1
|
Valente MJ, Streett H, Turner R, O'Brien C, Fournet V, Jansen A, Dubey JP, Rosenthal BM, Jenkins M, Khan A. Morphological and autofluorescence assessment of oocysts differentiate live from dead coccidian parasites. Int J Parasitol 2025:S0020-7519(25)00065-7. [PMID: 40209889 DOI: 10.1016/j.ijpara.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
To assess and mitigate foodborne risk, regulatory agencies and produce growers require the means not merely to detect but moreover determine the viability of foodborne eukaryotic pathogens such as Cyclospora cayetanensis. Viability assessment would also aid those employing live attenuated vaccines against coccidiosis, a major problem in poultry production. Therefore, we sought to identify morphological changes differentiating viable from non-viable coccidian oocysts, employing Eimeria acervulina as a tractable model, enabling empirical validation by means of in vivo challenge infections in the natural chicken host. High resolution microscopic examinations identified granular structures that autofluoresce under UV exposure in dead oocysts, greatly intensifying overall autofluorescence in dead oocysts. We harnessed this intensification as a basis to sort live from dead oocysts using a Fluorescence-Activated Cell Sorting (FACS) cell sorter, validating their distinction by documenting infectivity in chickens using the former, and minimal shedding with the latter. Our rapid, sensitive, and robust assay holds promise for application to other species of coccidia, including those important to livestock and public health.
Collapse
Affiliation(s)
- Matthew J Valente
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hannah Streett
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Randi Turner
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Celia O'Brien
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Valsin Fournet
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Andrew Jansen
- Systematic Entomology Laboratory, Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Jitender P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Benjamin M Rosenthal
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Mark Jenkins
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Asis Khan
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
2
|
Yu Y, Zhang S, Duan C, Crouch C, Suo J, Tang X, Liu X, Liu J, Bruton B, Tarpey I, Suo X. Developing efficient strategies for localizing the enhanced yellow fluorescent protein subcellularly in transgenic Eimeria parasites. Sci Rep 2024; 14:4851. [PMID: 38418588 PMCID: PMC10902363 DOI: 10.1038/s41598-024-55569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/25/2024] [Indexed: 03/01/2024] Open
Abstract
Eimeria species serve as promising eukaryotic vaccine vectors. And that the location of heterologous antigens in the subcellular components of genetically modified Eimeria may determine the magnitude and type of immune responses. Therefore, our study aimed to target a heterologous fluorescent protein to the cell surface or microneme, two locations where are more effective in inducing protective immunity, of Eimeria tenella and E. acervulina sporozoites. We used an enhanced yellow fluorescent protein (EYFP) as a tagging biomarker, fusing variously with some localization or whole sequences of compartmental proteins for targeting. After acquiring stable transgenic Eimeria populations, we observed EYFP expressing in expected locations with certain strategies. That is, EYFP successfully localized to the surface when it was fused between signal peptides and mature products of surface antigen 1 (SAG1). Furthermore, EYFP was efficiently targeted to the apical end, an optimal location for secretory organelle known as the microneme, when fused to the C terminus of microneme protein 2. Unexpectedly, EYFP exhibited dominantly in the apical end with only weak expression on the surface of the transgenic sporozoites when the parasites were transfected with plasmid with EYFP fused between signal peptides and mature products of E. tenella SAG 13. These strategies worked in both E. tenella and E. acervulina, laying a solid foundation for studying E. tenella and E. acervulina-based live vaccines that can be further tailored to the inclusion of cargo immunogens from other pathogens.
Collapse
Affiliation(s)
- Ying Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chunhui Duan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Colin Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Beth Bruton
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Ian Tarpey
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Burrell A, Marugan-Hernandez V, Graefin Von Der Recke K, Aguiar-Martins K, Gabriel HB, Tomley FM, Vaughan S. Refractile bodies of Eimeria tenella are proteinaceous membrane-less organelles that undergo dynamic changes during infection. Front Cell Infect Microbiol 2023; 13:1082622. [PMID: 37033474 PMCID: PMC10081493 DOI: 10.3389/fcimb.2023.1082622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionRefractile bodies (RB) are large membrane-less organelles (MLO) of unknown function found as a prominent mismatched pair within the sporozoite stages of all species of Eimeria, parasitic coccidian protozoa.MethodsHigh resolution imaging methods including time-lapse live confocal microscopy and serial block face-scanning electron microscopy (SBF-SEM) were used to investigate the morphology of RB and other intracellular organelles before and after sporozoite invasion of host cells.ResultsLive cell imaging of MDBK cells infected with E. tenella sporozoites confirmed previous reports that RB reduce from two to one post-infection and showed that reduction in RB number occurs via merger of the anterior RB with the posterior RB, a process that lasts 20-40 seconds and takes place between 2- and 5-hours post-infection. Ultrastructural studies using SBF-SEM on whole individual sporozoites, both pre- and post-host cell invasion, confirmed the live cell imaging observations and showed also that changes to the overall sporozoite cell shape accompanied RB merger. Furthermore, the single RB post-merger was found to be larger in volume than the two RB pre-merger. Actin inhibitors were used to investigate a potential role for actin in RB merger, Cytochalasin D significantly inhibited both RB merger and the accompanying changes in sporozoite cell shape.DiscussionMLOs in eukaryotic organisms are characterised by their lack of a membrane and ability to undergo liquid-liquid phase separation (LLPS) and fusion, usually in an actin-mediated fashion. Based on the changes in sporozoite cell shape observed at the time of RB merger together with a potential role for actin in this process, we propose that RB are classed as an MLO and recognised as one of the largest MLOs so far characterised.
