1
|
Petrin AL, Machado-Paula LA, Hinkle A, Hovey L, Awotoye W, Chimenti M, Darbro B, Ribeiro-Bicudo LA, Dabdoub SM, Peter T, Breheny P, Murray JC, Van Otterloo E, Rengasamy Venugopalan S, Moreno-Uribe LM. Familial Oculoauriculovertebral Spectrum: A Genomic Investigation of Autosomal Dominant Inheritance. Cleft Palate Craniofac J 2025:10556656241306202. [PMID: 39819101 DOI: 10.1177/10556656241306202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
OBJECTIVE Oculoauriculovertebral spectrum (OAVS) encompasses abnormalities on derivatives from the first and second pharyngeal arches including macrostomia, hemifacial microsomia, micrognathia, preauricular tags, ocular, and vertebral anomalies. We present genetic findings on a 3-generation family affected with macrostomia, preauricular tags and ptosis following an autosomal dominant pattern. DESIGN We generated whole-genome sequencing data for the proband, affected father, and unaffected paternal grandmother followed by Sanger sequencing on 23 family members for the top candidate gene mutations. We performed parent and sibling-based transmission disequilibrium tests (TDTs) and burden analysis via a penalized linear mixed model, for segregation and mutation burden, respectively. Next, via bioinformatic tools we predicted protein function, mutation pathogenicity, and pathway enrichment to investigate the biological relevance of mutations identified. RESULTS Rare missense mutations in SIX1, KDR/VEGFR2, and PDGFRA showed the best segregation with the OAVS phenotypes in this family. When considering any of the 3 OAVS phenotypes as an outcome, SIX1 had the strongest associations in parent-TDTs and sib-TDTs (P = 0.025, P = 0.052) (unadjusted P-values). Burden analysis identified SIX1 (RC = 0.87) and PDGFRA (RC = 0.98) strongly associated with OAVS severity. Using phenotype-specific outcomes, sib-TDTs identified SIX1 with uni- or bilateral ptosis (P = 0.049) and ear tags (P = 0.01), and PDGFRA and KDR/VEGFR2 with ear tags (both P < 0.01). CONCLUSION SIX1, PDGFRA, and KDR/VEGFR2 are strongly associated to OAVS phenotypes. SIX1 has been previously associated with OAVS ear malformations and is co-expressed with EYA1 during ear development. Efforts to strengthen the genotype-phenotype co-relation underlying the OAVS are key to discover etiology, family counseling, and prevention.
Collapse
Affiliation(s)
- Aline L Petrin
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Austin Hinkle
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Luke Hovey
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Waheed Awotoye
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Michael Chimenti
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Benjamin Darbro
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Shareef M Dabdoub
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Tabitha Peter
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | - Patrick Breheny
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Jeffrey C Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric Van Otterloo
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| | | | - Lina M Moreno-Uribe
- College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Liao F, Liao Z, Zhang T, Jiang W, Zhu P, Zhao Z, Shi H, Zhao D, Zhou N, Huang X. ECFC-derived exosomal THBS1 mediates angiogenesis and osteogenesis in distraction osteogenesis via the PI3K/AKT/ERK pathway. J Orthop Translat 2022; 37:12-22. [PMID: 36196150 PMCID: PMC9513111 DOI: 10.1016/j.jot.2022.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Distraction osteogenesis (DO) is a widely used bone regenerative technique. However, the DO process is slow, and the consolidation phase is long. Therefore, it is of great clinical significance to explore the mechanism of DO, and shorten its duration. Recent studies reported that stem cell exosomes may play an important role in promoting angiogenesis related to DO, but the mechanism remains unclear. Methods Canine endothelial colony-forming cells (ECFCs) were isolated and cultured, and the expression of THBS1 in canine ECFCs were inhibited using a lentiviral vector. The exosomes secreted by canine ECFCs were isolated and extracted, and the effect of exosomes on the angiogenic activity of Human umbilical vein endothelial cells (HUVECs) was detected by proliferation, migration, and tube formation experiments. WB and qRT-PCR were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on HUVECs angiogenesis. Then, a mandibular distraction osteogenesis (MDO) model was established in adult male beagles, and exosomes were injected into the canine peripheral blood. Micro-CT, H&E, Masson, and IHC staining were used to explore the effects and mechanisms of THBS1-mediated ECFC-Exos on angiogenesis and osteogenesis in the DO area. Results ECFC-Exo accelerated HUVECs proliferation, migration and tube formation, and this ability was enhanced by inhibiting the expression of THBS1 in ECFC-Exo. Using Western blot-mediated detection, we demonstrated that inhibiting THBS1 expression in ECFCs-Exo activated PI3K, AKT, and ERK phosphorylation levels in HUVECs, which promoted VEGF and bFGF expressions. In the DO model of the canine mandible, ECFCs-Exo injected into the peripheral blood aggregated into the DO gap, thus promoting angiogenesis and bone formation in the DO tissue by reducing THBS1 expression in ECFC-Exo. Conclusion Our findings suggested that ECFC-Exos markedly enhances angiogenesis of endothelial cells, and promotes bone healing in canine MDO. Thus, THBS1 plays a crucial role in the ECFC-Exos-mediated regulation of canine MDO angiogenesis and bone remodeling. The translational potential of this article This study reveals that the angiogenic promotion via THBS1 suppression in ECFC-Exos may be a promising strategy for shortening the DO duration.
