1
|
Urselli F, Gomez A, Gray MD, Cameron CE, Taylor JJ. Identification of antibodies induced by immunization with the syphilis vaccine candidate Tp0751. Vaccine 2025; 50:126804. [PMID: 39908783 DOI: 10.1016/j.vaccine.2025.126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/19/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
The continued and increasing prevalence of syphilis worldwide highlights the need for an effective syphilis vaccine to complement public health measures. Previous work demonstrated that immunization of the rabbit animal model with vaccine candidates derived from the T. pallidum endothelial cell adhesin Tp0751 could reduce dissemination of T. pallidum to lymph nodes. In those studies, a proportion of animals exhibited complete inhibition of treponemal dissemination and others exhibited partial or no inhibition of treponemal dissemination, consistent with results expected from an outbred animal model. In the current study we further characterized the Tp0751-specific antibody response in immunized animals that showed inhibition of T. pallidum dissemination. To do this, we generated Tp0751 tetramers to identify Tp0751-specific B cells before and after immunization. Using this approach, we found a robust expansion of Tp0751-specific B cells in the blood and spleens of immunized animals compared to unimmunized control animals. Ten antibodies from Tp0751-immunized rabbits were cloned and binding to specific structural regions of the Tp0751 protein was assessed using epitope mapping assays and structural modeling. Importantly, nine out of the ten antibodies cloned from Tp0751 tetramer-binding B cells were able to significantly inhibit T. pallidum attachment to human endothelial cells in vitro, including antibodies exhibiting weaker binding to Tp0751. Combined, our results provide a proof-of-principle that Tp0751-based subunit vaccines can stimulate strong B cell responses resulting in the production of antibodies able to inhibit T. pallidum attachment to endothelial cells.
Collapse
Affiliation(s)
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | | | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada; Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Justin J Taylor
- Fred Hutchinson Cancer Center, Seattle, WA, USA; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA; Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Zhang Q, Ma J, Zhou J, Zhang H, Li M, Gong H, Wang Y, Zheng H, Li J, Leng L. A Study on the Inflammatory Response of the Brain in Neurosyphilis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406971. [PMID: 39574316 PMCID: PMC11792053 DOI: 10.1002/advs.202406971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/24/2024] [Indexed: 02/05/2025]
Abstract
Neurosyphilis (NS) is a clinical condition caused by infection of the central nervous system (CNS) by Treponema pallidum (Tp) that can lead to asymptomatic meningitis and more serious neurological diseases, such as dementia and blindness. However, current studies on the pathogenesis of NS are limited. Here, through the integration analysis of proteomics and single-cell transcriptomics, Toll-like/NF-κB signaling is identified as the key pathway involved in CNS damage caused by Tp. Moreover, monocyte-derived macrophages are key cells involved in the inflammatory response to Tp in the CNS of NS patients. In addition, it is found that inflammatory cells in peripheral blood may cause neurological damage through disruption of the blood‒brain barrier (BBB) in individuals with NS. Notably, activation of the Toll-like/NF-κB signaling pathway, as well as dysregulation of neural function, is likewise validated in an in vitro NS brain organoid model. In conclusion, the results revealed the mechanisms of inflammation-mediated brain injury in Tp-induced NS and provided new ideas for the clinical treatment of Tp infection.