Collapse
Affiliation(s)
- Alana Burrell
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Virginia Marugan-Hernandez
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
- *Correspondence: Virginia Marugan-Hernandez, ; Sue Vaughan,
| | - Karolin Graefin Von Der Recke
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Kelsilandia Aguiar-Martins
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Heloisa Berti Gabriel
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Fiona M. Tomley
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- *Correspondence: Virginia Marugan-Hernandez, ; Sue Vaughan,
| |
Collapse
|
4
|
Olajide JS, Xiong L, Yang S, Qu Z, Xu X, Yang B, Wang J, Liu B, Ma X, Cai J. Eimeria falciformis secretes extracellular vesicles to modulate proinflammatory response during interaction with mouse intestinal epithelial cells. Parasit Vectors 2022; 15:245. [PMID: 35804396 PMCID: PMC9270845 DOI: 10.1186/s13071-022-05364-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protozoan parasite secretions can be triggered by various modified media and diverse physicochemical stressors. Equally, host-parasite interactions are known to co-opt the exchange and secretion of soluble biochemical components. Analysis of Eimeria falciformis sporozoite secretions in response to interaction with mouse intestinal epithelial cells (MIECs) may reveal parasite secretory motifs, protein composition and inflammatory activities of E. falciformis extracellular vesicles (EVs). METHODS Eimeria falciformis sporozoites were allowed to interact with inactivated MIECs. Parasite secretions were separated into EV and vesicle-free (VF) fractions by discontinuous centrifugation and ultracentrifugation. Secreted EVs were purified in an iodixanol density gradient medium and the protein composition of both EV and VF fractions were analyzed by liquid chromatoraphy-tandem mass spectroscopy. The inflammatory activities of E. falciformis sporozoite EV on MIECs were then investigated. RESULTS During the interaction of E. falciformis sporozoites with inactivated MIECs, the parasite secreted VF and vesicle-bound molecules. Eimeria falciformis vesicles are typical pathogenic protozoan EVs with a mean diameter of 264 ± 2 nm, and enclosed heat shock protein (Hsp) 70 as classical EV marker. Refractile body-associated aspartyl proteinase (or eimepsin), GAP45 and aminopeptidase were the main components of E. falciformis sporozoite EVs, while VF proteins include Hsp90, actin, Vps54 and kinases, among others. Proteomic data revealed that E. falciformis EV and VF proteins are aggregates of bioactive, antigenic and immunogenic molecules which act in concert for E. falciformis sporozoite motility, pathogenesis and survival. Moreover, in MIECs, E. falciformis EVs induced upregulation of gene expression and secretion of IL-1β, IL-6, IL-17, IL-18, MCP1 as well as pyroptosis-dependent caspase 11 and NLRP6 inflammasomes with the concomitant secretion of lactate dehydrogenase. CONCLUSIONS Eimeria falciformis sporozoite interaction with MIECs triggered the secretion of immunogenic and antigenic proteins. In addition, E. falciformis sporozoite EVs constitute parasite-associated molecular pattern that induced inflammatory response and cell death. This study offers additional insight in the secretion and protein composition of E. falciformis secretomes as well as the proinflammatory functions of E. falciformis sporozoite EVs.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Ling Xiong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xiao Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
| |
Collapse
|
5
|
Marugan-Hernandez V, Sanchez-Arsuaga G, Vaughan S, Burrell A, Tomley FM. Do All Coccidia Follow the Same Trafficking Rules? Life (Basel) 2021; 11:life11090909. [PMID: 34575057 PMCID: PMC8465013 DOI: 10.3390/life11090909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023] Open
Abstract
The Coccidia are a subclass of the Apicomplexa and include several genera of protozoan parasites that cause important diseases in humans and animals, with Toxoplasma gondii becoming the ‘model organism’ for research into the coccidian molecular and cellular processes. The amenability to the cultivation of T. gondii tachyzoites and the wide availability of molecular tools for this parasite have revealed many mechanisms related to their cellular trafficking and roles of parasite secretory organelles, which are critical in parasite-host interaction. Nevertheless, the extrapolation of the T. gondii mechanisms described in tachyzoites to other coccidian parasites should be done carefully. In this review, we considered published data from Eimeria parasites, a coccidian genus comprising thousands of species whose infections have important consequences in livestock and poultry. These studies suggest that the Coccidia possess both shared and diversified mechanisms of protein trafficking and secretion potentially linked to their lifecycles. Whereas trafficking and secretion appear to be well conversed prior to and during host-cell invasion, important differences emerge once endogenous development commences. Therefore, further studies to validate the mechanisms described in T. gondii tachyzoites should be performed across a broader range of coccidians (including T. gondii sporozoites). In addition, further genus-specific research regarding important disease-causing Coccidia is needed to unveil the individual molecular mechanisms of pathogenesis related to their specific lifecycles and hosts.