Collapse
Affiliation(s)
- Fengchun Liao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Ziqi Liao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Tao Zhang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Weidong Jiang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Peiqi Zhu
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Zhenchen Zhao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Henglei Shi
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Dan Zhao
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
| | - Nuo Zhou
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
- Corresponding author. Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, People's Republic of China
- Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, 530021, People's Republic of China
- Corresponding author. Department of Oral and Maxillofacial Surgery, College of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
3
|
Abstract
Distraction osteogenesis (DO) is a bone regeneration technique used to treat maxillofacial disorders, fracture nonunion, and large bone defects. It is well known for its amazing regenerative potential, but an extended consolidation period limits its clinical use. The interaction between the nervous system and bone regeneration has attracted great attention in recent years. Sema3A is a key axonal chemorepellent which has been proved to have bone-protective effects. In this article, we try to improve DO by local administration of Sema3A and explore the possible mechanisms. Forty wildtype, male, adult mice were divided into two groups after tibia osteotomy surgery. Sema3A or Saline was daily injected transcutaneous into the center of the distraction zone during the consolidation period. Micro-CT images were taken at 4, 6,8 and 10 weeks post-surgery; vascular density and biomechanical testing were performed at 10 weeks post-surgery. We also set up in vitro vessel growth assay to evaluate the effect of Sema3A on angiogenesis. Compared with the Saline group, Sema3A treatment significantly accelerated bone regeneration, improved angiogenesis and callus' biomechanical strength. At 10 weeks post-surgery, compared with the Saline group, the BV/TV, BMD, TMD increased by about 23%, 22%, 18% respectively, vascular density increased by about 49% in the Sema3A group. Histological images and western-blot showed decreased expression of VEGF-A and increased expression of Ang-1 at 4 weeks post-surgery in the Sema3A group. In vitro, Sema3A suppressed VEGF-induced angiogenesis but had little effect on Ang-induced angiogenesis. Conclusion: Sema3A could accelerate bone regeneration and improve angiogenesis during DO.
Collapse
Affiliation(s)
- Nian Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunwei Hua
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Stojanović S, AlKhoury H, Radenković M, Cvetković V, Jablonska M, Schmelzer CEH, Syrowatka F, Živković JM, Groth T, Najman S. Tissue response to biphasic calcium phosphate covalently modified with either heparin or hyaluronic acid in a mouse subcutaneous implantation model. J Biomed Mater Res A 2020; 109:1353-1365. [PMID: 33128275 DOI: 10.1002/jbm.a.37126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Biphasic calcium phosphate (BCP) materials are widely employed as bone substitute materials due to their resorption/degradation properties. Inflammation after implantation of such materials represents a prerequisite for bone tissue repair and regeneration but can be also problematic if it is not only transient and if it is followed by fibrosis and scarring. Here, we modified BCP covalently with hyaluronan (HA) and heparin (Hep), glycosaminoglycans that possess anti-inflammatory properties. Beside the characterization of particle surface properties, the focus was on in vivo tissue response after subcutaneous implantation in mice. Histological analysis revealed a decrease in signs of inflammatory response to BCP when modified with either HA or Hep. Reduced vascularization after 30 days was noticed when BCP was modified with either HA or Hep with greater cellularity in all examined time points. Compared to plain BCP, expression of endothelial-related genes Flt1 and Vcam1 was higher in BCP-HA and BCP-Hep group at day 30. Expression of osteogenesis-related genes Sp7 and Bglap after 30 days was the highest in BCP group, followed by BCP-Hep, while the lowest expression was in BCP-HA group which correlates with collagen amount. Hence, coating of BCP particles with HA seems to suppress inflammatory response together with formation of new bone-like tissue, while the presence of Hep delays the onset of inflammatory response but permits osteogenesis in this subcutaneous bone-forming model. Transferring the results of this study to other coated materials intended for biomedical application may also pave the way to reduction of inflammation after their implantation.
Collapse
Affiliation(s)
- Sanja Stojanović
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Hala AlKhoury
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Radenković
- Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Vladimir Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Niš, Serbia
| | - Magdalena Jablonska
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Christian E H Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Frank Syrowatka
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jelena M Živković
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, Moscow, Russian Federation
| | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia.,Department for Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
5
|
A case of mandible hypoplasia treated with autologous bone graft from mandibular symphysis: Expression of VEGF and receptors in bone regeneration. Acta Histochem 2016; 118:652-656. [PMID: 27432807 DOI: 10.1016/j.acthis.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
Abstract
The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) system plays an important role in angiogenesis and osteogenesis during both skeletal development and postnatal bone growth and repair. Indeed, protein expression changes of this system could contribute to craniofacial defects commonly associated with a variety of congenital syndromes. Similarly to other craniofacial bones, mandible arises from neural crest cells of the neuroectodermal germ layer, and undergoes membranous ossification. Here, we report a case of left mandibular hypoplasia in a 42-year-old man treated with autologous bone graft from mandibular symphysis. After 3 months from surgical reconstruction, the protein expression of VEGF and receptors (VEGFR-1, -2 and -3) in regenerated bone tissue was evaluated by immunohistochemistry. At variance with the mandibular symphysis bone harvested for graft surgery, we observed de novo expression of VEGF and VEGFRs in osteoblasts and osteocytes from post-graft regenerating mandible bone tissue. In particular, while VEGFR-1 and VEGFR-3 immunopositivity was widespread in osteoblasts, that of VEGFR-2 was scattered. Among the three receptors, VEGFR-3 was the more intensively expressed both in osteoblasts and osteocytes. These findings suggest that VEGFR-2 might be produced during the early period of regeneration, while VEGFR-1 might participate in bone cell maintenance during the middle or late consolidation period. VEGFR-3 might, instead, represent a specific signal for ectomesenchymal lineage differentiation during bone regeneration. Modulation of VEGF/VEGFR signaling could contribute to graft integration and new bone formation during mandibular regeneration.
