1
|
Schlosser-Brandenburg J, Midha A, Mugo RM, Ndombi EM, Gachara G, Njomo D, Rausch S, Hartmann S. Infection with soil-transmitted helminths and their impact on coinfections. FRONTIERS IN PARASITOLOGY 2023; 2:1197956. [PMID: 39816832 PMCID: PMC11731630 DOI: 10.3389/fpara.2023.1197956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 01/18/2025]
Abstract
The most important soil-transmitted helminths (STHs) affecting humans are roundworms, whipworms, and hookworms, with a large proportion of the world's population infected with one or more of these intestinal parasites. On top of that, concurrent infections with several viruses, bacteria, protozoa, and other helminths such as trematodes are common in STH-endemic areas. STHs are potent immunomodulators, but knowledge about the effects of STH infection on the direction and extent of coinfections with other pathogens and vice versa is incomplete. By focusing on Kenya, a country where STH infections in humans are widespread, we provide an exemplary overview of the current prevalence of STH and co-occurring infections (e.g. with Human Immunodeficiency Virus, Plasmodium falciparum, Giardia duodenalis and Schistosoma mansoni). Using human data and complemented by experimental studies, we outline the immunomechanistic interactions of coinfections in both acutely STH transmigrated and chronically infected tissues, also highlighting their systemic nature. Depending on the coinfecting pathogen and immunological readout, STH infection may restrain, support, or even override the immune response to another pathogen. Furthermore, the timing of the particular infection and host susceptibility are decisive for the immunopathological consequences. Some examples demonstrated positive outcomes of STH coinfections, where the systemic effects of these helminths mitigate the damage caused by other pathogens. Nevertheless, the data available to date are rather unbalanced, as only a few studies have considered the effects of coinfection on the worm's life cycle and associated host immunity. These interactions are complex and depend largely on the context and biology of the coinfection, which can act in either direction, both to the benefit and detriment of the infected host.
Collapse
Affiliation(s)
| | - Ankur Midha
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert M. Mugo
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eric M. Ndombi
- Department of Medical Microbiology and Parasitology, Kenyatta University, Nairobi, Kenya
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - George Gachara
- Department of Medical Laboratory Science, Kenyatta University, Nairobi, Kenya
| | - Doris Njomo
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sebastian Rausch
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Osei SA, Biney RP, Obese E, Agbenyeku MAP, Attah IY, Ameyaw EO, Boampong JN. Xylopic acid-amodiaquine and xylopic acid-artesunate combinations are effective in managing malaria in Plasmodium berghei-infected mice. Malar J 2021; 20:113. [PMID: 33632233 PMCID: PMC7908739 DOI: 10.1186/s12936-021-03658-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/19/2021] [Indexed: 12/01/2022] Open
Abstract
Background Evidence of Plasmodium resistance to some of the current anti-malarial agents makes it imperative to search for newer and effective drugs to combat malaria. Therefore, this study evaluated whether the co-administrations of xylopic acid-amodiaquine and xylopic acid-artesunate combinations will produce a synergistic anti-malarial effect. Methods Antiplasmodial effect of xylopic acid (XA: 3, 10, 30, 100, 150 mg kg−1), artesunate (ART: 1, 2, 4, 8, 16 mg kg−1), and amodiaquine (AQ: 1.25, 2.5, 5, 10, 20 mg kg−1) were evaluated in Plasmodium berghei (strain ANKA)-infected mice to determine respective ED50s. Artemether/lumefantrine was used as the positive control. XA/ART and XA/AQ were subsequently administered in a fixed-dose combination of their ED50s (1:1) and the combination fractions of their ED50s (1/2, 1/4, 1/8, 1/16, and 1/32) to determine the experimental ED50s (Zexp). An isobologram was constructed to determine the nature of the interaction between XA/ART, and XA/AQ combinations by comparing Zexp with the theoretical ED50 (Zadd). Bodyweight and 30-day survival post-treatment were additionally recorded. Results ED50s for XA, ART, and AQ were 9.0 ± 3.2, 1.61 ± 0.6, and 3.1 ± 0.8 mg kg−1, respectively. The Zadd, Zexp, and interaction index for XA/ART co-administration was 5.3 ± 2.61, 1.98 ± 0.25, and 0.37, respectively while that of XA/AQ were 6.05 ± 2.0, 1.69 ± 0.42, and 0.28, respectively. The Zexp for both combination therapies lay significantly (p < 0.001) below the additive isoboles showing XA acts synergistically with both ART and AQ in clearing the parasites. High doses of XA/ART combination significantly (p < 0.05) increased the survival days of infected mice with a mean hazard ratio of 0.40 while all the XA/AQ combination doses showed a significant (p < 0.05) increase in the survival days of infected mice with a mean hazard ratio of 0.27 similar to AL. Both XA/ART and XA/AQ combined treatments significantly (p < 0.05) reduced weight loss. Conclusion Xylopic acid co-administration with either artesunate or amodiaquine produces a synergistic anti-plasmodial effect in mice infected with P. berghei.
