1
|
Matiz-González JM, Pardo-Rodriguez D, Puerta CJ, Requena JM, Nocua PA, Cuervo C. Exploring the functionality and conservation of Alba proteins in Trypanosoma cruzi: A focus on biological diversity and RNA binding ability. Int J Biol Macromol 2024; 272:132705. [PMID: 38810850 DOI: 10.1016/j.ijbiomac.2024.132705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, as well as a trypanosomatid parasite with a complex biological cycle that requires precise mechanisms for regulating gene expression. In Trypanosomatidae, gene regulation occurs mainly at the mRNA level through the recognition of cis elements by RNA-binding proteins (RBPs). Alba family members are ubiquitous DNA/RNA-binding proteins with representatives in trypanosomatid parasites functionally related to gene expression regulation. Although T. cruzi possesses two groups of Alba proteins (Alba1/2 and Alba30/40), their functional role remains poorly understood. Thus, herein, a characterization of T. cruzi Alba (TcAlba) proteins was undertaken. Physicochemical, structural, and phylogenetic analysis of TcAlba showed features compatible with RBPs, such as hydrophilicity, RBP domains/motifs, and evolutionary conservation of the Alba-domain, mainly regarding other trypanosomatid Alba. However, in silico RNA interaction analysis of T. cruzi Alba proteins showed that TcAlba30/40 proteins, but not TcAlba1/2, would directly interact with the assayed RNA molecules, suggesting that these two groups of TcAlba proteins have different targets. Given the marked differences existing between both T. cruzi Alba groups (TcAlba1/2 and TcAlba30/40), regarding sequence divergence, RNA binding potential, and life-cycle expression patterns, we suggest that they would be involved in different biological processes.
Collapse
Affiliation(s)
- J Manuel Matiz-González
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Grupo de Fitoquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia; Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paola A Nocua
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia.
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia.
| |
Collapse
|
2
|
RNA-seq reveals that overexpression of TcUBP1 switches the gene expression pattern towards that of the infective form of Trypanosoma cruzi. J Biol Chem 2023; 299:104623. [PMID: 36935010 PMCID: PMC10141520 DOI: 10.1016/j.jbc.2023.104623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Trypanosomes regulate gene expression mainly by using post-transcriptional mechanisms. Key factors responsible for carrying out this regulation are RNA-binding proteins (RBPs), affecting subcellular localization, translation, and/or transcript stability. Trypanosoma cruzi U-rich RBP 1 (TcUBP1) is a small protein that modulates the expression of several surface glycoproteins of the trypomastigote infective stage of the parasite. Its mRNA targets are known but the impact of its overexpression at the transcriptome level in the insect-dwelling epimastigote cells has not yet been investigated. Thus, in the present study, by using a tetracycline-inducible system, we generated a population of TcUBP1-overexpressing parasites and analyzed its effect by RNA-seq methodology. This allowed us to identify 793 up- and 371 down-regulated genes with respect to the wild-type control sample. Among the up-regulated genes, it was possible to identify members coding for the TcS superfamily, MASP, MUCI/II, and protein kinases, whereas among the down-regulated transcripts, we found mainly genes coding for ribosomal, mitochondrial, and synthetic pathway proteins. RNA-seq comparison with two previously published datasets revealed that the expression profile of this TcUBP1-overexpressing replicative epimastigote form resembles the transition to the infective metacyclic trypomastigote stage. We identified novel cis-regulatory elements in the 3'-untranslated region of the affected transcripts and confirmed that UBP1m -a signature TcUBP1 binding element previously characterized in our lab- is enriched in the list of stabilized genes. We can conclude that the overall effect of TcUBP1 overexpression on the epimastigote transcriptome is mainly the stabilization of mRNAs coding for proteins that are important for parasite infection.
Collapse
|
3
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
4
|
Abstract
In trypanosomes, RNA polymerase II transcription is polycistronic and individual mRNAs are excised by trans-splicing and polyadenylation. The lack of individual gene transcription control is compensated by control of mRNA processing, translation and degradation. Although the basic mechanisms of mRNA decay and translation are evolutionarily conserved, there are also unique aspects, such as the existence of six cap-binding translation initiation factor homologues, a novel decapping enzyme and an mRNA stabilizing complex that is recruited by RNA-binding proteins. High-throughput analyses have identified nearly a hundred regulatory mRNA-binding proteins, making trypanosomes valuable as a model system to investigate post-transcriptional regulation.
