qiaorui Ba
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Katherine MacInnes
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Friedel Drepper
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Bettina Warscheid
- 2 Faculty of Biology, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany .,3 BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | - Hans-Georg Koch
- 1 Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| |
Collapse
|
7
|
Rosler KS, Mercier E, Andrews IC, Wieden HJ. Histidine 114 Is Critical for ATP Hydrolysis by the Universally Conserved ATPase YchF. J Biol Chem 2015; 290:18650-61. [PMID: 26018081 DOI: 10.1074/jbc.m114.598227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 11/06/2022] Open
Abstract
GTPases perform a wide range of functions, ranging from protein synthesis to cell signaling. Of all known GTPases, only eight are conserved across all three domains of life. YchF is one of these eight universally conserved GTPases; however, its cellular function and enzymatic properties are poorly understood. YchF differs from the classical GTPases in that it has a higher affinity for ATP than for GTP and is a functional ATPase. As a hydrophobic amino acid-substituted ATPase, YchF does not possess the canonical catalytic Gln required for nucleotide hydrolysis. To elucidate the catalytic mechanism of ATP hydrolysis by YchF, we have taken a two-pronged approach combining classical biochemical and in silico techniques. The use of molecular dynamics simulations allowed us to complement our biochemical findings with information about the structural dynamics of YchF. We have thereby identified the highly conserved His-114 as critical for the ATPase activity of YchF from Escherichia coli. His-114 is located in a flexible loop of the G-domain, which undergoes nucleotide-dependent conformational changes. The use of a catalytic His is also observed in the hydrophobic amino acid-substituted GTPase RbgA and is an identifier of the translational GTPase family.
Collapse
Affiliation(s)
- Kirsten S Rosler
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Evan Mercier
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ian C Andrews
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hans-Joachim Wieden
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
8
|
Guan N, Shin HD, Chen RR, Li J, Liu L, Du G, Chen J. Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Sci Rep 2014; 4:6951. [PMID: 25377721 PMCID: PMC4223659 DOI: 10.1038/srep06951] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022] Open
Abstract
Propionic acid (PA) is an important platform chemical in the food, agriculture, and pharmaceutical industries and is mainly biosynthesized by propionibacteria. Acid tolerance in PA-producing strains is crucial. In previous work, we investigated the acid tolerance mechanism of Propionibacterium acidipropionici at microenvironmental levels by analyzing physiological changes in the parental strain and three PA-tolerant mutants obtained by genome shuffling. However, the molecular mechanism of PA tolerance in P. acidipropionici remained unclear. Here, we performed a comparative proteomics study of P. acidipropionici CGMCC 1.2230 and the acid-tolerant mutant P. acidipropionici WSH1105; MALDI-TOF/MS identified 24 proteins that significantly differed between the parental and shuffled strains. The differentially expressed proteins were mainly categorized as key components of crucial biological processes and the acid stress response. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to confirm differential expression of nine key proteins. Overexpression of the secretory protein glyceraldehyde-3-phosphate dehydrogenase and ATP synthase subunit α in Escherichia coli BL21 improved PA and acetic acid tolerance; overexpression of NADH dehydrogenase and methylmalonyl-CoA epimerase improved PA tolerance. These results provide new insights into the acid tolerance of P. acidipropionici and will facilitate the development of PA production through fermentation by propionibacteria.
Collapse
Affiliation(s)
- Ningzi Guan
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Rachel R Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Jianghua Li
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Long Liu
- 1] Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China [2] Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Guocheng Du
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| | - Jian Chen
- Synergetic Innovation Center Of Food Safety and Nutrition, Wuxi 214122, China
| |
Collapse
|
9
|
Wenk M, Ba Q, Erichsen V, MacInnes K, Wiese H, Warscheid B, Koch HG. A universally conserved ATPase regulates the oxidative stress response in Escherichia coli. J Biol Chem 2012; 287:43585-98. [PMID: 23139412 DOI: 10.1074/jbc.m112.413070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
YchF is an evolutionarily conserved ATPase of unknown function. In humans, the YchF homologue hOla1 appears to influence cell proliferation and was found to be up-regulated in many tumors. A possible involvement in regulating the oxidative stress response was also suggested, but details on the underlying mechanism are lacking. For gaining insight into YchF function, we used Escherichia coli as a model organism and found that YchF overexpression resulted in H(2)O(2) hypersensitivity. This was not caused by transcriptional or translational down-regulation of H(2)O(2)-scavenging enzymes. Instead, we observed YchF-dependent inhibition of catalase activity and a direct interaction with the major E. coli catalase KatG. KatG inhibition was dependent on the ATPase activity of YchF and was regulated by post-translational modifications, most likely including an H(2)O(2)-dependent dephosphorylation. We furthermore showed that YchF expression is repressed by the transcription factor OxyR and further post-translationally modified in response to H(2)O(2). In summary, our data show that YchF functions as a novel negative regulator of the oxidative stress response in E. coli. Considering the available data on hOla1, YchF/Ola1 most likely execute similar functions in bacteria and humans, and their up-regulation inhibits the ability of the cells to scavenge damaging reactive oxygen species.
Collapse
Affiliation(s)
- Meike Wenk
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Stefan-Meier-Strasse 17, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Becker M, Gzyl KE, Altamirano AM, Vuong A, Urbahn K, Wieden HJ. The 70S ribosome modulates the ATPase activity of Escherichia coli YchF. RNA Biol 2012; 9:1288-301. [PMID: 22995830 PMCID: PMC3583859 DOI: 10.4161/rna.22131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
YchF is one of two universally conserved GTPases with unknown cellular function. As a first step toward elucidating YchF's cellular role, we performed a detailed biochemical characterization of the protein from Escherichia coli. Our data from fluorescence titrations not only confirmed the surprising finding that YchFE.coli binds adenine nucleotides more efficiently than guanine nucleotides, but also provides the first evidence suggesting that YchF assumes two distinct conformational states (ATP- and ADP-bound) consistent with the functional cycle of a typical GTPase. Based on an in vivo pull-down experiment using a His-tagged variant of YchF from E. coli (YchFE.coli), we were able to isolate a megadalton complex containing the 70S ribosome. Based on this finding, we report the successful reconstitution of a YchF•70S complex in vitro, revealing an affinity (KD) of the YchFE.coli•ADPNP complex for 70S ribosomes of 3 μM. The in vitro reconstitution data also suggests that the identity of the nucleotide-bound state of YchF (ADP or ATP) modulates its affinity for 70S ribosomes. A detailed Michaelis-Menten analysis of YchF's catalytic activity in the presence and the absence of the 70S ribosome and its subunits revealed for the first time that the 70S ribosome is able to stimulate YchF's ATPase activity (~10-fold), confirming the ribosome as part of the functional cycle of YchF. Our findings taken together with previously reported data for the human homolog of YchF (hOLA1) indicate a high level of evolutionary conservation in the enzymatic properties of YchF and suggest that the ribosome is the main functional partner of YchF not only in bacteria.
Collapse
Affiliation(s)
- Marion Becker
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Katherine E. Gzyl
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Alvin M. Altamirano
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Anthony Vuong
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Kirstin Urbahn
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
- Alberta RNA Research and Training Institute; University of Lethbridge; Lethbridge, AB Canada
| |
Collapse
|