Collapse
|
6
|
Wang X, Gu Z, Jiang B, Li L, Yu X. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties. Biomater Sci 2016; 4:678-88. [PMID: 26870855 DOI: 10.1039/c5bm00482a] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For bioceramic scaffolds employed in clinical applications, excellent bioactivity and tenacity were of great importance. Modifying inorganic SCPP scaffolds with biological macromolecules could obviously improve its bioactivity and eliminate its palpable brittleness. However, it was hard to execute directly due to extremely bad interfacial compatibility between them. In this research, dopamine (DOPA) was introduced onto strontium-doped calcium polyphosphate (SCPP) scaffolds, subsequently the preliminary material was successfully further modified by silk fibroin (SF). SCPP/D/SF possessed suitable biomechanical properties, ability to stimulate angiogenic factor secretion and excellent biocompatibility. Biomechanical examination demonstrated that SCPP/D/SF scaffolds yielded better compressive strength because of improved interfacial compatibility. MTT assay and CLSM observation showed that SCPP/D/SF scaffolds had good cytocompatibility and presented better inducing-cell-migration potential than pure SCPP scaffolds. Meanwhile, its ability to stimulate angiogenic factor secretion was measured through the ELISA assay and immunohistological analysis in vitro and in vivo respectively. The results revealed, superior to SCPP, SCPP/D/SF could effectively promote VEGF and bFGF expression, possibly leading to enhancing angiogenesis and osteogenesis. In a word, SCPP/D/SF could serve as a potential bone tissue engineering scaffold for comparable biomechanical properties and excellent bioactivity. It provided a novel idea for modification of inorganic materials to prepare promising bone tissue engineering scaffolds with the ability to accelerate bone regeneration and vascularization.
Collapse
Affiliation(s)
- Xu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | | | | | | | | |
Collapse
|
7
|
Distraction histogenesis of the maxillofacial region. Oral Maxillofac Surg 2015; 19:221-8. [PMID: 25893664 DOI: 10.1007/s10006-015-0495-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/31/2015] [Indexed: 12/27/2022]
Abstract
The changes in the surrounding soft tissues during long bone distraction in orthopedic surgery have been the subject of several reports, studies on changes in the craniofacial region, in which various tissues, including the skin, muscle, tendon, blood vessel, and gingiva are rare. Therefore, there is a need for studies on the soft tissue aspects of bone lengthening of the craniofacial region. The aim of this review was to address this issue by reviewing the literature about the distraction histogenesis of various tissues, including skin, muscle, blood vessel, nerve, and gingiva.
Collapse
|
8
|
Marini M, Bertolai R, Ambrosini S, Sarchielli E, Vannelli GB, Sgambati E. Differential expression of vascular endothelial growth factor in human fetal skeletal site-specific tissues: Mandible versus femur. Acta Histochem 2015; 117:228-34. [PMID: 25769656 DOI: 10.1016/j.acthis.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a well-known mediator that signals through pathways in angiogenesis and osteogenesis. Angiogenesis and bone formation are coupled during either skeletal development or bone remodeling and repair occurring in postnatal life. In this study, we examined for the first time the expression of VEGF in human fetal mandibular and femoral bone in comparison with the respective adult tissues. Similarly to other craniofacial bones, but at variance with the axial and appendicular skeleton, during development mandible does not arise from mesoderm but neural crest cells of the neuroectoderm germ layer, and undergoes intramembranous instead of endochondral ossification. By quantitative real-time PCR technique, we could show that VEGF gene expression levels were significantly higher in fetal than in adult samples, especially in femoral tissue. Western blotting analysis confirmed higher protein expression of VEGF in the fetal femur respect to the mandible. Moreover, immunohistochemistry revealed that in both fetal tissues VEGF expression was mainly localized in pre- and osteoblasts. Differential expression of VEGF in femoral and mandibular bone tissues could be related to their different structure, function and development during organogenesis.
Collapse
Affiliation(s)
- Mirca Marini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Roberto Bertolai
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139 Florence, Italy.
| | - Stefano Ambrosini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Gabriella Barbara Vannelli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche 86090 Isernia, Italy.
| |
Collapse
|
9
|
Alzahrani MM, Anam EA, Makhdom AM, Villemure I, Hamdy RC. The effect of altering the mechanical loading environment on the expression of bone regenerating molecules in cases of distraction osteogenesis. Front Endocrinol (Lausanne) 2014; 5:214. [PMID: 25540639 PMCID: PMC4261813 DOI: 10.3389/fendo.2014.00214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022] Open
Abstract
Distraction osteogenesis (DO) is a surgical technique where gradual and controlled separation of two bony fragments following an osteotomy leads to the induction of new bone formation in the distracted gap. DO is used for limb lengthening, correction of bony deformities, and the replacement of bone loss secondary to infection, trauma, and tumors. Although DO gives satisfactory results in most cases, one major drawback of this technique is the prolonged period of time the external fixator has to be kept on until the newly formed bone consolidates thus leading to numerous complications. Numerous attempts at accelerating bone formation during DO have been reported. One specific approach is manipulation of the mechanical environment during DO by applying changes in the standard protocol of distraction. Attempts at changing this mechanical environment led to mixed results. Increasing the rate or applying acute distraction, led to poor bone formation in the distracted zone. On the other hand, the addition of compressive forces (such as weight bearing, alternating distraction with compression or by over-lengthening, and then shortening) has been reported to increase bone formation. It still remains unclear why these alterations may lead to changes in bone formation. While the cellular and molecular changes occurring during the standard DO protocol, specifically increased expression of transforming growth factor-β1, platelet-derived growth factor, insulin-like growth factor, basic fibroblast growth factor, vascular endothelial growth factor, and bone morphogenic proteins have been extensively investigated, the literature is sparse on the changes occurring when this protocol is altered. It is the purpose of this article to review the pertinent literature on the changes in the expression of various proteins and molecules as a result of changes in the mechanical loading technique in DO and try to define potential future research directions.