Collapse
Affiliation(s)
- Virginia Marugan-Hernandez
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
- Correspondence: ; Tel.: +44-(0)-17-0766-9445
| | - Gonzalo Sanchez-Arsuaga
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK;
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK;
| | - Fiona M. Tomley
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
| |
Collapse
|
6
|
Ribeiro E Silva A, Sausset A, Bussière FI, Laurent F, Lacroix-Lamandé S, Silvestre A. Genome-Wide Expression Patterns of Rhoptry Kinases during the Eimeria tenella Life-Cycle. Microorganisms 2021; 9:microorganisms9081621. [PMID: 34442701 PMCID: PMC8399136 DOI: 10.3390/microorganisms9081621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.
Collapse
|
7
|
Marugan-Hernandez V, Jeremiah G, Aguiar-Martins K, Burrell A, Vaughan S, Xia D, Randle N, Tomley F. The Growth of Eimeria tenella: Characterization and Application of Quantitative Methods to Assess Sporozoite Invasion and Endogenous Development in Cell Culture. Front Cell Infect Microbiol 2020; 10:579833. [PMID: 33154954 PMCID: PMC7590826 DOI: 10.3389/fcimb.2020.579833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
In vitro development of the complete life cycle of Eimeria species has been achieved in primary cultures of avian epithelial cells with low efficiency. The use of immortalized cell lines simplifies procedures but only allows partial development through one round of parasite invasion and intracellular replication. We have assessed the suitability of Madin-Darby Bovine Kidney (MDBK) cells to support qualitative and quantitative studies on sporozoite invasion and intracellular development of Eimeria tenella. Analysis of parasite ultrastructure by transmission electron microscopy and serial block face-scanning electron microscopy proved the suitability of the system to generate good quality schizonts and first-generation merozoites. Parasite protein expression profiles elucidated by mass spectrometry corroborated previous findings occurring during the development of the parasite such as the presence of alternative types of surface antigen at different stages and increased abundance of proteins from secretory organelles during invasion and endogenous development. Quantitative PCR (qPCR) allowed the tracking of development by detecting DNA division, whereas reverse transcription qPCR of sporozoite- and merozoite-specific genes could detect early changes before cell division and after merozoite formation, respectively. These results correlated with the analysis of development using ImageJ semi-automated image analysis of fluorescent parasites, demonstrating the suitability and reproducibility of the MDBK culture system. This systems also allowed the evaluation of the effects on invasion and development when sporozoites were pre-incubated with anticoccidial drugs, showing similar effects to those reported before. We have described through this study a series of methods and assays for the further application of this in vitro culture model to more complex studies of Eimeria including basic research on parasite cell biology and host-parasite interactions and for screening anticoccidial drugs.
Collapse
Affiliation(s)
| | - Georgia Jeremiah
- The Royal Veterinary College, University of London, London, United Kingdom
| | | | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Dong Xia
- The Royal Veterinary College, University of London, London, United Kingdom
| | - Nadine Randle
- Department of Infection Biology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Fiona Tomley
- The Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
8
|
Abstract
Apicomplexans, including species of Eimeria, pose a real threat to the health and wellbeing of animals and humans. Eimeria parasites do not infect humans but cause an important economic impact on livestock, in particular on the poultry industry. Despite its high prevalence and financial costs, little is known about the cell biology of these 'cosmopolitan' parasites found all over the world. In this review, we discuss different aspects of the life cycle and stages of Eimeria species, focusing on cellular structures and organelles typical of the coccidian family as well as genus-specific features, complementing some 'unknowns' with what is described in the closely related coccidian Toxoplasma gondii.