Collapse
Affiliation(s)
- Qiyu Zhang
- Stem cell and Regenerative Medicine LabInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Jie Ma
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Jia Zhou
- Stem cell and Regenerative Medicine LabInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Hanlin Zhang
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Mansheng Li
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijing102206China
| | - Huizi Gong
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Yujie Wang
- Stem cell and Regenerative Medicine LabInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Heyi Zheng
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Jun Li
- Department of DermatologyInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeNational Clinical Research Center for Dermatologic and Immunologic DiseasesBeijing100730China
| | - Ling Leng
- Stem cell and Regenerative Medicine LabInstitute of Clinical MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| |
Collapse
|
3
|
Zhou Y, Xie Y, Xu M. Potential mechanisms of Treponema pallidum breaching the blood-brain barrier. Biomed Pharmacother 2024; 180:117478. [PMID: 39321510 DOI: 10.1016/j.biopha.2024.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
Syphilis, a sexually transmitted disease caused by Treponema pallidum subsp. pallidum (T. pallidum), can lead to a complication known as neurosyphilis. Neurosyphilis affects multiple components of the nervous system, including the meninges, blood vessels, brain parenchyma, and others, significantly impacting the central nervous system (CNS). Despite the effective control of syphilis spread by antibiotics, recent years have seen a resurgence in incidence among high-risk populations. The blood-brain barrier (BBB) is a critical defense for the CNS, preventing toxins and pathogens, including viruses, from entering and ensuring CNS function. The exact mechanisms of how T. pallidum penetrates the BBB are still not fully understood. Extensive research suggests that T. pallidum can disrupt endothelial cells and intercellular junctions, as well as induce abnormal activation of immune cells and aberrant cytokine expression, potentially facilitating its breach of BBB. Based on current research, we focus on the detrimental effects of cytokines on BBB integrity. We have also summarized the pathways T. pallidum uses to penetrate cellular barriers. Understanding the interaction between T. pallidum and the BBB is essential for revealing neurosyphilis pathogenesis and developing new therapies. DATA AVAILABILITY: Data used to support the findings of this study are included in the article.
Collapse
Affiliation(s)
- Yiming Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, China; Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yafeng Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, China; Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China; Department of Clinical Laboratory, The Second Affiliated Hospital of the University of South China, Hengyang, China.
| | - Man Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, China; Institution of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Luo X, Xie X, Zhang L, Shi Y, Fu B, Yuan L, Zhang Y, Jiang Y, Ke W, Yang B. Uncovering the mechanisms of host mitochondrial cardiolipin release in syphilis: Insights from human microvascular endothelial cells. Int J Med Microbiol 2024; 316:151627. [PMID: 38908301 DOI: 10.1016/j.ijmm.2024.151627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024] Open
Abstract
The release of host mitochondrial cardiolipin is believed to be the main factor that contributes to the production of anti-cardiolipin antibodies in syphilis. However, the precise mechanism by which mitochondria release cardiolipin in this context remains elusive. This study aimed to elucidate the mechanisms underlying mitochondrial cardiolipin release in syphilis. We conducted a cardiolipin quantitative assay and immunofluorescence analysis to detect mitochondrial cardiolipin release in human microvascular endothelial cells (HMEC-1), with and without Treponema pallidum (Tp) infection. Furthermore, we explored apoptosis, a key mechanism for mitochondrial cardiolipin release. The potential mediator molecules were then analyzed through RNA-sequence and subsequently validated using in vitro knockout techniques mediated by CRISPR-Cas9 and pathway-specific inhibitors. Our findings confirm that live-Tp is capable of initiating the release of mitochondrial cardiolipin, whereas inactivated-Tp does not exhibit this capability. Additionally, apoptosis detection further supports the notion that the release of mitochondrial cardiolipin occurs independently of apoptosis. The RNA-sequencing results indicated that microtubule-associated protein2 (MAP2), an axonogenesis and dendrite development gene, was up-regulated in HMEC-1 treated with Tp, which was further confirmed in syphilitic lesions by immunofluorescence. Notably, genetic knockout of MAP2 inhibited Tp-induced mitochondrial cardiolipin release in HMEC-1. Mechanically, Tp-infection regulated MAP2 expression via the MEK-ERK-HES1 pathway, and MEK/ERK phosphorylation inhibitors effectively block Tp-induced mitochondrial cardiolipin release. This study demonstrated that the infection of live-Tp enhanced the expression of MAP2 via the MEK-ERK-HES1 pathway, thereby contributing to our understanding of the role of anti-cardiolipin antibodies in the diagnosis of syphilis.