Collapse
Affiliation(s)
- Mohammad M. Alzahrani
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, University of Dammam, Dammam, Saudi Arabia
| | - Emad A. Anam
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asim M. Makhdom
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isabelle Villemure
- Department of Mechanical Engineering, École Polytechnique de Montreal, Montreal, QC, Canada
- Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Reggie Charles Hamdy
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Reggie Charles Hamdy, Division of Orthopaedic Surgery, Shriners Hospital for Children, McGill University, 1529 Cedar Avenue, Montreal, QC H3G 1A6, Canada e-mail:
| |
Collapse
|
10
|
Treatment of mandibular atrophy by an equine bone substitute: an immunohistochemical study in man. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.ios.2012.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Matsubara H, Hogan DE, Morgan EF, Mortlock DP, Einhorn TA, Gerstenfeld LC. Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone 2012; 51:168-80. [PMID: 22391215 PMCID: PMC3719967 DOI: 10.1016/j.bone.2012.02.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/08/2012] [Accepted: 02/17/2012] [Indexed: 02/08/2023]
Abstract
Prior studies showed that bone regeneration during distraction osteogenesis (DO) was dependent on vascular tissue development and that inhibition of VEGFR signaling diminished the expression of BMP2. A combination of micro-computed tomography (μCT) analysis of vascular and skeletal tissues, immunohistological and histological analysis of transgenic mice containing a BAC transgene in which β-galactosidase had been inserted into the coding region of BMP2 and qRT-PCR analysis, was used to examine how the spatial temporal expression of the morphogenetic signals that drive skeletal and vascular tissue development is coordinated during DO. These results showed that BMP2 expression was induced in smooth muscle and vascular endothelial cells of arteries and veins, capillary endothelial cells, hypertrophic chondrocytes and osteocytes. BMP2 was not expressed by lymphatic vessels or macrophages. Separate peaks of BMP2 mRNA expression were induced in the surrounding muscular tissues and the distraction gap and corresponded first with large vessel collateralization and arteriole remodeling followed by periods of angiogenesis in the gap region. Immunohistological and qRT-PCR analysis of VEGF receptors and ligands showed that mesenchymal cells, lining cells and chondrocytes, expressed VEGFA, although PlGF expression was only seen in mesenchymal cells within the gap region. On the other hand VEGFR2 appeared to be predominantly expressed by vascular endothelial and hematopoietic cells. These results suggest that bone and vascular tissue formation is coordinated via a mutually supporting set of paracrine loops in which blood vessels primarily synthesize the morphogens that promote bone formation while mesenchymal cells primarily synthesize the morphogens that promote vascular tissue formation.
Collapse
Affiliation(s)
- Hidenori Matsubara
- Orthopaedic Research Laboratory, Boston University School of Medicine, MA, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Yang JH, Kim HJ, Kim SE, Yun YP, Bae JH, Kim SJ, Choi KH, Song HR. The effect of bone morphogenic protein-2-coated tri-calcium phosphate/hydroxyapatite on new bone formation in a rat model of femoral distraction osteogenesis. Cytotherapy 2011; 14:315-26. [PMID: 22122301 DOI: 10.3109/14653249.2011.630728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Distraction osteogenesis (DO) is an increasingly popular technique used to stimulate new bone formation to treat orthopedic disorders resulting from bone defects and deficits. Because of various possible complications that can occur during the long consolidation period, the development of procedures to accelerate regenerated ossification is clearly desirable. The purpose of this study was to evaluate the effect of single insertions of bone morphogenic protein-2 (BMP-2), delivered by tri-calcium phosphate (TCP)/hydroxyapatite (HA), administered at osteotomy sites, on the rate of new bone formation during DO in a rat model. METHODS Thirty-six male Sprague-Dawley rats, aged 12 weeks and weighing a mean (± standard deviation) of 401 ± 14 g, were used in this study. The animals were randomized into three groups of 12 rats each. Group I served as a control, group II was treated with only TCP/HA, and group III was treated with recombinant human (rh) BMP-2-coated TCP/HA. Materials were inserted into the medullary canal at the femoral osteotomy site at the end of the lengthening period. After a 7-day latent phase, distraction was commenced on day 0 at a rate of 0.50 mm every 6 h for 5 days (2 mm daily), resulting in a total of 10 mm of lengthening by day 5. At two different time-points [at 4 weeks (day 33) and 8 weeks (day 61) after cessation of distraction], the progress of bone formation was determined with microcomputed tomography (micro-CT), histology and real-time polymerase chain reaction (PCR). The mean and standard deviation of the values obtained from the experiment were computed and statistical analyses performed using anova. Statistical significance was established at P < 0.05. Results. Radiographically, all group III rat femurs exhibited bridging callus formation 8 weeks after cessation of distraction, whereas group II rat femurs demonstrated non-bridging callus formation. None of the group I rat femurs showed callus in the central zone of the distraction gap. For micro-CT, bone formation and remodeling of the distraction regeneration with beta-TCP/HA coated with rhBMP-2 had greater values than the control sides at all time-points. Two-dimensional quantitative analysis of the distraction regeneration showed that the bone volume of group III had higher values than groups I and II at 4 weeks (P < 0.05). This difference was also evident at 8 weeks. With hematoxylin and eosin (H&E) staining, the control group (group I) did not show any bone tissue at the distraction site. In group II at 4 weeks, abundant fibrous tissue surrounding the particles was visible with some areas of woven bone. At 8 weeks, the woven bone covered the particles but not the whole circumference. In group III at 4 weeks, much of the woven bone surrounded the particle with some fibrocartilagenous materials. At 8 weeks, woven bone covering the whole circumference of the particles was visible. CONCLUSIONS Application of rhBMP-2, at the end of the rather rapid distraction period, as a single bolus significantly increased the osteogenic process, while beta-TCP/HA behaved effectively as a sustained delivery system for this osteoinductive protein.