Collapse
Affiliation(s)
- Christine Clayton
- University of Heidelberg Center for Molecular Biology (ZMBH), Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| |
Collapse
|
5
|
Sabalette KB, Romaniuk MA, Noé G, Cassola A, Campo VA, De Gaudenzi JG. The RNA-binding protein TcUBP1 up-regulates an RNA regulon for a cell surface-associated Trypanosoma cruzi glycoprotein and promotes parasite infectivity. J Biol Chem 2019; 294:10349-10364. [PMID: 31113862 DOI: 10.1074/jbc.ra118.007123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/06/2019] [Indexed: 11/06/2022] Open
Abstract
The regulation of transcription in trypanosomes is unusual. To modulate protein synthesis during their complex developmental stages, these unicellular microorganisms rely largely on post-transcriptional gene expression pathways. These pathways include a plethora of RNA-binding proteins (RBPs) that modulate all steps of the mRNA life cycle in trypanosomes and help organize transcriptomes into clusters of post-transcriptional regulons. The aim of this work was to characterize an RNA regulon comprising numerous transcripts of trypomastigote-associated cell-surface glycoproteins that are preferentially expressed in the infective stages of the human parasite Trypanosoma cruzi. In vitro and in vivo RNA-binding assays disclosed that these glycoprotein mRNAs are targeted by the small trypanosomatid-exclusive RBP in T. cruzi, U-rich RBP 1 (TcUBP1). Overexpression of a GFP-tagged TcUBP1 in replicative parasites resulted in >10 times up-regulated expression of transcripts encoding surface proteins and in changes in their subcellular localization from the posterior region to the perinuclear region of the cytoplasm, as is typically observed in the infective parasite stages. Moreover, RT-quantitative PCR analysis of actively translated mRNAs by sucrose cushion fractionation revealed an increased abundance of these target transcripts in the polysome fraction of TcUBP1-induced samples. Because these surface proteins are involved in cell adherence or invasion during host infection, we also carried out in vitro infections with TcUBP1-transgenic trypomastigotes and observed that TcUBP1 overexpression significantly increases parasite infectivity. Our findings provide evidence for a role of TcUBP1 in trypomastigote stage-specific gene regulation important for T. cruzi virulence.
Collapse
Affiliation(s)
- Karina B Sabalette
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - María Albertina Romaniuk
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Griselda Noé
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Alejandro Cassola
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Vanina A Campo
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| | - Javier G De Gaudenzi
- From the Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, 1650 San Martín, Buenos Aires, Argentina
| |
Collapse
|
6
|
Chávez S, Eastman G, Smircich P, Becco LL, Oliveira-Rizzo C, Fort R, Potenza M, Garat B, Sotelo-Silveira JR, Duhagon MA. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control. PLoS One 2017; 12:e0188441. [PMID: 29182646 PMCID: PMC5705152 DOI: 10.1371/journal.pone.0188441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01), coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of their gene expression control.
Collapse
Affiliation(s)
- Santiago Chávez
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Eastman
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Smircich
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lorena Lourdes Becco
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Carolina Oliveira-Rizzo
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Rafael Fort
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Potenza
- Institute for Research in Genetic Engineering and Molecular Biology 'Dr. N.H. Torres', Buenos Aires, Argentina
| | - Beatriz Garat
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Department of Cell and Molecular Biology, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
7
|
Kessler RL, Pavoni DP, Krieger MA, Probst CM. Trypanosoma cruzi specific mRNA amplification by in vitro transcription improves parasite transcriptomics in host-parasite RNA mixtures. BMC Genomics 2017; 18:793. [PMID: 29037144 PMCID: PMC5644099 DOI: 10.1186/s12864-017-4163-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Trypanosomatids are a group of protozoan parasites that includes the etiologic agents of important human illnesses as Chagas disease, sleeping sickness and leishmaniasis. These parasites have a significant distinction from other eukaryotes concerning mRNA structure, since all mature mRNAs have an identical species-specific sequence of 39 nucleotides at the 5′ extremity, named spliced leader (SL). Considering this peculiar aspect of trypanosomatid mRNA, the aim of the present work was to develop a Trypanosoma cruzi specific in vitro transcription (IVT) linear mRNA amplification method in order to improve parasite transcriptomics analyses. Methods We designed an oligonucleotide complementary to the last 21 bases of T. cruzi SL sequence, bearing an upstream T7 promoter (T7SL primer), which was used to direct the synthesis of second-strand cDNA. Original mRNA was then amplified by IVT using T7 RNA polymerase. T7SL-amplified RNA from two distinct T. cruzi stages (epimastigotes and trypomastigotes) were deep sequenced in SOLiD platform. Usual poly(A) + RNA and and T7-oligo(dT) amplified RNA (Eberwine method) were also sequenced. RNA-Seq reads were aligned to our new and improved T. cruzi Dm28c genome assembly (PacBio technology) and resulting transcriptome pattern from these three RNA preparation methods were compared, mainly concerning the conservation of mRNA transcritional levels and DEGs detection between epimastigotes and