Collapse
Affiliation(s)
- Xi Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaoyuan Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, PR China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yanqiang Shi
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Bo Fu
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Liyan Yuan
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yan Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
5
|
Liu Z, Zhang X, Xiong S, Huang S, Ding X, Xu M, Yao J, Liu S, Zhao F. Endothelial dysfunction of syphilis: Pathogenesis. J Eur Acad Dermatol Venereol 2024; 38:1478-1490. [PMID: 38376088 DOI: 10.1111/jdv.19899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Treponema pallidum is the causative factor of syphilis, a sexually transmitted disease (STD) characterized by perivascular infiltration of inflammatory cells, vascular leakage, swelling and proliferation of endothelial cells (ECs). The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of T. pallidum. In this review, we focus on how T. pallidum establish intimate interactions with ECs, triggering endothelial dysfunction such as endothelial inflammation, abnormal repairment and damage of ECs. In addition, we summarize that migration and invasion of T. pallidum across vascular ECs may occur through two pathways. These two mechanisms of transendothelial migration are paracellular and cholesterol-dependent, respectively. Herein, clarifying the relationship between T. pallidum and endothelial dysfunction is of great significance to provide novel strategies for diagnosis and prevention of syphilis, and has a great potential prospect of clinical application.
Collapse
Affiliation(s)
- Zhaoping Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaohong Zhang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shun Xiong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shaobin Huang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Ding
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Man Xu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Jiangchen Yao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangquan Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
6
|
Chen Z, Du F, Zhang R, Wu Q, Lu Z, Zhang RL, Wang Q. ADAMTS5 Promotes Permeability of the Blood-Brain Barrier during Treponema pallidum Subspecies pallidum Invading the Central Nervous System. ACS Infect Dis 2024; 10:1222-1231. [PMID: 38536197 DOI: 10.1021/acsinfecdis.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The pathogenesis of neurosyphilis remains unclear. A previous study found a noteworthy up-regulation of a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS5) gene in human brain microvascular endothelial cells cocultured with Treponema pallidum subspecies pallidum (Tp). To investigate the ADAMTS5 role in Tp invading the central nervous system (CNS), we conducted relevant experiments. Our study revealed that Tp caused an increase in human cortical microvascular endothelial cell/D3 (hCMEC/D3) barrier permeability and significantly enhanced ADAMTS5 expression. The heightened permeability of the hCMEC/D3 barrier was effectively mitigated by inhibiting ADAMTS5. During this process, Tp promoted interleukin-1β production, which, in turn, facilitated ADAMTS5 expression. Furthermore, Tp significantly reduced the glycocalyx on the surface of hCMEC/D3 cells, which was also ameliorated by inhibiting ADAMTS5. Additionally, ADAMTS5 and endothelial glycocalyx components notably increased in the cerebrospinal fluid of HIV-negative neurosyphilis patients. This research provided the first demonstration of the ADAMTS5 role in Tp invading the CNS and offered new insight into neurosyphilis pathogenesis.
Collapse
Affiliation(s)
- Zuoxi Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Fangzhi Du
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Ruihua Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qingyun Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zhiyu Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Rui-Li Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China
| | - Qianqiu Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
7
|
Wu S, Ye F, Wang Y, Li D. Neurosyphilis: insights into its pathogenesis, susceptibility, diagnosis, treatment, and prevention. Front Neurol 2024; 14:1340321. [PMID: 38274871 PMCID: PMC10808744 DOI: 10.3389/fneur.2023.1340321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background and aim Invasion of the central nervous system by Treponema pallidum can occur at any stage of syphilis. In the event that T. pallidum is not cleared promptly, certain individuals may experience progression to neurosyphilis, which manifests as cognitive and behavioral abnormalities, limb paralysis, and potentially fatal outcomes. Early identification or prevention of neurosyphilis is therefore crucial. The aim of this paper is to conduct a critical and narrative review of the latest information focusing exclusively to the pathogenesis and clinical management of neurosyphilis. Methodology To compile this review, we have conducted electronic literature searches from the PubMed database relating to neurosyphilis. Priority was given to studies published from the past 10 years (from 2013 to 2023) and other studies if they were of significant importance (from 1985 to 2012), including whole genome sequencing results, cell structure of T. pallidum, history of genotyping, and other related topics. These studies are classic or reflect a developmental process. Results Neurosyphilis has garnered global attention, yet susceptibility to and the pathogenesis of this condition remain under investigation. Cerebrospinal fluid examination plays an important role in the diagnosis of neurosyphilis, but lacks the gold standard. Intravenous aqueous crystalline penicillin G continues to be the recommended therapeutic approach for neurosyphilis. Considering its sustained prominence, it is imperative to develop novel public health tactics in order to manage the resurgence of neurosyphilis. Conclusion This review gives an updated narrative description of neurosyphilis with special emphasis on its pathogenesis, susceptibility, diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
| | | | | | - Dongdong Li
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Li W, Yuan W, Huang S, Zou L, Zheng K, Xie D. Research progress on the mechanism of Treponema pallidum breaking through placental barrier. Microb Pathog 2023; 185:106392. [PMID: 37852552 DOI: 10.1016/j.micpath.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Congenital syphilis, a significant cause of fetal mortality worldwide, is a congenital infectious disease instigated by the vertical transmission of Treponema pallidum during pregnancy. Clinical manifestations include preterm delivery, stillbirth, neonatal skin lesions, skeletal abnormalities, and central nervous system aberrations. The ongoing increase in the incidence of congenital syphilis, coupled with complexities in diagnosis, necessitates a detailed understanding of its pathogenesis for the development of improved diagnostic approaches, and to interrupt the route of vertical transmission. Drawing from the broader body of research associated with vertical transmission pathogens, we aim to clarify the potential mechanisms by which Treponema pallidum breaches the placental barrier to infect the fetus.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Wei Yuan
- The Fourth Affiliated Hospital of Nanchang University, China
| | - Shaobin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Lin Zou
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China.