Collapse
Affiliation(s)
- Jae-Hyuk Yang
- Department of Orthopaedic Surgery, Seoul Veterans Hospital, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Küçük D, Ay S, Kara MI, Avunduk MC, Gümus C. Comparison of local and systemic alendronate on distraction osteogenesis. Int J Oral Maxillofac Surg 2011; 40:1395-400. [PMID: 21945486 DOI: 10.1016/j.ijom.2011.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 11/25/2022]
Abstract
This study compared the effect of systemic and local administration of alendronate on distraction osteogenesis in rabbit mandibles. Thirty New Zealand white rabbits were allocated to 3 groups: 10 rabbits for systemic alendronate; 9 for local alendronate; and 11 as controls. After a 5 day latency period, distraction was performed at a rate of 0.8mm/day for 9 days via a custom-made distractor. Animals were killed at the end of the consolidation period of 28 days. The distracted mandibles were harvested and evaluated by plain radiography, computed tomography (CT), dual energy X-ray absorptiometry (DEXA), and histomorphometry. Histologically, comparing the systemic and local alendronate groups, there were no statistically significant differences in the bone healing parameters, but each group showed a statistically superior effect over the control group (p<0.05). Quantitative CT evaluation showed a significant difference mean in the density of the regeneration between experimental and control groups. There was a significant increase in mean bone mineral density in the experimental groups compared with the control group. Histologic, CT, and DEXA analysis demonstrated that using systemic and local alendronate may be effective in accelerating new bone formation in the distraction gap in rabbit mandibles.
Collapse
Affiliation(s)
- Dervişhan Küçük
- Dept. of Oral and Maxillofacial Surgery, Faculty of Dentistry, Gaziantep University, Gaziantep, Turkey
| | | | | | | | | |
Collapse
|
14
|
Iyomasa MM, Mardegan Issa JP, de Queiróz Tavares ML, Lara Pereira YC, Sasso Stuani MB, Mishima F, Coutinho-Netto J, Sebald W. Influence of low-level laser associated with osteogenic proteins recombinant human BMP-2 and Hevea brasiliensis on bone repair in Wistar rats. Microsc Res Tech 2011; 75:117-25. [DOI: 10.1002/jemt.21033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/24/2011] [Indexed: 11/09/2022]
|
15
|
Borges FL, Dias RO, Piattelli A, Onuma T, Gouveia Cardoso LA, Salomão M, Scarano A, Ayub E, Shibli JA. Simultaneous Sinus Membrane Elevation and Dental Implant Placement Without Bone Graft: A 6-Month Follow-Up Study. J Periodontol 2011; 82:403-12. [DOI: 10.1902/jop.2010.100343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Reumann MK, Nair T, Strachna O, Boskey AL, Mayer-Kuckuk P. Production of VEGF receptor 1 and 2 mRNA and protein during endochondral bone repair is differential and healing phase specific. J Appl Physiol (1985) 2010; 109:1930-8. [PMID: 20947709 DOI: 10.1152/japplphysiol.00839.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physiological disturbances, including temporary hypoxia, are expected to drive angiogenesis during bone repair. Evidence suggests that the angiogenic ligand vascular endothelial growth factor (VEGF)-A plays an important role in this process. We characterized the expression of two receptors that are essential for mediating VEGF signaling, VEGFR1/Flt-1 and VEGFR2/Flk-1/KDR, in a mouse rib fracture model. Their mRNA and protein levels were assessed in four healing phases, which were characterized histologically as hemorrhage formation on postfracture day (PFD) 1, inflammatory response on PFD 3, initiation of callus development on PFD 7, and the presence of a mature callus on PFD 14. Transcript was detected for VEGFR1 and VEGFR2, as well as VEGF. While mRNA expression of VEGFR1 was monophasic throughout all healing phases, VEGFR2 showed a biphasic profile with significantly increased mRNA expression during callus formation and maturation. Expression of VEGF mRNA was characterized by a more gradual increase during callus formation. The protein level for VEGFR1 was below detection sensitivity during the initial healing phase. It was then restored to a stable level, detectable through the subsequent healing phases. Hence, the VEGFR1 protein levels partially mirrored the transcript expression profile. In comparison, the protein level of VEGFR2 increased gradually during the healing phases and peaked at callus maturation. This correlated well with the transcriptional expression of VEGFR2. Intact bone from age-matched male mice had considerable protein levels of VEGFR1 and VEGF, but no detectable VEGFR2. Together, these findings uncovered expression signatures of the VEGF-VEGFR axis in endochondral bone repair.