trypomastigotes. Results T7SL IVT method detected more potential differentially expressed genes in comparison to either poly(A) + RNA or T7dT IVT, and was also able to produce reliable quantifications of the parasite transcriptome down to 3 ng of total RNA. Furthermore, amplification of parasite mRNA in HeLa/epimastigote RNA mixtures showed that T7SL IVT generates transcriptome quantification with similar detection of differentially expressed genes when parasite RNA mass was only 0.1% of the total mixture (R = 0.78 when compared to poly(A) + RNA). Conclusions The T7SL IVT amplification method presented here allows the detection of more potential parasite differentially expressed genes (in comparison to poly(A) + RNA) in host-parasite mixtures or samples with low amount of RNA. This method is especially useful for trypanosomatid transcriptomics because it produces less bias than PCR-based mRNA amplification. Additionally, by simply changing the complementary region of the T7SL primer, the present method can be applied to any trypanosomatid species. Electronic supplementary material The online version of this article (10.1186/s12864-017-4163-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Luis Kessler
- Functional Genomics Laboratory, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Daniela Parada Pavoni
- Functional Genomics Laboratory, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Marco Aurelio Krieger
- Functional Genomics Laboratory, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Christian Macagnan Probst
- Functional Genomics Laboratory, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil. .,Bioinformatics and Computational Biology Laboratory, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
De Gaudenzi JG, Jäger AV, Izcovich R, Campo VA. Insights into the Regulation of mRNA Processing of Polycistronic Transcripts Mediated by DRBD4/PTB2, a Trypanosome Homolog of the Polypyrimidine Tract-Binding Protein. J Eukaryot Microbiol 2016; 63:440-52. [PMID: 26663092 DOI: 10.1111/jeu.12288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/11/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Abstract
Trypanosomes regulate gene expression mostly by posttranscriptional mechanisms, including control of mRNA turnover and translation efficiency. This regulation is carried out via certain elements located at the 3'-untranslated regions of mRNAs, which are recognized by RNA-binding proteins. In trypanosomes, trans-splicing is of central importance to control mRNA maturation. We have previously shown that TcDRBD4/PTB2, a trypanosome homolog of the human polypyrimidine tract-binding protein splicing regulator, interacts with the intergenic region of one specific dicistronic transcript, referred to as TcUBP (and encoding for TcUBP1 and TcUBP2, two closely kinetoplastid-specific proteins). In this work, a survey of TcUBP RNA processing revealed certain TcDRBD4/PTB2-regulatory elements within its intercistronic region, which are likely to influence the trans-splicing rate of monocistronic-derived transcripts. Furthermore, TcDRBD4/PTB2 overexpression in epimastigote cells notably decreased both UBP1 and UBP2 protein expression. This type of posttranscriptional gene regulatory mechanism could be extended to other transcripts as well, as we identified several other RNA precursor molecules that specifically bind to TcDRBD4/PTB2. Altogether, these findings support a model in which TcDRBD4/PTB2-containing ribonucleoprotein complexes can prevent trans-splicing. This could represent another stage of gene expression regulation mediated by the masking of trans-splicing/polyadenylation signals.
Collapse
Affiliation(s)
- Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Adriana V Jäger
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Ronan Izcovich
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| | - Vanina A Campo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Sede San Martín, Prov. de Buenos Aires, Argentina
| |
Collapse
|
9
|
Burle-Caldas GDA, Grazielle-Silva V, Laibida LA, DaRocha WD, Teixeira SMR. Expanding the tool box for genetic manipulation of Trypanosoma cruzi. Mol Biochem Parasitol 2015; 203:25-33. [PMID: 26523948 DOI: 10.1016/j.molbiopara.2015.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/07/2015] [Accepted: 10/25/2015] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease, an illness that affects 6-7 million people and for which there is no effective drug therapy or vaccine. The publication of its complete genome sequence allowed a rapid advance in molecular studies including in silico screening of genes involved with pathogenicity as well as molecular targets for the development of new diagnostic methods, drug therapies and prophylactic vaccines. Alongside with in silico genomic analyses, methods to study gene function in this parasite such as gene deletion, overexpression, mutant complementation and reporter gene expression have been largely explored. More recently, the use of genome-wide strategies is producing a shift towards a global perspective on gene function studies, with the examination of the expression and biological roles of gene networks in different stages of the parasite life cycle and under different contexts of host parasite interactions. Here we describe the molecular tools and protocols currently available to perform genetic manipulation of the T. cruzi genome, with emphasis on recently described strategies of gene editing that will facilitate large-scale functional genomic analyses. These new methodologies are long overdue, since more efficient protocols for genetic manipulation in T. cruzi are urgently needed for a better understanding of the biology of this parasite and molecular processes involved with the complex and often harmful, interaction with its human host.