| | - Dongde Xie
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China.
| |
Collapse
|
9
|
Waugh S, Ranasinghe A, Gomez A, Houston S, Lithgow KV, Eshghi A, Fleetwood J, Conway KME, Reynolds LA, Cameron CE. Syphilis and the host: multi-omic analysis of host cellular responses to Treponema pallidum provides novel insight into syphilis pathogenesis. Front Microbiol 2023; 14:1254342. [PMID: 37795301 PMCID: PMC10546344 DOI: 10.3389/fmicb.2023.1254342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Syphilis is a chronic, multi-stage infection caused by the extracellular bacterium Treponema pallidum ssp. pallidum. Treponema pallidum widely disseminates through the vasculature, crosses endothelial, blood-brain and placental barriers, and establishes systemic infection. Although the capacity of T. pallidum to traverse the endothelium is well-described, the response of endothelial cells to T. pallidum exposure, and the contribution of this response to treponemal traversal, is poorly understood. Methods To address this knowledge gap, we used quantitative proteomics and cytokine profiling to characterize endothelial responses to T. pallidum. Results Proteomic analyses detected altered host pathways controlling extracellular matrix organization, necroptosis and cell death, and innate immune signaling. Cytokine analyses of endothelial cells exposed to T. pallidum revealed increased secretion of interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF), and decreased secretion of monocyte chemoattractant protein-1 (MCP-1). Discussion This study provides insight into the molecular basis of syphilis disease symptoms and the enhanced susceptibility of individuals infected with syphilis to HIV co-infection. These investigations also enhance understanding of the host response to T. pallidum exposure and the pathogenic strategies used by T. pallidum to disseminate and persist within the host. Furthermore, our findings highlight the critical need for inclusion of appropriate controls when conducting T. pallidum-host cell interactions using in vitro- and in vivo-grown T. pallidum.
Collapse
Affiliation(s)
- Sean Waugh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Akash Ranasinghe
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Karen V. Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Azad Eshghi
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Jenna Fleetwood
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Kate M. E. Conway
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Wang Y, Guo J, Yang F, Dong R, Song D, Huang P, Wen L, Xiang G, Wang S, Teng J, Miao W. Predictive effect of the decline in CD4 + T cell levels in blood on infection in patients with severe hemorrhagic stroke and mechanism. Front Neurol 2023; 14:1118282. [PMID: 37360336 PMCID: PMC10288285 DOI: 10.3389/fneur.2023.1118282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Objective The purpose of this research was to evaluate the influence of immunity on infection in patients with severe hemorrhagic stroke and explore the mechanism underlying this connection. Methods Clinical data obtained from 126 patients with severe hemorrhagic stroke were retrospectively analyzed, and the factors affecting infection were screened by multivariable logistic regression models. Nomograms, calibration curves, the Hosmer-Lemeshow goodness-of-fit test, and decision curve analysis were used to examine the effectiveness of the models in evaluating infection. The mechanism underlying the reduction in CD4+ T-cell levels in blood was explored by analysis of lymphocyte subsets and cytokines in cerebrospinal fluid (CSF) and blood. Results The results showed that CD4+ T-cell levels of <300/μL was an independent risk factor for early infection. The models for multivariable logistic regression involving the CD4+ T-cell levels and other influencing factors had good applicability and effectiveness in evaluating early infection. CD4+ T-cell levels decreased in blood but increased in CSF. Similarly, interleukin (IL)-6 and IL-8 levels in CSF had a significant increase, generating a substantial concentration gradient between the CSF and the blood. Conclusion Reduced blood CD4+ T-cell counts among patients who had severe hemorrhagic stroke increased the risk of early infection. CSF IL-6 and IL-8 may be involved in inducing the migration of CD4+ T cells into the CSF and decreasing blood CD4+ T-cell levels.