Collapse
Affiliation(s)
- Marie K Reumann
- Bone Cell Biology and Imaging Laboratory, Hospital for Special Surgery, 535 East 70th St., New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
17
|
Artese L, Piattelli A, de Gouveia Cardoso LA, Ferrari DS, Onuma T, Piccirilli M, Faveri M, Perrotti V, Simion M, Shibli JA. Immunoexpression of angiogenesis, nitric oxide synthase, and proliferation markers in gingival samples of patients with aggressive and chronic periodontitis. J Periodontol 2010; 81:718-26. [PMID: 20429651 DOI: 10.1902/jop.2010.090524] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In periodontal tissues, angiogenesis seems to be important for the maintenance of healthy tissues and in periodontal diseases. Angiogenesis is regulated through a complex interplay of molecular signals mediated by growth factors involving extracellular matrix remodeling, endothelial cell migration and proliferation, capillary differentiation and anastomosis. However, the influence of angiogenesis in the development, progression, and healing of periodontal lesions is currently under investigation. This immunohistochemical study evaluates the expression of vascular endothelial growth factor (VEGF), microvessel density (MVD), nitric oxide synthase (NOS) 1 and 3, and Ki-67 in gingival tissues of patients with aggressive and chronic periodontitis. METHODS Twenty-seven human gingival biopsies were taken from patients with chronic periodontitis (n = 14 patients), generalized aggressive periodontitis (n = 6 patients), and healthy periodontia (n = 7 patients). The specimens were immunohistochemically stained for VEGF, MVD, NOS 1 and 3, and Ki-67. RESULTS The levels of VEGF, MVD, NOS 1 and 3, and Ki-67 were found to be significantly different among groups (P >0.001). Patients with aggressive periodontitis had higher levels of these markers compared to those in patients with chronic periodontitis and healthy patients. CONCLUSIONS The analysis demonstrates a higher expression of all immunologic markers particularly in subjects with aggressive periodontitis. In summary, the data from this pilot investigation suggests that VEGF is an important factor in the pathogenesis of the aggressive and chronic forms of periodontitis.
Collapse
Affiliation(s)
- Luciano Artese
- Dental School, University of Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chaves Neto AH, Queiroz KC, Milani R, Paredes-Gamero EJ, Justo GZ, Peppelenbosch MP, Ferreira CV. Profiling the changes in signaling pathways in ascorbic acid/β-glycerophosphate-induced osteoblastic differentiation. J Cell Biochem 2010; 112:71-7. [DOI: 10.1002/jcb.22763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Kang EJ, Byun JH, Choi YJ, Maeng GH, Lee SL, Kang DH, Lee JS, Rho GJ, Park BW. In vitro and in vivo osteogenesis of porcine skin-derived mesenchymal stem cell-like cells with a demineralized bone and fibrin glue scaffold. Tissue Eng Part A 2010; 16:815-27. [PMID: 19778183 DOI: 10.1089/ten.tea.2009.0439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In vitro and in vivo osteogenesis of skin-derived mesenchymal stem cell-like cells (SDMSCs) with a demineralized bone (DMB) and fibrin glue scaffold were compared. SDMSCs isolated from the ears of adult miniature pigs were evaluated for the expression of transcriptional factors (Oct-4, Sox-2, and Nanog) and MSC marker proteins (CD29, CD44, CD90, and vimentin). The isolated SDMSCs were cocultured in vitro with a mixed DMB and fibrin glue scaffold in a nonosteogenic medium for 1, 2, and 4 weeks. Osteonectin, osteocalcin, and Runx2 were expressed during the culture period and reached maximum at 2 weeks after in vitro coculture. von Kossa-positive bone minerals were also noted in the cocultured medium at 4 weeks. Autogenous porcine SDMSCs (1 x 10(7)) labeled with a tracking dye, PKH26, were grafted into the maxillary sinus with a DMB and fibrin glue scaffold. In the contralateral side, only a scaffold was grafted without SDMSCs (control). In vivo osteogenesis was evaluated from two animals euthanized at 2 and 4 weeks after grafting. In vivo PKH26 staining was detected in all the specimens at both time points. Trabecular bone formation and osteocalcin expression were more pronounced around the grafted materials in the SDMSC-grafted group compared with the control group. New bone generation was initiated from the periphery to the center of the grafted material. The number of proliferating cells increased over time and reached a peak at 4 weeks in both in vivo and in vitro specimens. These findings suggest that autogenous SDMSC grafting with a DMB and fibrin glue scaffold can serve as a predictable alternative to bone grafting in the maxillary sinus floor.
