1
|
Wu X, Ge J, Song G, Liu Y, Gao P, Tian T, Li X, Xu J, Chu Y, Zheng F. The GE296_RS03820 and GE296_RS03830 genes are involved in capsular polysaccharide biosynthesis in Riemerella anatipestifer. FASEB J 2024; 38:e23763. [PMID: 38954404 DOI: 10.1096/fj.202302694rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.
Collapse
Affiliation(s)
- Xiaoni Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiazhen Ge
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guodong Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yijian Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tongtong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerui Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Fuying Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Xiao J, Su L, Huang S, Liu L, Ali K, Chen Z. Epidemic Trends and Biofilm Formation Mechanisms of Haemophilus influenzae: Insights into Clinical Implications and Prevention Strategies. Infect Drug Resist 2023; 16:5359-5373. [PMID: 37605758 PMCID: PMC10440118 DOI: 10.2147/idr.s424468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Haemophilus influenzae (H. influenzae) is a significant pathogen responsible for causing respiratory tract infections and invasive diseases, leading to a considerable disease burden. The Haemophilus influenzae type b (Hib) conjugate vaccine has notably decreased the incidence of severe infections caused by Hib strains, and other non-typable H. influenzae (NTHi) serotypes have emerged as epidemic strains worldwide. As a result, the global epidemic trends and antibiotic resistance characteristics of H. influenzae have been altered. Researches on the virulence factors of H. influenzae, particularly the mechanisms underlying biofilm formation, and the development of anti-biofilm strategies hold significant clinical value. This article provides a summary of the epidemic trends, typing methods, virulence factors, biofilm formation mechanisms, and prevention strategies of H. influenzae. The increasing prevalence of NTHi strains and antibiotic resistance among H. influenzae, especially the high β-lactamase positivity and the emergence of BLNAR strains have increased clinical difficulties. Understanding its virulence factors, especially the formation mechanism of biofilm, and formulating effective anti-biofilm strategies may help to reduce the clinical impact. Therefore, future research efforts should focus on developing new approaches to prevent and control H. influenzae infections.
Collapse
Affiliation(s)
- Jiying Xiao
- Department of Pulmonology, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, 310015, People’s Republic of China
| | - Lin Su
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, People’s Republic of China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Shumin Huang
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, People’s Republic of China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| | - Lingyue Liu
- Department of Pulmonology, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, 310015, People’s Republic of China
| | - Kamran Ali
- Department of Oncology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, People’s Republic of China
| | - Zhimin Chen
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310052, People’s Republic of China
- National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, 310052, People’s Republic of China
| |
Collapse
|
3
|
Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, Singla N, Jaiswal PK, Singh G, Barnwal RP. Blood-brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain 2022; 15:49. [PMID: 35650613 PMCID: PMC9158215 DOI: 10.1186/s13041-022-00937-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
The integrity of the blood–brain barrier (BBB) is essential for normal central nervous system (CNS) functioning. Considering the significance of BBB in maintaining homeostasis and the neural environment, we aim to provide an overview of significant aspects of BBB. Worldwide, the treatment of neurological diseases caused by BBB disruption has been a major challenge. BBB also restricts entry of neuro-therapeutic drugs and hinders treatment modalities. Hence, currently nanotechnology-based approaches are being explored on large scale as alternatives to conventional methodologies. It is necessary to investigate the in-depth characteristic features of BBB to facilitate the discovery of novel drugs that can successfully cross the barrier and target the disease effectively. It is imperative to discover novel strategies to treat life-threatening CNS diseases in humans. Therefore, insights regarding building blocks of BBB, activation of immune response on breach of this barrier, and various autoimmune neurological disorders caused due to BBB dysfunction are discussed. Further, special emphasis is given on delineating BBB disruption leading to CNS disorders. Moreover, various mechanisms of transport pathways across BBB, several novel strategies, and alternative routes by which drugs can be properly delivered into CNS are also discussed.