Collapse
Affiliation(s)
- Silas Acheampong Osei
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.,School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Robert Peter Biney
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana.,Department of Pharmacology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Obese
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana.,Department of Pharmacology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mary Atta-Panyi Agbenyeku
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Yaw Attah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.,School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Ofori Ameyaw
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana. .,School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Johnson Nyarko Boampong
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.,School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Vandermosten L, Pham TT, Knoops S, De Geest C, Lays N, Van der Molen K, Kenyon CJ, Verma M, Chapman KE, Schuit F, De Bosscher K, Opdenakker G, Van den Steen PE. Adrenal hormones mediate disease tolerance in malaria. Nat Commun 2018; 9:4525. [PMID: 30375380 PMCID: PMC6207723 DOI: 10.1038/s41467-018-06986-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Malaria reduces host fitness and survival by pathogen-mediated damage and inflammation. Disease tolerance mechanisms counter these negative effects without decreasing pathogen load. Here, we demonstrate that in four different mouse models of malaria, adrenal hormones confer disease tolerance and protect against early death, independently of parasitemia. Surprisingly, adrenalectomy differentially affects malaria-induced inflammation by increasing circulating cytokines and inflammation in the brain but not in the liver or lung. Furthermore, without affecting the transcription of hepatic gluconeogenic enzymes, adrenalectomy causes exhaustion of hepatic glycogen and insulin-independent lethal hypoglycemia upon infection. This hypoglycemia is not prevented by glucose administration or TNF-α neutralization. In contrast, treatment with a synthetic glucocorticoid (dexamethasone) prevents the hypoglycemia, lowers cerebral cytokine expression and increases survival rates. Overall, we conclude that in malaria, adrenal hormones do not protect against lung and liver inflammation. Instead, they prevent excessive systemic and brain inflammation and severe hypoglycemia, thereby contributing to tolerance. Disease tolerance mechanisms counter the negative effects of infection without decreasing the pathogen load. Here, the authors show that in mouse models of malaria, such disease tolerance can be conferred by adrenal hormones, by preventing excessive inflammation and hypoglycemia.
Collapse
Affiliation(s)
- Leen Vandermosten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Charlotte De Geest
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Natacha Lays
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Kristof Van der Molen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Christopher J Kenyon
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Manu Verma
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Karen E Chapman
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Karolien De Bosscher
- Nuclear Receptor Lab, Receptor Research Laboratories, VIB Center for Medical Biotechnology, Ghent University, Gent, 9000, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
4
|
Immune-responsiveness of CD4 + T cells during Streptococcus suis serotype 2 infection. Sci Rep 2016; 6:38061. [PMID: 27905502 PMCID: PMC5131321 DOI: 10.1038/srep38061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/03/2016] [Indexed: 12/27/2022] Open
Abstract
The pathogenesis of Streptococcus suis infection, a major swine and human pathogen, is only partially understood and knowledge on the host adaptive immune response is critically scarce. Yet, S. suis virulence factors, particularly its capsular polysaccharide (CPS), enable this bacterium to modulate dendritic cell (DC) functions and potentially impair the immune response. This study aimed to evaluate modulation of T cell activation during S. suis infection and the role of DCs in this response. S. suis-stimulated total mouse splenocytes readily produced TNF-α, IL-6, IFN-γ, CCL3, CXCL9, and IL-10. Ex vivo and in vivo analyses revealed the involvement of CD4+ T cells and a Th1 response. Nevertheless, during S. suis infection, levels of the Th1-derived cytokines TNF-α and IFN-γ were very low. A transient splenic depletion of CD4+ T cells and a poor memory response were also observed. Moreover, CD4+ T cells secreted IL-10 and failed to up-regulate optimal levels of CD40L and CD69 in coculture with DCs. The CPS hampered release of several T cell-derived cytokines in vitro. Finally, a correlation was established between severe clinical signs of S. suis disease and impaired antibody responses. Altogether, these results suggest S. suis interferes with the adaptive immune response.