Collapse
|
9
|
Gu X, Liu H, Li C, Fang S, Cui P, Liao Q, Zhang S, Wang S, Duan C, Yu F, Suo X, Liu X. Selection and characterization of a precocious line of Eimeria media. Parasitol Res 2019; 118:3033-3041. [PMID: 31407118 DOI: 10.1007/s00436-019-06422-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/02/2019] [Indexed: 11/25/2022]
Abstract
Coccidiosis, caused by the infection of Eimeria parasites, is one of the most common diseases in domestic rabbits. Live anticoccidial vaccine formulated with attenuated precocious lines of pathogenic eimerian parasites is expected to be valuable for the control of rabbit coccidiosis as a similar strategy to produce anticoccidial vaccines against chicken coccidiosis has being used for several decades. Eimeria media, moderate pathogenic, is widespread in China. Therefore, attenuated anticoccidial vaccines against rabbit coccidiosis should contain vaccine strain(s) of E. media. In this study, a precocious line of E. media (Empre) was selected by collecting and propagating the early excreted oocysts with 16 successive generations. The prepatent period of Empre reduced from 108 h of its parental strain (Emwt) to 70 h. The fecundity of Empre was about 1/10 to 1/3 lower than that of Emwt. Each sporocyst of Empre sporulated oocyst contained only one large refractile body instead of two smaller ones seen in the parental strain. When vaccinated with 1 × 103 or 1 × 104 precocious line oocysts, the rabbits were completely protected against homologous challenge with the parental strain 14 days post challenge by terms of body weight gain and oocyst output counting, indicating the efficacy of Empre. Meanwhile, all immunized rabbits showed no clinical sign post immunization, indicating the safety of Empre. For co-immunization, 1 × 103Empre oocysts and 5 × 102 oocysts of a precocious line of E. intestinalis (EIP8) were inoculated to each rabbit in a trial. No diarrhea or mortality was found after vaccination, and the weight gains of the vaccinated group were similar to that of unvaccinated-unchallenged control (UUC) group, while the weight gains of the vaccinated group were similar to that of unvaccinated-unchallenged control (UUC) group (P > 0.05), but significantly higher than that of UCC group (P < 0.01) after challenge, indicating it is safe and effective when using co-immunization. These results together show that Empre, as a precocious line, is a good candidate of precocious line of E. media for anticoccidial vaccine development.
Collapse
Affiliation(s)
- Xiaolong Gu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075000, China
| | - Hongbin Liu
- Department of Pharmacology, Hebei North University, Zhangjiakou, 075000, China
| | - Chao Li
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sufang Fang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075000, China
| | - Ping Cui
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075000, China
| | - Qin Liao
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sixin Zhang
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Si Wang
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chunhui Duan
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Fang Yu
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Liu L, Huang X, Liu J, Li W, Ji Y, Tian D, Tian L, Yang X, Xu L, Yan R, Li X, Song X. Identification of common immunodominant antigens of Eimeria tenella, Eimeria acervulina and Eimeria maxima by immunoproteomic analysis. Oncotarget 2018; 8:34935-34945. [PMID: 28432276 PMCID: PMC5471023 DOI: 10.18632/oncotarget.16824] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022] Open
Abstract
Clinical chicken coccidiosis is mostly caused by simultaneous infection of several Eimeria species, and host immunity against Eimeria is species-specific. It is urgent to identify common immunodominant antigen of Eimeria for developing multivalent anticoccidial vaccines. In this study, sporozoite proteins of Eimeria tenella, Eimeria acervulina and Eimeria maxima were analyzed by two-dimensional electrophoresis (2DE). Western bot analysis was performed on the yielded 2DE gel using antisera of E. tenella E. acervulina and E. maxima respectively. Next, the detected immunodominant spots were identified by comparing the data from MALDI-TOF-MS/MS with available databases. Finally, Eimeria common antigens were identified by comparing amino acid sequence between the three Eimeria species. The results showed that analysis by 2DE of sporozoite proteins detected 629, 626 and 632 protein spots from E. tenella, E. acervulina and E. maxima respectively. Western bot analysis revealed 50 (E. tenella), 64 (E. acervulina) and 57 (E. maxima) immunodominant spots from the sporozoite 2DE gels of the three Eimeria species. The immunodominant spots were identified as 33, 27 and 25 immunodominant antigens of E. tenella, E. acervulina and E. maxima respectively. Fifty-four immunodominant proteins were identified as 18 ortholog proteins among the three Eimeria species. Finally, 5 of the 18 ortholog proteins were identified as common immunodominant antigens including elongation factor 2 (EF-2), 14-3-3 protein, ubiquitin-conjugating enzyme domain-containing protein (UCE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In conclusion, our results not only provide Eimeria sporozoite immunodominant antigen map and additional immunodominant antigens, but also common immunodominant antigens for developing multivalent anticoccidial vaccines.