Collapse
Affiliation(s)
- Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumedh Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shipali Thakur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Department of Biotechnology, UIET, Panjab University, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
4
|
Carneiro MS, Crispim MN, Wilhelm CM, Volpato FCZ, Barth AL. Evaluation of filter paper as a means of transporting inactivated Gram‐negative non‐fermentative bacteria and
Haemophilus
spp. for identification using the MALDI‐TOF MS system. Lett Appl Microbiol 2022; 75:17-23. [DOI: 10.1111/lam.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Maiara S. Carneiro
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
- PPGCF ‐ Programa de Pós‐Graduação em Ciências Farmacêuticas Faculdade de Farmácia Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Marina N. Crispim
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
| | - Camila M. Wilhelm
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
- PPGCF ‐ Programa de Pós‐Graduação em Ciências Farmacêuticas Faculdade de Farmácia Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Fabiana C. Z. Volpato
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
- PPGCM ‐ Programa de Pós‐Graduação em Ciências Médicas Faculdade de Medicina Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| | - Afonso L. Barth
- LABRESIS‐ Laboratório de Pesquisa em Resistência Bacteriana Hospital de Clínicas de Porto Alegre Porto Alegre RS Brazil
- PPGCF ‐ Programa de Pós‐Graduação em Ciências Farmacêuticas Faculdade de Farmácia Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
- PPGCM ‐ Programa de Pós‐Graduação em Ciências Médicas Faculdade de Medicina Universidade Federal do Rio Grande do Sul Porto Alegre RS Brazil
| |
Collapse
|
5
|
Chekrouni N, Koelman DLH, Brouwer MC, van der Ende A, van de Beek D. Community-acquired Haemophilus influenzae meningitis in adults. J Infect 2021; 82:145-150. [PMID: 33774020 DOI: 10.1016/j.jinf.2021.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Haemophilus influenzae is an uncommon cause of meningitis in adults. METHODS We analyzed episodes of community-acquired H. influenzae meningitis in adults included in a prospective nationwide cohort study in the Netherlands. RESULTS From 2006 to July 2018, 82 of 2272 (4%) bacterial meningitis episodes were caused by H. influenzae (mean annual incidence 0.5 patients per 1,000,000). Median age was 61 years (IQR 46-68), and 48 episodes (59%) occurred in woman. Predisposing factors were otitis and/or sinusitis in 33 of 76 patients (49%), immunocompromising conditions in 19 of 75 patients (25%) and cerebrospinal fluid leak in 13 of 79 patients (17%). Serotyping showed 63 of 80 isolates (79%) were non-typeable (NTHi). Three patients (4%) died and 14 patients (17%) had an unfavorable outcome (Glasgow Outcome Scale score < 5 at discharge). Pneumonia (odds ratio [OR] 5.8, 95% confidence interval [95%CI] 1.1-30.8), presence of immunocompromising conditions (OR 6.0, 95%CI 1.5-24.4), and seizures on admission (OR 10.7, 95%CI 1.6-72.8) were associated with an unfavorable outcome, while NTHi was associated with a favorable outcome (OR 5.6, 95%CI 1.6-19.5). CONCLUSION H. influenzae is an uncommon cause of adult bacterial meningitis patients mainly causing disease in those with predisposing factors, such as CSF leakage, ENT infections, and immunocompromised state. In adult patients the majority of H. influenzae meningitis is caused by non-typeable strains.
Collapse
Affiliation(s)
- Nora Chekrouni
- Department of Neurology, Neuroscience, University of Amsterdam, Meibergdreef, Amsterdam UMC, Amsterdam, the Netherlands
| | - Diederik L H Koelman
- Department of Neurology, Neuroscience, University of Amsterdam, Meibergdreef, Amsterdam UMC, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Neuroscience, University of Amsterdam, Meibergdreef, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Arie van der Ende
- Department of Medical Microbiology, Infection and Immunity, University of Amsterdam, Amsterdam UMC, Meibergdreef, Amsterdam, the Netherlands; Netherlands Reference Laboratory for Bacterial Meningitis, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Department of Neurology, Neuroscience, University of Amsterdam, Meibergdreef, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Echovirus-30 Infection Alters Host Proteins in Lipid Rafts at the Cerebrospinal Fluid Barrier In Vitro. Microorganisms 2020; 8:microorganisms8121958. [PMID: 33321840 PMCID: PMC7764136 DOI: 10.3390/microorganisms8121958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Echovirus-30 (E-30) is a non-polio enterovirus responsible for meningitis outbreaks in children worldwide. To gain access to the central nervous system (CNS), E-30 first has to cross the blood-brain barrier (BBB) or the blood-cerebrospinal fluid barrier (BCSFB). E-30 may use lipid rafts of the host cells to interact with and to invade the BCSFB. To study enteroviral infection of the BCSFB, an established in vitro model based on human immortalized brain choroid plexus papilloma (HIBCPP) cells has been used. Here, we investigated the impact of E-30 infection on the protein content of the lipid rafts at the BCSFB in vitro. Mass spectrometry analysis following E-30 infection versus uninfected conditions revealed differential abundancy in proteins implicated in cellular adhesion, cytoskeleton remodeling, and endocytosis/vesicle budding. Further, we evaluated the blocking of endocytosis via clathrin/dynamin blocking and its consequences for E-30 induced barrier disruption. Interestingly, blocking of endocytosis had no impact on the capacity of E-30 to induce loss of barrier properties in HIBCPP cells. Altogether, these data highlight the impact of E-30 on HIBCPP cells microdomain as an important factor for host cell alteration.