Collapse
Affiliation(s)
| | - Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Letícia Adejani Laibida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Wanderson Duarte DaRocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | |
Collapse
|
10
|
Zingales B, Araujo RGA, Moreno M, Franco J, Aguiar PHN, Nunes SL, Silva MN, Ienne S, Machado CR, Brandão A. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Mem Inst Oswaldo Cruz 2015; 110:433-44. [PMID: 25946152 PMCID: PMC4489481 DOI: 10.1590/0074-02760140407] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/05/2015] [Indexed: 02/08/2023] Open
Abstract
Benznidazole (BZ) is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzi strains. ATP-binding cassette (ABC) transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison of TcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1 transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1 transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1 genes of BZ-susceptible and resistant strains were investigated by computational tools.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Margoth Moreno
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Jaques Franco
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Pedro Henrique Nascimento Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Solange Lessa Nunes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcelo Nunes Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Susan Ienne
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Adeilton Brandão
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
11
|
De Gaudenzi JG, Carmona SJ, Agüero F, Frasch AC. Genome-wide analysis of 3'-untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes. PeerJ 2013; 1:e118. [PMID: 23904995 PMCID: PMC3728762 DOI: 10.7717/peerj.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic cells, a group of messenger ribonucleic acids (mRNAs) encoding functionally interrelated proteins together with the trans-acting factors that coordinately modulate their expression is termed a post-transcriptional regulon, due to their partial analogy to a prokaryotic polycistron. This mRNA clustering is organized by sequence-specific RNA-binding proteins (RBPs) that bind cis-regulatory elements in the noncoding regions of genes, and mediates the synchronized control of their fate. These recognition motifs are often characterized by conserved sequences and/or RNA structures, and it is likely that various classes of cis-elements remain undiscovered. Current evidence suggests that RNA regulons govern gene expression in trypanosomes, unicellular parasites which mainly use post-transcriptional mechanisms to control protein synthesis. In this study, we used motif discovery tools to test whether groups of functionally related trypanosomatid genes contain a common cis-regulatory element. We obtained conserved structured RNA motifs statistically enriched in the noncoding region of 38 out of 53 groups of metabolically related transcripts in comparison with a random control. These motifs have a hairpin loop structure, a preferred sense orientation and are located in close proximity to the open reading frames. We found that 15 out of these 38 groups represent unique motifs in which most 3'-UTR signature elements were group-specific. Two extensively studied Trypanosoma cruzi RBPs, TcUBP1 and TcRBP3 were found associated with a few candidate RNA regulons. Interestingly, 13 motifs showed a strong correlation with clusters of developmentally co-expressed genes and six RNA elements were enriched in gene clusters affected after hyperosmotic stress. Here we report a systematic genome-wide in silico screen to search for novel RNA-binding sites in transcripts, and describe an organized network of several coordinately regulated cohorts of mRNAs in T. cruzi. Moreover, we found that structured RNA elements are also conserved in other human pathogens. These results support a model of regulation of gene expression by multiple post-transcriptional regulons in trypanosomes.