Collapse
Affiliation(s)
- Lianrui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinmei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, China
| | - Jianhua Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihong Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinchao Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Yang G, Yao J, Yang W, Jiang Y, Du J, Huang H, Gu W, Hu J, Ye L, Shi C, Shan B, Wang C. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide. Vet Parasitol 2017; 236:7-13. [DOI: 10.1016/j.vetpar.2017.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 01/06/2023]
|
12
|
Matsubayashi M, Kawahara F, Hatta T, Yamagishi J, Miyoshi T, Anisuzzaman, Sasai K, Isobe T, Kita K, Tsuji N. Transcriptional profiles of virulent and precocious strains of Eimeria tenella at sporozoite stage; novel biological insight into attenuated asexual development. INFECTION GENETICS AND EVOLUTION 2016; 40:54-62. [DOI: 10.1016/j.meegid.2016.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
|
13
|
Hamid PH, Hirzmann J, Kerner K, Gimpl G, Lochnit G, Hermosilla CR, Taubert A. Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication. Vet Res 2015; 46:100. [PMID: 26395984 PMCID: PMC4579583 DOI: 10.1186/s13567-015-0230-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/04/2015] [Indexed: 11/10/2022] Open
Abstract
During first merogony Eimeria bovis forms large macromeronts in endothelial host cells containing >120 000 merozoites I. During multiplication, large amounts of cholesterol are indispensable for the enormous offspring membrane production. Cholesterol auxotrophy was proven for other apicomplexan parasites. Consequently they scavenge cholesterol from their host cell apparently in a parasite-specific manner. We here analyzed the influence of E. bovis infection on endothelial host cell cholesterol metabolism and found considerable differences to other coccidian parasites. Overall, free cholesterol significantly accumulated in E. bovis infected host cells. Furthermore, a striking increase of lipid droplet formation was observed within immature macromeronts. Artificial host cell lipid droplet enrichment significantly improved E. bovis merozoite I production confirming the key role of lipid droplet contents for optimal parasite proliferation. The transcription of several genes being involved in both, cholesterol de novo biosynthesis and low density lipoprotein-(LDL) mediated uptake, was significantly up-regulated at a time in infected cells suggesting a simultaneous exploitation of these two cholesterol acquisition pathways. E. bovis scavenges LDL-derived cholesterol apparently through significantly increased levels of surface LDL receptor abundance and LDL binding to infected cells. Consequently, LDL supplementation significantly improved parasite replication. The up-regulation of the oxidized LDL receptor 1 furthermore identified this scavenger receptor as a key molecule in parasite-triggered LDL uptake. Moreover, cellular cholesterol processing was altered in infected cells as indicated by up-regulation of cholesterol-25-hydroxylase and sterol O-acyltransferase. Overall, these results show that E. bovis considerably exploits the host cell cholesterol metabolism to guarantee its massive intracellular growth and replication.
Collapse
Affiliation(s)
- Penny H Hamid
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Joerg Hirzmann
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus LiebigUniversity Giessen, Frankfurter Str. 85-89, D-35392, Giessen, Germany.
| | - Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Department of Biochemistry, Johann-Joachim-Becherweg 30, D-55099, Mainz, Germany.
| | - Guenter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Friedrichstr. 24, D-35392, Giessen, Germany.
| | - Carlos R Hermosilla
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| |
Collapse
|
14
|
Song X, Xu L, Yan R, Huang X, Li X. Construction of Eimeria tenella multi-epitope DNA vaccines and their protective efficacies against experimental infection. Vet Immunol Immunopathol 2015; 166:79-87. [DOI: 10.1016/j.vetimm.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/13/2015] [Accepted: 05/26/2015] [Indexed: 01/12/2023]
|
15
|
Dong H, Wang Y, Zhao Q, Han H, Zhu S, Li L, Wu Y, Huang B. Molecular cloning and characterization of lactate dehydrogenase gene from Eimeria tenella. Parasitol Res 2014; 113:2915-23. [DOI: 10.1007/s00436-014-3953-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/19/2014] [Indexed: 11/25/2022]
|
16
|
Abstract
This article describes some of the milestones in research concerned with protozoan parasites of the genus Eimeria that infect birds and cause the disease coccidiosis. The time period covered is from 1891, when oocysts were first found in the ceca of diseased chickens, to the present. Progress in our understanding has lagged behind that of other protozoan parasites such as Toxoplasma and Plasmodium despite the enormous importance of Eimeria to animal livestock production. Nevertheless, applied research by universities, government agencies, and private industry has resulted in the successful development of methods of control, research that continues today. The topics covered and the references provided are selective and include life cycles and biology, pathology, ultrastructure, biochemistry, immunity, genetics, host cell invasion, species identification, taxonomy, chemotherapy, vaccination, and literature concerned with avian coccidiosis. This review is primarily concerned with the avian species of Eimeria that infect poultry, but some important advances, principally in immunology, have been made using species that infect rodents and rabbits. These are included where appropriate.