Collapse
|
7
|
Non-Typeable Haemophilus influenzae Invade Choroid Plexus Epithelial Cells in a Polar Fashion. Int J Mol Sci 2020; 21:ijms21165739. [PMID: 32785145 PMCID: PMC7461124 DOI: 10.3390/ijms21165739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is a pathogen of the human respiratory tract causing the majority of invasive H. influenzae infections. Severe invasive infections such as septicemia and meningitis occur rarely, but the lack of a protecting vaccine and the increasing antibiotic resistance of NTHI impede treatment and emphasize its relevance as a potential meningitis causing pathogen. Meningitis results from pathogens crossing blood-brain barriers and invading the immune privileged central nervous system (CNS). In this study, we addressed the potential of NTHI to enter the brain by invading cells of the choroid plexus (CP) prior to meningeal inflammation to enlighten NTHI pathophysiological mechanisms. A cell culture model of human CP epithelial cells, which form the blood-cerebrospinal fluid barrier (BCSFB) in vivo, was used to analyze adhesion and invasion by immunofluorescence and electron microscopy. NTHI invade CP cells in vitro in a polar fashion from the blood-facing side. Furthermore, NTHI invasion rates are increased compared to encapsulated HiB and HiF strains. Fimbriae occurrence attenuated adhesion and invasion. Thus, our findings underline the role of the BCSFB as a potential entry port for NTHI into the brain and provide strong evidence for a function of the CP during NTHI invasion into the CNS during the course of meningitis.
Collapse
|
8
|
Localization of ZIP14 and ZIP8 in HIBCPP Cells. Brain Sci 2020; 10:brainsci10080534. [PMID: 32784388 PMCID: PMC7464652 DOI: 10.3390/brainsci10080534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
The blood-cerebrospinal fluid barrier (BCB) is important in maintaining brain manganese (Mn) homeostasis. This barrier consists of a single layer of epithelial cells, connected by tight junctions, that restrict the passage of nutrients to only allow molecules to be carried through the membrane by a transporter. These epithelial cells are polarized with asymmetrical blood-facing and cerebrospinal fluid-facing sides. Here, we have established a polarized model of a human choroid plexus papilloma cell line, HIBCPP. For the first time, Mn importers ZIP14 and ZIP8 were identified in HIBCPP cells and were found to be enriched at the basolateral and apical sides of the cell monolayer, respectively. The localization of each ZIP protein adds to the understanding of Mn transport across the HIBCPP BCB model to help understand the mechanism of Mn homeostasis within the brain.
Collapse
|
9
|
Ai W, Yang Z, Ma Y, Han X, Chen Y, Zhu K, Wang Z. Combined tetraphenylethylene fluorogens with positive charge for imaging capsule-covered pathogens. Analyst 2020; 145:6435-6440. [PMID: 32760975 DOI: 10.1039/d0an00349b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Capsule-covered pathogens can cause serious infectious diseases, and are highly pathogenic to humans. Herein, we developed four positively charged tetraphenylethylene derivatives (PC-TPEgens) that in certain combinations were applied to identify capsule-bearing pathogens using fluorescence imaging. The dual-charged probes were used to visualize the entire process of phagocytosis of pathogens into macrophages.