Collapse
Affiliation(s)
- Yating Wang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junshuang Guo
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fan Yang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruirui Dong
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Song
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peipei Huang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Wen
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guoliang Xiang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuiyu Wang
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wang Miao
- Neuro-Intensive Care Unit of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Du FZ, Zhang X, Zhang RL, Wang QQ. CARE-NS, a research strategy for neurosyphilis. Front Med (Lausanne) 2023; 9:1040133. [PMID: 36687428 PMCID: PMC9852909 DOI: 10.3389/fmed.2022.1040133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Neurosyphilis is a major clinical manifestation of syphilis. In recent years, an increase in neurosyphilis cases has been reported in many countries. The overall incidence of neurosyphilis remains unknown, and there is a lack of understanding of the disease pathogenesis, which hampers clinical management, development of prevention strategies, and control. This article proposes the CARE-NS research strategy to enhance the clinical management of neurosyphilis, which consists of six key features: comprehensive management including multidisciplinary treatment (C), alleviating neurological impairment and sequelae (A), risk factors and clinical epidemiology (R), etiology and pathogenesis (E), new diagnostic indicators and strategies (N), and social impact and cost-effectiveness analysis (S).
Collapse
Affiliation(s)
- Fang-Zhi Du
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for STD Control, China Centers for Disease Control and Prevention, Nanjing, China
| | - Xu Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for STD Control, China Centers for Disease Control and Prevention, Nanjing, China
| | - Rui-Li Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Rui-Li Zhang,
| | - Qian-Qiu Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for STD Control, China Centers for Disease Control and Prevention, Nanjing, China,Qian-Qiu Wang,
| |
Collapse
|
12
|
Lukehart SA, Molini B, Gomez A, Godornes C, Hof R, Fernandez MC, Pitner RA, Gray SA, Carter D, Giacani L, Cameron CE. Immunization with a tri-antigen syphilis vaccine significantly attenuates chancre development, reduces bacterial load, and inhibits dissemination of Treponema pallidum. Vaccine 2022; 40:7676-7692. [PMID: 36376214 PMCID: PMC10318934 DOI: 10.1016/j.vaccine.2022.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
Syphilis continues to be a significant public health concern worldwide. The disease is endemic in many low- and middle-income countries, and rates have risen sharply in high-income countries over the last decade. The continued prevalence of infectious and congenital syphilis worldwide highlights the need for the development of an effective syphilis vaccine to complement public health measures for syphilis control. The complex, multi-stage course of syphilis infection necessitates a holistic approach to the development of an effective vaccine, in which immunization prevents both the localized stage of infection (typified by the highly infectious chancre) and the disseminated stages of infection (typified by the secondary rash, neurosyphilis, and destructive tertiary lesions, as well as congenital syphilis). Inhibiting development of the infectious chancre would reduce transmission thus providing community- level protection, while preventing dissemination would provide individual-level protection by reducing serious sequelae and may also provide community level protection by reducing shedding during secondary syphilis. In the current study we build upon prior investigations which demonstrated that immunizations with individual, well characterized T. pallidum TprK, TprC, and Tp0751 peptides elicits partial protection against infection in the animal model. Specifically, we show here that immunization with a TprC/TprK/Tp0751 tri-antigen cocktail protects animals from progressive syphilis lesions and substantially inhibits dissemination of the infection.
Collapse
Affiliation(s)
- Sheila A Lukehart
- Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Barbara Molini
- Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Charmie Godornes
- Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Mark C Fernandez
- Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | | | | | - Lorenzo Giacani
- Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Caroline E Cameron
- Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|