Collapse
Affiliation(s)
- Eun-Ju Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Byun JH, Kang EJ, Maeng GH, Rho GJ, Kang DH, Lee JS, Park BW. Maxillary sinus floor elevation using autogenous skin-derived mesenchymal stem cells in miniature pigs. J Korean Assoc Oral Maxillofac Surg 2010. [DOI: 10.5125/jkaoms.2010.36.2.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- June-Ho Byun
- Department Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| | - Eun-Ju Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Geun-Ho Maeng
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Dong-Ho Kang
- Department of Neurosurgery, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jong-Sil Lee
- Department of Pathology, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Bong-Wook Park
- Department Oral and Maxillofacial Surgery, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
21
|
Zheng LW, Ma L, Cheung LK. Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis. J Craniomaxillofac Surg 2009; 37:405-11. [DOI: 10.1016/j.jcms.2009.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/22/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022] Open
|
22
|
Alonci A, Allegra A, Bellomo G, Quartarone E, Oteri G, Nastro E, Cicciù D, De Ponte FS, Musolino C. Patients with bisphosphonate-associated osteonecrosis of the jaw have unmodified levels of soluble vascular endothelial growth factor receptor 1. Leuk Lymphoma 2009; 48:1852-4. [PMID: 17786724 DOI: 10.1080/10428190701509806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Djasim UM, Mathot BJ, Wolvius EB, van Neck JW, van der Wal KGH. Histomorphometric comparison between continuous and discontinuous distraction osteogenesis. J Craniomaxillofac Surg 2009; 37:398-404. [PMID: 19457679 DOI: 10.1016/j.jcms.2009.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Experimental research on optimising the distraction protocol has been performed extensively in the past. However, relatively little research has been done on the rhythm of distraction. Findings in the orthopaedic literature showed that the outcome of distraction osteogenesis (DO) is positively influenced by increasing the rhythm of distraction. The aim of this study is to quantitatively compare continuous with discontinuous rhythms of distraction in rabbits. MATERIALS AND METHODS Tissue blocks of regenerated bone were harvested from thirty-eight young adult female New-Zealand White rabbits. After a latency period of three days, rabbits were subjected for eleven days to either single daily activation of the distractor at a rate of 0.9 mm/d, or triple daily activation at a rate of 0.9 mm/d, or continuous activation at a rate of 0.9 mm/d. After three weeks of consolidation, bone regenerates were analysed using histomorphometry. RESULTS The continuous DO group showed significantly (p<.01) more regenerate bone volume in the central part of the regenerate than the discontinuous DO groups. Higher osteoblastic activity was seen, as well as more blood vessels (p<.05). Bone volume and the number of blood vessels correlated significantly in the central part of the regenerate (p<.05). Also, the early mineral apposition rate (MAR) was higher than the late MAR (p<.05). CONCLUSIONS Continuous DO significantly accelerates bone formation when compared with discontinuous DO.
Collapse
Affiliation(s)
- U M Djasim
- Department of Oral and Maxillofacial Surgery, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Boëck-Neto RJ, Artese L, Piattelli A, Shibli JA, Perrotti V, Piccirilli M, Marcantonio E. VEGF and MVD expression in sinus augmentation with autologous bone and several graft materials. Oral Dis 2008; 15:148-54. [PMID: 19036054 DOI: 10.1111/j.1601-0825.2008.01502.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to assess vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) in maxillary sinus augmentation with autogenous bone and different graft materials for evaluating their angiogenic potential. METHODS Biopsies were harvested 10 months after sinus augmentation with a combination of autogenous bone and different graft materials: hydroxyapatite (HA, n = 6 patients), demineralized freeze-dried bone allograft (DFDBA, n = 5 patients), calcium phosphate (CP, n = 5 patients), Ricinus communis polymer (n = 5 patients) and control group--autogenous bone only (n = 13 patients). RESULTS In all the samples, higher intensities of VEGF expression were prevalent in the newly formed bone, while lower intensities of VEGF expression were predominant in the areas of mature bone. The highest intensity of VEGF expression in the newly formed bone was expressed by HA (P < 0.001) and CP in relation to control (P < 0.01) groups. The lowest intensities of VEGF expression in newly formed bone were shown by DFDBA and polymer groups (P < 0.05). When comparing the different grafting materials, higher MVD were found in the newly formed bone around control, HA and CP (P < 0.001). CONCLUSION Various graft materials could be successfully used for sinus floor augmentation; however, the interactions between bone formation and angiogenesis remain to be fully characterized.
Collapse
Affiliation(s)
- R J Boëck-Neto
- Department of Periodontology, Dental School at Araraquara, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Grundtman C, Tham E, Ulfgren AK, Lundberg IE. Vascular endothelial growth factor is highly expressed in muscle tissue of patients with polymyositis and patients with dermatomyositis. ACTA ACUST UNITED AC 2008; 58:3224-38. [DOI: 10.1002/art.23884] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Abstract
INTRODUCTION Distraction osteogenesis (DO) is characterized by the induction of highly vascularized new bone formation through an intramembranous process largely devoid of the formation of cartilage. MATERIALS AND METHODS To test the hypothesis that DO is strictly dependent on vascualrization, we inhibited vascular endothelial growth factor (VEGF) activity by antibody blockade of both receptors VEGFR1 (Flt-1) and VEGFR2 (Flk-1) or only VEGFR2 (Flk-1) in a previously developed murine tibia DO model. During normal DO, VEGFR1 (Flt-1), VEGFR2 (Flk-1), VEGFR3 (Flt4) and all four VEGF ligand (A, B, C, and D) mRNAs are induced. RESULTS The expression of mRNA for the receptors generally paralleled those of the ligands during the period of active distraction. Bone formation, as assessed by muCT, showed a significant decrease with the double antibody treatment and a smaller decrease with single antibody treatment. Vessel volume, number, and connectivity showed progressive and significant inhibition in all of these of parameters between the single and double antibody blockade. Molecular analysis showed significant inhibition in skeletal cell development with the single and double antibody blockade of both VEGFR1 and 2. Interestingly, the single antibody treatment led to selective early development of chondrogenesis, whereas the double antibody treatment led to a failure of both osteogenesis and chondrogenesis. CONCLUSIONS Both VEGFR1 and VEGFR2 are functionally essential in blood vessel and bone formation during DO and are needed to promote osteogenic over chondrogenic lineage progression.