Collapse
Affiliation(s)
- Wenting Ai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing 100029, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020; 17:35. [PMID: 32375819 PMCID: PMC7201396 DOI: 10.1186/s12987-020-00196-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) forming the blood-cerebrospinal fluid (B-CSF) barrier is among the least studied structures of the central nervous system (CNS) despite its clinical importance. The CP is an epithelio-endothelial convolute comprising a highly vascularized stroma with fenestrated capillaries and a continuous lining of epithelial cells joined by apical tight junctions (TJs) that are crucial in forming the B-CSF barrier. Integrity of the CP is critical for maintaining brain homeostasis and B-CSF barrier permeability. Recent experimental and clinical research has uncovered the significance of the CP in the pathophysiology of various diseases affecting the CNS. The CP is involved in penetration of various pathogens into the CNS, as well as the development of neurodegenerative (e.g., Alzheimer´s disease) and autoimmune diseases (e.g., multiple sclerosis). Moreover, the CP was shown to be important for restoring brain homeostasis following stroke and trauma. In addition, new diagnostic methods and treatment of CP papilloma and carcinoma have recently been developed. This review describes and summarizes the current state of knowledge with regard to the roles of the CP and B-CSF barrier in the pathophysiology of various types of CNS diseases and sets up the foundation for further avenues of research.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital Brno, Pekařská 53, CZ-656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic.
| |
Collapse
|
11
|
Shida A, Ikeda T, Tani N, Morioka F, Aoki Y, Ikeda K, Watanabe M, Ishikawa T. Cortisol levels after cold exposure are independent of adrenocorticotropic hormone stimulation. PLoS One 2020; 15:e0218910. [PMID: 32069307 PMCID: PMC7028257 DOI: 10.1371/journal.pone.0218910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023] Open
Abstract
We previously showed that postmortem serum levels of adrenocorticotropic hormone (ACTH) were significantly higher in cases of hypothermia (cold exposure) than other causes of death. This study examined how the human hypothalamic-pituitary-adrenal axis, and specifically cortisol, responds to hypothermia. Human samples: Autopsies on 205 subjects (147 men and 58 women; age 15-98 years, median 60 years) were performed within 3 days of death. Cause of death was classified as either hypothermia (cold exposure, n = 14) or non-cold exposure (controls; n = 191). Cortisol levels were determined in blood samples obtained from the left and right cardiac chambers and common iliac veins using a chemiluminescent enzyme immunoassay. Adrenal gland tissues samples were stained for cortisol using a rabbit anti-human polyclonal antibody. Cell culture: AtT20, a mouse ACTH secretory cell line, and Y-1, a corticosterone secretory cell line derived from a mouse adrenal tumor, were analyzed in mono-and co-culture, and times courses of ACTH (in AtT20) and corticosterone (in Y-1) secretion were assessed after low temperature exposure mimicking hypothermia and compared with data for samples collected postmortem for other cases of death. However, no correlation between ACTH concentration and cortisol levels was observed in hypothermia cases. Immunohistologic analyses of samples from hypothermia cases showed that cortisol staining was localized primarily to the nucleus rather than the cytoplasm of cells in the zona fasciculata of the adrenal gland. During both mono-culture and co-culture, AtT20 cells secreted high levels of ACTH after 10-15 minutes of cold exposure, whereas corticosterone secretion by Y-1 cells increased slowly during the first 15-20 minutes of cold exposure. Similar to autopsy results, no correlation was detected between ACTH levels and corticosterone secretion, either in mono-culture or co-culture experiments. These results suggested that ACTH-independent cortisol secretion may function as a stress response during cold exposure.
Collapse
Affiliation(s)
- Alissa Shida
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
- * E-mail:
| | - Tomoya Ikeda
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Naoto Tani
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| | - Fumiya Morioka
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
| | - Yayoi Aoki
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
| | - Kei Ikeda
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
| | - Miho Watanabe
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
- Laboratory of Clinical Regenerative Medicine Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Health and Medical Science Innovation laboratory, Tsukuba City, Ibaraki, Japan
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Osaka, Japan
- Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), Osaka, Japan
| |
Collapse
|
12
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|