Collapse
|
5
|
Onkoba NW, Chimbari MJ, Mukaratirwa S. Malaria endemicity and co-infection with tissue-dwelling parasites in Sub-Saharan Africa: a review. Infect Dis Poverty 2015; 4:35. [PMID: 26377900 PMCID: PMC4571070 DOI: 10.1186/s40249-015-0070-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/03/2015] [Indexed: 02/08/2023] Open
Abstract
Mechanisms and outcomes of host-parasite interactions during malaria co-infections with gastrointestinal helminths are reasonably understood. In contrast, very little is known about such mechanisms in cases of malaria co-infections with tissue-dwelling parasites. This is lack of knowledge is exacerbated by misdiagnosis, lack of pathognomonic clinical signs and the chronic nature of tissue-dwelling helminthic infections. A good understanding of the implications of tissue-dwelling parasitic co-infections with malaria will contribute towards the improvement of the control and management of such co-infections in endemic areas. This review summarises and discusses current information available and gaps in research on malaria co-infection with gastro-intestinal helminths and tissue-dwelling parasites with emphasis on helminthic infections, in terms of the effects of migrating larval stages and intra and extracellular localisations of protozoan parasites and helminths in organs, tissues, and vascular and lymphatic circulations.
Collapse
Affiliation(s)
- Nyamongo W Onkoba
- College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal, Howard Campus, Durban, South Africa.
- Departmet of Tropical Infectious Diseases, Institute of Primate Research, Karen, Nairobi, Kenya.
| | - Moses J Chimbari
- College of Health Sciences, School of Nursing and Public Health, University of KwaZulu-Natal, Howard Campus, Durban, South Africa.
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| |
Collapse
|
6
|
McKay DM. Not all parasites are protective. Parasite Immunol 2015; 37:324-32. [DOI: 10.1111/pim.12160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/09/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Derek M. McKay
- Department of Physiology and Pharmacology; Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases; Gastrointestinal Research Group and Inflammation Research Network; Cumming School of Medicine, University of Calgary; Calgary AB Canada
| |
Collapse
|
7
|
Helminth parasites alter protection against Plasmodium infection. BIOMED RESEARCH INTERNATIONAL 2014; 2014:913696. [PMID: 25276830 PMCID: PMC4170705 DOI: 10.1155/2014/913696] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022]
Abstract
More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response.
Collapse
|
8
|
Helpful or a Hindrance: Co-infections with Helminths During Malaria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 828:99-129. [DOI: 10.1007/978-1-4939-1489-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Salgame P, Yap GS, Gause WC. Effect of helminth-induced immunity on infections with microbial pathogens. Nat Immunol 2013; 14:1118-1126. [PMID: 24145791 DOI: 10.1038/ni.2736] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/11/2013] [Indexed: 02/06/2023]
Abstract
Helminth infections are ubiquitous worldwide and can trigger potent immune responses that differ from and potentially antagonize host protective responses to microbial pathogens. In this Review we focus on the three main killers in infectious disease-AIDS, tuberculosis and malaria-and critically assesses whether helminths adversely influence host control of these diseases. We also discuss emerging concepts for how M2 macrophages and helminth-modulated dendritic cells can potentially influence the protective immune response to concurrent infections. Finally, we present evidence advocating for more efforts to determine how and to what extent helminths interfere with the successful control of specific concurrent coinfections.
Collapse
Affiliation(s)
- Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - George S Yap
- Department of Medicine, Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
10
|
Wiria AE, Djuardi Y, Supali T, Sartono E, Yazdanbakhsh M. Helminth infection in populations undergoing epidemiological transition: a friend or foe? Semin Immunopathol 2012; 34:889-901. [PMID: 23129304 DOI: 10.1007/s00281-012-0358-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/21/2012] [Indexed: 12/21/2022]
Abstract
Helminth infections are highly prevalent in developing countries, especially in rural areas. With gradual development, there is a transition from living conditions that are dominated by infection, poor sanitation, manual labor, and traditional diet to a situation where burden of infections is reduced, infrastructure is improved, sedentary lifestyle dominates, and processed food forms a large proportion of the calorie intake. The combinations of some of the changes in lifestyle and environment are expected to result in alteration of the landscape of diseases, which will become dominated by non-communicable disorders. Here we review how the major helminth infections affect a large proportion of the population in the developing world and discuss their impact on the immune system and the consequences of this for other infections which are co-endemic in the same areas. Furthermore, we address the issue of decreasing helminth infections in many parts of the world within the context of increasing inflammatory, metabolic, and cardiovascular diseases.
Collapse
|
11
|
KOLBAUM J, ESCHBACH ML, STEEG C, JACOBS T, FLEISCHER B, BRELOER M. Efficient control of Plasmodium yoelii infection in BALB/c and C57BL/6 mice with pre-existing Strongyloides ratti infection. Parasite Immunol 2012; 34:388-93. [DOI: 10.1111/j.1365-3024.2012.01369.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Nacher M. Interactions between worms and malaria: good worms or bad worms? Malar J 2011; 10:259. [PMID: 21910854 PMCID: PMC3192711 DOI: 10.1186/1475-2875-10-259] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 09/12/2011] [Indexed: 01/10/2023] Open
Abstract
In the past decade there have been an increasing number of studies on co-infections between worms and malaria. However, this increased interest has yielded results that have been at times conflicting and made it difficult to clearly grasp the outcome of this interaction. Despite the heterogeneity of study designs, reviewing the growing body of research may be synthesized into some broad trends: Ascaris emerges mostly as protective from malaria and its severe manifestations, whereas hookworm seems to increase malaria incidence. As efforts are made to de-worm populations in malaria endemic areas, there is still no clear picture of the impact these programmes have in terms of quantitative and qualitative changes in malaria.