Collapse
|
27
|
Byun JH, Lee JH, Choi YJ, Kim JR, Park BW. Co-expression of nerve growth factor and p75NGFR in the inferior alveolar nerve after mandibular distraction osteogenesis. Int J Oral Maxillofac Surg 2008; 37:467-72. [DOI: 10.1016/j.ijom.2008.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 11/15/2007] [Accepted: 01/22/2008] [Indexed: 12/11/2022]
|
28
|
Bryan BA, Walshe TE, Mitchell DC, Havumaki JS, Saint-Geniez M, Maharaj AS, Maldonado AE, D'Amore PA. Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Mol Biol Cell 2007; 19:994-1006. [PMID: 18094043 DOI: 10.1091/mbc.e07-09-0856] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis is largely controlled by hypoxia-driven transcriptional up-regulation and secretion of vascular endothelial growth factor (VEGF) and its binding to the endothelial cell tyrosine receptor kinases, VEGFR1 and VEGFR2. Recent expression analysis suggests that VEGF is expressed in a cell-specific manner in normoxic adult tissue; however, the transcriptional regulation and role of VEGF in these tissues remains fundamentally unknown. In this report we demonstrate that VEGF is coordinately up-regulated during terminal skeletal muscle differentiation. We reveal that this regulation is mediated in part by MyoD homo- and hetero-dimeric transcriptional mechanisms. Serial deletions of the VEGF promoter elucidated a region containing three tandem CANNTG consensus MyoD sites serving as essential sites of direct interaction for MyoD-mediated up-regulation of VEGF transcription. VEGF-null embryonic stem (ES) cells exhibited reduced myogenic differentiation compared with wild-type ES cells, suggesting that VEGF may serve a role in skeletal muscle differentiation. We demonstrate that VEGFR1 and VEGFR2 are expressed at low levels in myogenic precursor cells and are robustly activated upon VEGF stimulation and that their expression is coordinately regulated during skeletal muscle differentiation. VEGF stimulation of differentiating C2C12 cells promoted myotube hypertrophy and increased myogenic differentiation, whereas addition of sFlt1, a VEGF inhibitor, resulted in myotube hypotrophy and inhibited myogenic differentiation. We further provide evidence indicating VEGF-mediated myogenic marker expression, mitogenic activity, migration, and prosurvival functions may contribute to increased myogenesis. These data suggest a novel mechanism whereby VEGF is coordinately regulated as part of the myogenic differentiation program and serves an autocrine function regulating skeletal myogenesis.
Collapse
Affiliation(s)
- Brad A Bryan
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Increased lengthening rate decreases expression of fibroblast growth factor 2, platelet-derived growth factor, vascular endothelial growth factor, and CD31 in a rat model of distraction osteogenesis. J Pediatr Orthop 2007; 27:961-8. [PMID: 18209624 DOI: 10.1097/bpo.0b013e3181558c37] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The rate of lengthening has a profound impact on bone regeneration during distraction osteogenesis. Rapid distraction can delay or completely inhibit union, whereas distracting too slowly may lead to premature consolidation. However, the mechanisms responsible for retardation of healing due to rapid distraction have not been elucidated. This study explored whether rapid distraction alters the expression of certain angiogenic growth factors, in particular, fibroblast growth factor 2 (FGF-2), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-AA), and subsequent new vessel formation as evidenced by platelet endothelial cellular adhesion marker expression (CD31), an indicator of vascular budding. METHODS Unilateral femoral lengthenings were performed in 60 male Sprague-Dawley rats using a protocol that involved a 7-day latency period and distraction rates of either 0.5 (slow distraction) or 1.5 mm/d (fast distraction) for a total of 7.0 mm of lengthening. Animals were euthanized on postoperative days 8, 10, 12, 14, and 21 (n = 6 per time point and distraction rate). Expression of FGF-2, VEGF, PDGF-AA, and CD31 was characterized immunohistochemically. RESULTS Cellular staining of FGF-2, PDGF-AA, VEGF, and CD31 was reduced on days 8 to 12 in the regenerate of the fast-distraction animals compared with the slow-distraction animals. Staining of all growth factors was weak on days 14 and 21 at the slow rate and absent at the fast rate. Regardless of time point, a similar spatial localization of growth factor expression was observed at the 2 rates of distraction. CONCLUSIONS The reduced expression of angiogenic growth factors and CD31, a marker of new vessel formation, indicates that the angiogenic cascade and new vessel formation required for effective bone healing is disrupted at a distraction rate of 1.5 mm/d in a rat model of limb lengthening. CLINICAL RELEVANCE Delayed bone healing with rapid distraction may be due in part to decreased cellular signaling required for angiogenesis. It may be possible to improve bone healing at increased distraction rates with the appropriately timed administration of growth factors.
Collapse
|
30
|
Park BW. Poster 136: Co-Expression of Nerve Growth Factor and p75NGFR in the Inferior Alveolar Nerve After Mandibular Distraction Osteogenesis. J Oral Maxillofac Surg 2007. [DOI: 10.1016/j.joms.2007.06.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|