Collapse
Affiliation(s)
- H D Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville 72701
| |
Collapse
|
17
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shen XJ, Li T, Fu JJ, Zhang KY, Wang XY, Liu YC, Zhang HJ, Fan C, Fei CZ, Xue FQ. Proteomic analysis of the effect of diclazuril on second-generation merozoites of Eimeria tenella. Parasitol Res 2013; 113:903-9. [PMID: 24346578 DOI: 10.1007/s00436-013-3721-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
Diclazuril has long been used as an effective benzeneacetonitrile anticoccidial for the control of Eimeria tenella that causes coccidiosis. However, the molecular mechanism underlying the anticoccidial effects of diclazuril remains elusive. In this study, a proteomic analysis of the effect of diclazuril on second-generation merozoites of E. tenella was performed. Using two-dimensional gel electrophoresis and real-time quantitative polymerase chain reaction (RT-PCR), 13 target proteins were found to be significantly affected by diclazuril treatment, with 11 of these proteins being identified as annotated proteins from E. tenella or other Apicomplexa parasites. These proteins contribute to various functions, including metabolism, protein synthesis, and host cell invasion. Using RT-PCR, we identified the potential pattern of transcriptional regulation induced by diclazuril, and we suggest some promising targets for the intervention of E. tenella infection.
Collapse
Affiliation(s)
- Xiao-jiong Shen
- Key Laboratory of Animal Parasitology, Ministry of Agriculture, People's Republic of China, Shanghai Veterinary Research Institute, Chinese Academy of Agriculture Science, Minhang, Shanghai, 200241, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dong H, Wang Y, Han H, Li T, Zhao Q, Zhu S, Li L, Wu Y, Huang B. Identification and characterization of an Eimeria-conserved protein in Eimeria tenella. Parasitol Res 2013; 113:735-45. [PMID: 24271155 DOI: 10.1007/s00436-013-3703-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022]
Abstract
The precocious lines of Eimeria spp. have unique phenotypes. However, the genetic basis of the precocious phenotype is still poorly understood. The identification of Eimeria genes controlling the precocious phenotype is of immense importance in the fight against coccidiosis. In the present study, a novel gene of Eimeria maxima was cloned using rapid amplification of cDNA ends (RACE) based on the expressed sequence tag (EST). Homologous genes were also found in Eimeria tenella and Eimeria acervulina. Alignment of the amino acid sequences from E. tenella, E. maxima, and E. acervulina showed 80-86 % identity, demonstrating a conserved protein in different Eimeria spp. This gene, designated Eimeria-conserved protein (ECP), contained 235 amino acids with a predicted molecular mass of 25.4 kDa and had 100 % identity with one annotated protein from E. maxima (Emax_0517). Real-time PCR and Western blot analysis revealed that the expression of ECP at mRNA and protein level in E. tenella is developmentally regulated. Messenger RNA levels from the ECP gene were higher in sporozoites than in other developmental stages (unsporulated oocysts, sporulated oocysts, and second-generation merozoites). Expression of ECP protein was detected in unsporulated oocysts, increased in abundance in sporulated oocysts, and was most prominent in sporozoites. Thereafter, the level of the ECP protein decreased, and no ECP-specific protein was detected in second-generation merozoites. Immunostaining with anti-rECP indicated that ECP is highly concentrated in both refractile bodies (RB) of free sporozoites, but is located at the apical end of the sporozoites after invasion of DF-1 cells. The specific staining of the ECP protein becomes more intense in trophozoites and immature first-generation schizonts, but decreases in mature first-generation schizonts. Inhibition of the function of ECP using specific antibodies reduced the ability of E. tenella sporozoites to invade host cells. Compared with the parent strain, both mRNA and protein expression levels in the sporulated oocyst were downregulated in the precocious line of E. tenella. These results suggest that ECP may be involved in invasion and development of the first-generation merogony stage of E. tenella. Findings of downregulation of ECP mRNA and protein expression in the precocious line enrich the study of the precocious phenotype of Eimeria.