Collapse
Affiliation(s)
- Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
12
|
Pastro L, Smircich P, Pérez-Díaz L, Duhagon MA, Garat B. Implication of CA repeated tracts on post-transcriptional regulation in Trypanosoma cruzi. Exp Parasitol 2013; 134:511-8. [PMID: 23631879 DOI: 10.1016/j.exppara.2013.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 04/13/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
In Trypanosoma cruzi gene expression regulation mainly relays on post-transcriptional events. Nevertheless, little is known about the signals which control mRNA abundance and functionality. We have previously found that CA repeated tracts (polyCA) are abundant in the vicinity of open reading frames and constitute specific targets for single stranded binding proteins from T. cruzi epimastigote. Given the reported examples of the involvement of polyCA motifs in gene expression regulation, we decided to further study their role in T. cruzi. Using an in silico genome-wide analysis, we identify the genes that contain polyCA within their predicted UTRs. We found that about 10% of T. cruzi genes carry polyCA therein. Strikingly, they are frequently concurrent with GT repeated tracts (polyGT), favoring the formation of a secondary structure exhibiting the complementary polydinucleotides in a double stranded helix. This feature is found in the species-specific family of genes coding for mucine associated proteins (MASPs) and other genes. For those polyCA-containing UTRs that lack polyGT, the polyCA is mainly predicted to adopt a single stranded structure. We further analyzed the functional role of such element using a reporter approach in T. cruzi. We found out that the insertion of polyCA at the 3' UTR of a reporter gene in the pTEX vector modulates its expression along the parasite's life cycle. While no significant change of the mRNA steady state of the reporter gene could be detected at the trypomastigote stage, significant increase in the epimastigote and reduction in the amastigote stage were observed. Altogether, these results suggest the involvement of polyCA as a signal in gene expression regulation in T. cruzi.
Collapse
Affiliation(s)
- Lucía Pastro
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, 11400 Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
13
|
Li ZH, De Gaudenzi JG, Alvarez VE, Mendiondo N, Wang H, Kissinger JC, Frasch AC, Docampo R. A 43-nucleotide U-rich element in 3'-untranslated region of large number of Trypanosoma cruzi transcripts is important for mRNA abundance in intracellular amastigotes. J Biol Chem 2012; 287:19058-69. [PMID: 22500021 DOI: 10.1074/jbc.m111.338699] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease, does not seem to control gene expression through regulation of transcription initiation and makes use of post-transcriptional mechanisms. We report here a 43-nt U-rich RNA element located in the 3'-untranslated region (3'-UTR) of a large number of T. cruzi mRNAs that is important for mRNA abundance in the intracellular amastigote stage of the parasite. Whole genome scan analysis, differential display RT-PCR, Northern blot, and RT-PCR analyses were used to determine the transcript levels of more than 900 U-rich-containing mRNAs of large gene families as well as single and low copy number genes. Our results indicate that the 43-nt U-rich mRNA element is preferentially present in amastigotes. The cis-element of a protein kinase 3'-UTR but not its mutated version promoted the expression of the green fluorescent protein reporter gene in amastigotes. The regulatory cis-element, but not its mutated version, was also shown to interact with the trypanosome-specific RNA-binding protein (RBP) TcUBP1 but not with other related RBPs. Co-immunoprecipitation experiments of TcUBP1-containing ribonucleoprotein complexes formed in vivo validated the interaction with representative endogenous RNAs having the element. These results suggest that this 43-nt U-rich element together with other yet unidentified sequences might be involved in the modulation of abundance and/or translation of subsets of transcripts in the amastigote stage.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Teixeira SM, de Paiva RMC, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35:1-17. [PMID: 22481868 PMCID: PMC3313497 DOI: 10.1590/s1415-47572012005000008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/18/2011] [Indexed: 01/23/2023] Open
Abstract
In 2005, draft sequences of the genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, also known as the Tri-Tryp genomes, were published. These protozoan parasites are the causative agents of three distinct insect-borne diseases, namely sleeping sickness, Chagas disease and leishmaniasis, all with a worldwide distribution. Despite the large estimated evolutionary distance among them, a conserved core of ~6,200 trypanosomatid genes was found among the Tri-Tryp genomes. Extensive analysis of these genomic sequences has greatly increased our understanding of the biology of these parasites and their host-parasite interactions. In this article, we review the recent advances in the comparative genomics of these three species. This analysis also includes data on additional sequences derived from other trypanosmatid species, as well as recent data on gene expression and functional genomics. In addition to facilitating the identification of key parasite molecules that may provide a better understanding of these complex diseases, genome studies offer a rich source of new information that can be used to define potential new drug targets and vaccine candidates for controlling these parasitic infections.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | |
Collapse
|
15
|
Teixeira SM, El-Sayed NM, Araújo PR. The genome and its implications. ADVANCES IN PARASITOLOGY 2011; 75:209-30. [PMID: 21820558 DOI: 10.1016/b978-0-12-385863-4.00010-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Trypanosoma cruzi has a heterogeneous population composed of a pool of strains that circulate in the domestic and sylvatic cycles. Genome sequencing of the clone CL Brener revealed a highly repetitive genome of about 110Mb containing an estimated 22,570 genes. Because of its hybrid nature, sequences representing the two haplotypes have been generated. In addition, a repeat content close to 50% made the assembly of the estimated 41 pairs of chromosomes quite challenging. Similar to other trypanosomatids, the organization of T. cruzi chromosomes was found to be very peculiar, with protein-coding genes organized in long polycistronic transcription units encoding 20 or more proteins in one strand separated by strand switch regions. Another remarkable feature of the T. cruzi genome is the massive expansion of surface protein gene families. Because of the high genetic diversity of the T. cruzi population, sequencing of additional strains and comparative genomic and transcriptome analyses are in progress. Five years after its publication, the genome data have proven to be an essential tool for the study of T. cruzi and increasing efforts to translate this knowledge into the development of new modes of intervention to control Chagas disease are underway.