Collapse
Affiliation(s)
- Mathieu Nacher
- Centre d'investigation Clinique épidémiologie Clinique Antilles-Guyane, Centre Hospitalier de Cayenne, French Guiana.
| |
Collapse
|
13
|
Knowles SC. The effect of helminth co-infection on malaria in mice: A meta-analysis. Int J Parasitol 2011; 41:1041-51. [DOI: 10.1016/j.ijpara.2011.05.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/08/2011] [Accepted: 05/16/2011] [Indexed: 11/25/2022]
|
14
|
Reyes JL, Espinoza-Jiménez AF, González MI, Verdin L, Terrazas LI. Taenia crassiceps infection abrogates experimental autoimmune encephalomyelitis. Cell Immunol 2010; 267:77-87. [PMID: 21185554 DOI: 10.1016/j.cellimm.2010.11.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/18/2010] [Accepted: 11/29/2010] [Indexed: 12/19/2022]
Abstract
Helminth infections induce strong immunoregulation that can modulate subsequent pathogenic challenges. Taenia crassiceps causes a chronic infection that induces a Th2-biased response and modulates the host cellular immune response, including reduced lymphoproliferation in response to mitogens, impaired antigen presentation and the recruitment of suppressive alternatively activated macrophages (AAMФ). In this study, we aimed to evaluate the ability of T. crassiceps to reduce the severity of experimental autoimmune encephalomyelitis (EAE). Only 50% of T. crassiceps-infected mice displayed EAE symptoms, which were significantly less severe than uninfected mice. This effect was associated with both decreased MOG-specific splenocyte proliferation and IL-17 production and limited leukocyte infiltration into the spinal cord. Infection with T. crassiceps induced an anti-inflammatory cytokine microenvironment, including decreased TNF-α production and high MOG-specific production of IL-4 and IL-10. While the mRNA expression of TNF-α and iNOS was lower in the brain of T. crassiceps-infected mice with EAE, markers for AAMФ were highly expressed. Furthermore, in these mice, there was reduced entry of CD3(+)Foxp3(-) cells into the brain. The T. crassiceps-induced immune regulation decreased EAE severity by dampening T cell activation, proliferation and migration to the CNS.
Collapse
Affiliation(s)
- José L Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Edo, México 54090, Mexico
| | | | | | | | | |
Collapse
|
15
|
Cruz-Chan JV, Rosado-Vallado M, Dumonteil E. Malaria vaccine efficacy: overcoming the helminth hurdle. Expert Rev Vaccines 2010; 9:707-11. [PMID: 20624043 DOI: 10.1586/erv.10.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several studies have documented that helminth infections can interfere with the development of the immune response of vaccines against different diseases, although some results have been contradictory. The mechanisms involved in the inhibition of the immune response to vaccination by helminth are still unclear, and murine models of helminth-malaria coinfections have proven helpful in investigating some aspects of the interactions involved. The study evaluated here focuses on the effect of helminth infection in mice on the immunogenicity and protective efficacy of two distinct malaria vaccine candidates, a transmission-blocking DNA vaccine based on Pfs25 antigen and a pre-erythrocytic vaccine based on irradiated sporozoites. Interestingly, the authors found that helminth infection dramatically reduced DNA vaccine immunogenicity, while immunization with irradiated sporozoites was able to induce a high level of antibodies and protection, independently of helminth infection. Immune suppression by helminth infection affected all IgG isotypes, suggesting no particular polarization of the immune response, but the generation of memory B cells was not affected. It will be of key interest to understand the mechanisms underlying the efficacy of the sporozoite vaccine, and its ability to overcome helminth immunosuppression, as this may help in the design of more effective vaccines.
Collapse
Affiliation(s)
- Julio Vladimir Cruz-Chan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Universidad Autónoma de Yucatán, Ave. Itzaes #490 x 59, 97000 Mérida, Yucatan, Mexico
| | | | | |
Collapse
|
16
|
Rausch S, Held J, Stange J, Lendner M, Hepworth MR, Klotz C, Lucius R, Pogonka T, Hartmann S. A matter of timing: Early, not chronic phase intestinal nematode infection restrains control of a concurrent enteric protozoan infection. Eur J Immunol 2010; 40:2804-15. [DOI: 10.1002/eji.201040306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|