Collapse
Affiliation(s)
- Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518 Ziyue Road, Minhang District, Shanghai, 200241, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Katrib M, Ikin RJ, Brossier F, Robinson M, Slapetova I, Sharman PA, Walker RA, Belli SI, Tomley FM, Smith NC. Stage-specific expression of protease genes in the apicomplexan parasite, Eimeria tenella. BMC Genomics 2012; 13:685. [PMID: 23216867 PMCID: PMC3770453 DOI: 10.1186/1471-2164-13-685] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/04/2012] [Indexed: 12/28/2022] Open
Abstract
Background Proteases regulate pathogenesis in apicomplexan parasites but investigations of proteases have been largely confined to the asexual stages of Plasmodium falciparum and Toxoplasma gondii. Thus, little is known about proteases in other Apicomplexa, particularly in the sexual stages. We screened the Eimeria tenella genome database for proteases, classified these into families and determined their stage specific expression. Results Over forty protease genes were identified in the E. tenella genome. These were distributed across aspartic (three genes), cysteine (sixteen), metallo (fourteen) and serine (twelve) proteases. Expression of at least fifteen protease genes was upregulated in merozoites including homologs of genes known to be important in host cell invasion, remodelling and egress in P. falciparum and/or T. gondii. Thirteen protease genes were specifically expressed or upregulated in gametocytes; five of these were in two families of serine proteases (S1 and S8) that are over-represented in the coccidian parasites, E. tenella and T. gondii, distinctive within the Apicomplexa because of their hard-walled oocysts. Serine protease inhibitors prevented processing of EtGAM56, a protein from E. tenella gametocytes that gives rise to tyrosine-rich peptides that are incorporated into the oocyst wall. Conclusion Eimeria tenella possesses a large number of protease genes. Expression of many of these genes is upregulated in asexual stages. However, expression of almost one-third of protease genes is upregulated in, or confined to gametocytes; some of these appear to be unique to the Coccidia and may play key roles in the formation of the oocyst wall, a defining feature of this group of parasites.
Collapse
Affiliation(s)
- Marilyn Katrib
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Broadway, N.S.W. 2007, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Patra KP, Vinetz JM. New ultrastructural analysis of the invasive apparatus of the Plasmodium ookinete. Am J Trop Med Hyg 2012; 87:412-7. [PMID: 22802443 DOI: 10.4269/ajtmh.2012.11-0609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasion of the mosquito midgut by the Plasmodium ookinete determines the success of transmission of malaria parasites from humans to mosquitoes and therefore, is a potential target for molecular intervention. Here, we show higher-resolution ultrastructural details of developing and mature P. gallinaceum ookinetes than previously available. Improved fixation and processing methods yielded substantially improved transmission electron micrographs of ookinetes, particularly with regard to visualization of subcellular secretory and other organelles. These new images provide new insights into the synthesis and function of vital invasive machinery focused on the following features: apical membrane protrusions presumptively used for attachment and protein secretion, dark spherical bodies at the apical end of the mature ookinete, and the presence of a dense array of micronemes apposed to microtubules at the apical end of the ookinete involved in constitutive secretion. This work advances understanding of the molecular and cellular details of the Plasmodium ookinete and provides the basis of future, more detailed mechanistic experimentation on the biology of the Plasmodium ookinete.
Collapse
Affiliation(s)
- Kailash P Patra
- Division of Infectious Diseases, Department of Medicine, University of California at San Diego, La Jolla, CA 92093-0741, USA.
| | | |
Collapse
|
22
|
Crystalloid body, refractile body and virus-like particles in Apicomplexa: what is in there? Parasitology 2012; 139:285-93. [PMID: 22217113 DOI: 10.1017/s0031182011002034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The phylum of Apicomplexa comprises parasitic protozoa that share distinctive features such as the apical complex, the apicoplast, specialized cytoskeletal components and secretory organelles. Other unique cytoplasmic inclusions sharing similar features have been described in some representatives of Apicomplexa, although under different denominations. These are the crystalloid body, present for example in Cryptosporidium, Plasmodium and Cystoisospora; the refractile body in Eimeria and Lankesterella; and virus-like particles, also present in Eimeria and Cryptosporidium. Yet, the specific role of these cytoplasmic inclusions in the cell cycle of these protozoa is still unknown. Here, we discuss their morphology, possible inter-relatedness and speculate upon their function to bring these organelles back to the attention of the scientific community and promote new interest towards original research on these elusive structures.
Collapse
|
23
|
Lal K, Bromley E, Oakes R, Prieto JH, Sanderson SJ, Kurian D, Hunt L, Yates JR, Wastling JM, Sinden RE, Tomley FM. Proteomic comparison of four Eimeria tenella life-cycle stages: unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics 2009; 9:4566-76. [PMID: 19795439 DOI: 10.1002/pmic.200900305] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report the proteomes of four life-cycle stages of the Apicomplexan parasite Eimeria tenella. A total of 1868 proteins were identified, with 630, 699, 845 and 1532 found in early oocysts (unsporulated), late oocysts (sporulated), sporozoites and second-generation merozoites, respectively. A multidimensional protein identification technology shotgun approach identified 812 sporozoites, 1528 merozoites and all of the oocyst proteins, whereas 2-D gel proteomics identified 230 sporozoites and 98 merozoite proteins. Comparing the invasive stages, we find moving junction components RON2 in both, whereas AMA-1 and RON4 are found only in merozoites and AMA-2 and RON5 are only found in sporozoites, suggesting stage-specific moving junction proteins. During early oocyst to sporozoite development, refractile body and most "glideosome" proteins are found throughout, whereas microneme and most rhoptry proteins are only found after sporulation. Quantitative analysis indicates glycolysis and gluconeogenesis are the most abundant metabolic groups detected in all stages. The mannitol cycle "off shoot" of glycolysis was not detected in merozoites but was well represented in the other stages. However, in merozoites we find more protein associated with oxidative phosphorylation, suggesting a metabolic shift mobilising greater energy production. We find a greater abundance of protein linked to transcription, protein synthesis and cell cycle in merozoites than in sporozoites, which may be residual protein from the preceding massive replication during schizogony.