Collapse
Affiliation(s)
- Santuza M Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
16
|
Li ZH, Alvarez VE, De Gaudenzi JG, Sant'Anna C, Frasch ACC, Cazzulo JJ, Docampo R. Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J Biol Chem 2011; 286:43959-43971. [PMID: 22039054 DOI: 10.1074/jbc.m111.311530] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The protist parasite Trypanosoma cruzi has evolved the ability to transit between completely different hosts and to replicate in adverse environments. In particular, the epimastigote form, the replicative stage inside the vector, is subjected to nutritional and osmotic stresses during its development. In this work, we describe the biochemical and global gene expression changes of epimastigotes under hyperosmotic conditions. Hyperosmotic stress resulted in cell shrinking within a few minutes. Depending on the medium osmolarity, this was followed by lack of volume recovery for at least 2 h or by slow recovery. Experiments with inhibitors, or with cells in which an aquaporin gene (TcAQP1) was knocked down or overexpressed, revealed its importance for the cellular response to hyperosmotic stress. Furthermore, the adaptation to this new environment was shown to involve the regulation of the polyphosphate polymerization state as well as changes in amino acid catabolism to generate compatible osmolytes. A genome-wide transcriptional analysis of stressed parasites revealed down-regulation of genes belonging to diverse functional categories and up-regulation of genes encoding trans-sialidase-like and ribosomal proteins. Several of these changes were confirmed by Northern blot analyses. Sequence analysis of the 3'UTRs of up- and down-regulated genes allowed the identification of conserved structural RNA motifs enriched in each group, suggesting that specific ribonucleoprotein complexes could be of great importance in the adaptation of this parasite to different environments through regulation of transcript abundance.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Vanina E Alvarez
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602; Instituto de Investigaciones Biotecnólogicas, Universidad Nacional de General San Martin/Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Buenos Aires, Argentina
| | - Javier G De Gaudenzi
- Instituto de Investigaciones Biotecnólogicas, Universidad Nacional de General San Martin/Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Buenos Aires, Argentina
| | - Celso Sant'Anna
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Alberto C C Frasch
- Instituto de Investigaciones Biotecnólogicas, Universidad Nacional de General San Martin/Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Buenos Aires, Argentina
| | - Juan J Cazzulo
- Instituto de Investigaciones Biotecnólogicas, Universidad Nacional de General San Martin/Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Buenos Aires, Argentina
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
17
|
Freitas LM, dos Santos SL, Rodrigues-Luiz GF, Mendes TAO, Rodrigues TS, Gazzinelli RT, Teixeira SMR, Fujiwara RT, Bartholomeu DC. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One 2011; 6:e25914. [PMID: 22039427 PMCID: PMC3198458 DOI: 10.1371/journal.pone.0025914] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/13/2011] [Indexed: 12/20/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a highly debilitating human pathology that affects millions of people in the Americas. The sequencing of this parasite's genome reveals that trans-sialidase/trans-sialidase-like (TcS), a polymorphic protein family known to be involved in several aspects of T. cruzi biology, is the largest T. cruzi gene family, encoding more than 1,400 genes. Despite the fact that four TcS groups are well characterized and only one of the groups contains active trans-sialidases, all members of the family are annotated in the T. cruzi genome database as trans-sialidase. After performing sequence clustering analysis with all TcS complete genes, we identified four additional groups, demonstrating that the TcS family is even more heterogeneous than previously thought. Interestingly, members of distinct TcS groups show distinctive patterns of chromosome localization. Members of the TcSgroupII, which harbor proteins involved in host cell attachment/invasion, are preferentially located in subtelomeric regions, whereas members of the largest and new TcSgroupV have internal chromosomal locations. Real-time RT-PCR confirms the expression of genes derived from new groups and shows that the pattern of expression is not similar within and between groups. We also performed B-cell epitope prediction on the family and constructed a TcS specific peptide array, which was screened with sera from T. cruzi-infected mice. We demonstrated that all seven groups represented in the array are antigenic. A highly reactive peptide occurs in sixty TcS proteins including members of two new groups and may contribute to the known cross-reactivity of T. cruzi epitopes during infection. Taken together, our results contribute to a better understanding of the real complexity of the TcS family and open new avenues for investigating novel roles of this family during T. cruzi infection.
Collapse
Affiliation(s)
- Leandro M. Freitas
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Lopes dos Santos
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Tiago A. O. Mendes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago S. Rodrigues
- Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo T. Gazzinelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
18
|
Comparative genomic analysis of dinucleotide repeats in Tritryps. Gene 2011; 487:29-37. [PMID: 21824509 DOI: 10.1016/j.gene.2011.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 12/29/2022]
Abstract
The protozoans Trypanosoma cruzi, Trypanosoma brucei and Leishmania major (Tritryps), are evolutionarily ancient eukaryotes which cause worldwide human parasitosis. They present unique biological features. Indeed, canonical DNA/RNA cis-acting elements remain mostly elusive. Repetitive sequences, originally considered as selfish DNA, have been lately recognized as potentially important functional sequence elements in cell biology. In particular, the dinucleotide patterns have been related to genome compartmentalization, gene evolution and gene expression regulation. Thus, we perform a comparative analysis of the occurrence, length and location of dinucleotide repeats (DRs) in the Tritryp genomes and their putative associations with known biological processes. We observe that most types of DRs are more abundant than would be expected by chance. Complementary DRs usually display asymmetrical strand distribution, favoring TT and GT repeats in the coding strands. In addition, we find that GT repeats are among the longest DRs in the three genomes. We also show that specific DRs are non-uniformly distributed along the polycistronic unit, decreasing toward its boundaries. Distinctive non-uniform density patterns were also found in the intergenic regions, with predominance at the vicinity of the ORFs. These findings further support that DRs may control genome structure and gene expression.
Collapse
|
19
|
Ziccardi M, Brandão A. Transcription of long hypothetical orfs in Trypanosoma cruzi: the epimastigote stage uses trans-splicing sites that generate short 5' UTRs. Exp Parasitol 2011; 129:203-6. [PMID: 21781964 DOI: 10.1016/j.exppara.2011.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/16/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
We mapped the 5' UTR for five long hypothetical orfs from Trypanosoma cruzi; each one having a length of more than 10,000 bp. Our aim was to verify the constraints to the length of the 5' UTR and to identify the sites of alternative trans-splicing in the epimastigote stage of three T. cruzi strains. We used reverse transcription PCR to amplify the 5' UTR and demonstrated the transcription of all selected genes as well as additional trans-splicing sites in two of these genes. We observed that the length of the 5' UTR in these genes has a limit, in contrast to previous reports that indicated a trend for longer genes to display a proportionally long 5' UTR. The maximum length of the 5' UTR for the long genes analyzed in the present work is approximately 3% of the orf and, on average, is 1% of the orf length. The poly-pyrimidine tracts used as trans-splicing signal are in the range of 17-53 bases within a distance of 6-59 nt to first spliced-leader acceptor site. T. cruzi populations may use both signals differentially. We conclude that the limit for the 5' UTR length in long genes is determined primarily by the distance to neighboring genes.
Collapse
Affiliation(s)
- Mariangela Ziccardi
- Laboratory for Interdisciplinary Medical Research, Instituto Oswaldo Cruz - Fiocruz, Av. Brasil, 4365 - Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
20
|
Caetano BC, Carmo BB, Melo MB, Cerny A, dos Santos SL, Bartholomeu DC, Golenbock DT, Gazzinelli RT. Requirement of UNC93B1 reveals a critical role for TLR7 in host resistance to primary infection with Trypanosoma cruzi. THE JOURNAL OF IMMUNOLOGY 2011; 187:1903-11. [PMID: 21753151 DOI: 10.4049/jimmunol.1003911] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNC93B1 associates with TLR3, 7, and 9, mediating their translocation from the endoplasmic reticulum to the endolysosome, thus allowing proper activation by microbial nucleic acids. We found that the triple-deficient 3d mice, which lack functional UNC93B1 as well as functional endosomal TLRs, are highly susceptible to infection with Trypanosoma cruzi. The enhanced parasitemia and mortality in 3d animals were associated with impaired proinflammatory response, including reduced levels of IL-12p40 and IFN-γ. Importantly, the phenotype of 3d mice was intermediary between MyD88(-/-) (highly susceptible) and TLR9(-/-) (moderately susceptible), indicating the involvement of an additional UN93B1-dependent TLR(s) on host resistance to T. cruzi. Hence, our experiments also revealed that TLR7 is a critical innate immune receptor involved in recognition of parasite RNA, induction of IL-12p40 by dendritic cells, and consequent IFN-γ by T lymphocytes. Furthermore, we show that upon T. cruzi infection, triple TLR3/7/9(-/-) mice had similar phenotype than 3d mice. These data imply that the nucleic acid-sensing TLRs are critical determinants of host resistance to primary infection with T. cruzi.