Collapse
Affiliation(s)
- Kalpana Lal
- The Division of Cell and Molecular Biology, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Immunoproteomic analysis of the second-generation merozoite proteins of Eimeria tenella. Vet Parasitol 2009; 164:173-82. [DOI: 10.1016/j.vetpar.2009.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 11/18/2022]
|
25
|
Miska KB, Fetterer RH, Rosenberg GH. Analysis of Transcripts from Intracellular Stages of Eimeria acervulina Using Expressed Sequence Tags. J Parasitol 2008; 94:462-6. [DOI: 10.1645/ge-1186.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Fetterer RH, Jenkins MC, Miska KB, Barfield RC. Characterization of the antigen SO7 during development of Eimeria tenella. J Parasitol 2008; 93:1107-13. [PMID: 18163345 DOI: 10.1645/ge-1171r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The developmental expression of the antigen SO7, which has been previously shown to protect chickens against infection by several Eimeria species, was investigated. Using RT-PCR, mRNA for SO7 was found to be restricted primarily to unsporulated oocysts (0 hr). Western blot (WB) analysis with an antibody to recombinant SO7 (rbSO7) revealed expression of the protein from 6 to 72 hr (fully sporulated) of sporulation and in sporozoites (SZ). SO7 was absent in host-derived second-stage merozoites (MZ) and was present in culture-derived first-stage MZ but at a level of only 25% of that exhibited by SZ. During invasion of Madin-Darby bovine kidney (MDBK) cells by SZ in vitro, the level of SO7 within cells, as determined by WB analysis, remained relatively constant until 48 hr of development and then decreased by about 40% at the next time point (72 hr). The SO7 secreted into the culture media during in vitro development increased to a relative maximum at 48 hr and then decreased to about 20% of maximum at 72 hr. Immunostaining with anti-rbSO7 indicates that SO7 is highly concentrated in both refractile bodies (RB) of SZ, with some limited distribution in the apical complex. Anti-rbSO7 intensively stained the intracellular parasites and the first-stage schizonts during in vitro development of E. tenella in MDBK cells. Upon release from the schizonts, the first-stage merozoites stained with 1 or 2 bright spots typically at each end. The results suggest that SO7 is closely associated with the SZ RB and is developmentally regulated but may not play a direct role in cellular invasion.
Collapse
Affiliation(s)
- R H Fetterer
- Animal Parasitic Diseases Laboratory, Henry A. Wallace Beltsville Agricultural Research Center USDA/ARS, Beltsville, Maryland 20750, USA.
| | | | | | | |
Collapse
|
27
|
Fluorescent Eimeria bovis sporozoites and meront stages in vitro: a helpful tool to study parasite–host cell interactions. Parasitol Res 2008; 102:777-86. [DOI: 10.1007/s00436-007-0849-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
|
28
|
Labbé M, Péroval M, Bourdieu C, Girard-Misguich F, Péry P. Eimeria tenella enolase and pyruvate kinase: A likely role in glycolysis and in others functions. Int J Parasitol 2006; 36:1443-52. [PMID: 17030033 DOI: 10.1016/j.ijpara.2006.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/02/2006] [Accepted: 08/04/2006] [Indexed: 11/20/2022]
Abstract
Two cDNA codings for glycolytic enzymes were cloned from a cDNA library constructed from the schizont stage of the avian parasite Eimeria tenella. Enolase and pyruvate kinase cDNA were fully sequenced and compared with sequences of enzymes from other organisms. Although these enzymes were already detected in the sporozoite stage, their expression was enhanced during the first schizogony in accordance with the anaerobic conditions of this part of the life cycle of the parasite. Under activating conditions, microscopic observations suggest that these glycolytic enzymes were relocalised inside sporozoites and moreover were in part secreted. The enzymes were also localised at the apex of the first generation of merozoites. Enolase was partly observed inside the nucleus of sporozoites and schizonts. Taken together, these results suggest that glycolytic enzymes not only have a function in glycolysis during anaerobic intracellular stages but may also participate in the invasion process and, for enolase, in the control of gene regulation.
Collapse
Affiliation(s)
- Marie Labbé
- Unité de Virologie et Immunologie Moléculaires, INRA Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | | | |
Collapse
|