Collapse
Affiliation(s)
- Braulia C Caetano
- Division of Infectious Disease and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Araújo PR, Teixeira SM. Regulatory elements involved in the post-transcriptional control of stage-specific gene expression in Trypanosoma cruzi: a review. Mem Inst Oswaldo Cruz 2011; 106:257-66. [PMID: 21655811 DOI: 10.1590/s0074-02762011000300002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/07/2011] [Indexed: 11/22/2022] Open
|
22
|
Development of a dual reporter system to identify regulatory cis-acting elements in untranslated regions of Trypanosoma cruzi mRNAs. Parasitol Int 2011; 60:161-9. [PMID: 21277385 DOI: 10.1016/j.parint.2011.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 01/26/2023]
Abstract
In trypanosomatids, transcription is polycistronic and gene expression control occurs mainly at the post-transcriptional level. To investigate the role of sequences present in the 3'UTR of stage-specific mRNAs of Trypanosoma cruzi, we generated a new vector, named pTcDUALuc, containing the firefly and Renilla luciferase reporter genes. To test this vector, sequences derived from the 3'UTR plus intergenic regions of the alpha tubulin gene, which is up-regulated in epimastigotes, and amastin, which is up-regulated in amastigotes, were inserted downstream from the firefly reporter gene and luciferase activity was compared in transient and stable transfected parasites. As expected, increased luciferase activity was detected in epimastigotes transiently transfected with pTcDUALuc containing tubulin sequences. Using stable transfected cell lines that were allowed to differentiate into amastigotes, we observed increased luciferase activity and mRNA levels in amastigotes transfected with pTcDUALuc containing amastin sequences. We also showed that the spliced leader sequence and poly-A tail were inserted in the predicted sites of the firefly luciferase mRNA and that deletions in the alpha tubulin 3'UTR resulted in decreased luciferase expression because it affects polyadenylation. In contrast to the constructs containing 3'UTR sequences derived from tubulin and amastin genes, the presence of the 3'UTR from a trans-sialidase gene, whose expression is higher in trypomastigotes, resulted in increased luciferase activity in trypomastigotes without a corresponding increase in luciferase mRNA levels.
Collapse
|
23
|
Clayton C, Michaeli S. 3' processing in protists. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:247-55. [PMID: 21957009 DOI: 10.1002/wrna.49] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Molecular biologists have traditionally focused on the very small corner of eukaryotic evolution that includes yeast and animals; even plants have been neglected. In this article, we describe the scant information that is available concerning RNA processing in the other four major eukaryotic groups, especially pathogenic protists. We focus mainly on polyadenylation and nuclear processing of stable RNAs. These processes have--where examined--been shown to be conserved, but there are many novel details. We also briefly mention other processing reactions such as splicing.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany.
| | | |
Collapse
|
24
|
Brandão A, Jiang T. The composition of untranslated regions in Trypanosoma cruzi genes. Parasitol Int 2009; 58:215-9. [PMID: 19505588 DOI: 10.1016/j.parint.2009.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 05/26/2009] [Accepted: 06/01/2009] [Indexed: 11/25/2022]
Abstract
We collected the UTRs from Trypanosomacruzi genes that have been experimentally mapped and are publicly available, and made a comprehensive analysis of their composition features including sequence length, G+C content and relationship to ORF, composition of the most frequent words, and distribution of Simple Sequence Repeats (SSR). T. cruzi UTRs exhibit range length of 10-400bp for 5' UTR and 17-2800 for 3' UTR. Both UTRs display mean G+C content of 40%. Ratios between the UTR and protein coding segments show that the 5' UTR is limited to a maximum of 20% of the total length in the final transcript. The 5' UTR most frequent words in the range 4-12 bases are almost exact complement to the 3' UTR respective words. SSR in 3' UTR are longer than in 5' UTR and are mostly derived from TA/AT, TG/GT, and TTA/ATT. SSR accounts up to 20% of the nucleotide composition in 5' UTR and up to 90% in the 3' UTR.
Collapse
|