1
|
Marothia M, Behl A, Maurya P, Saini M, Shoaib R, Garg S, Kumari G, Biswas S, Munjal A, Anand S, Kahlon AK, Gupta P, Biswas S, Goswami B, Abdulhameed Almuqdadi HT, Bhowmick IP, Shevtsov M, Ramalingam S, Ranganathan A, Singh S. Targeting PfProhibitin 2-Hu-Hsp70A1A complex as a unique approach towards malaria vaccine development. iScience 2024; 27:109918. [PMID: 38812541 PMCID: PMC11134565 DOI: 10.1016/j.isci.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Malaria parasite invasion to host erythrocytes is mediated by multiple interactions between merozoite ligands and erythrocyte receptors that contribute toward the development of disease pathology. Here, we report a novel antigen Plasmodium prohibitin "PfPHB2" and identify its cognate partner "Hsp70A1A" in host erythrocyte that plays a crucial role in mediating host-parasite interaction during merozoite invasion. Using small interfering RNA (siRNA)- and glucosamine-6-phosphate riboswitch (glmS) ribozyme-mediated approach, we show that loss of Hsp70A1A in red blood cells (RBCs) or PfPHB2 in infected red blood cells (iRBCs), respectively, inhibit PfPHB2-Hsp70A1A interaction leading to invasion inhibition. Antibodies targeting PfPHB2 and monoclonal antibody therapeutics against Hsp70A1A efficiently block parasite invasion. Recombinant PfPHB2 binds to RBCs which is inhibited by anti-PfPHB2 antibody and monoclonal antibody against Hsp70A1A. The validation of PfPHB2 to serve as antigen is further supported by detection of anti-PfPHB2 antibody in patient sera. Overall, this study proposes PfPHB2 as vaccine candidate and highlights the use of monoclonal antibody therapeutics for future malaria treatment.
Collapse
Affiliation(s)
- Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pragya Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Saurav Biswas
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India
| | - Bidhan Goswami
- Multidisciplinary Research Unit, Agartala Government Medical College, Agartala, Tripura (West), India
| | - Haider Thaer Abdulhameed Almuqdadi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Ipsita Pal Bhowmick
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India
| | - Maxim Shevtsov
- Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Sivaprakash Ramalingam
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Msosa C, Abdalrahman T, Franz T. An analytical model describing the mechanics of erythrocyte membrane wrapping during active invasion of a plasmodium falciparum merozoite. J Mech Behav Biomed Mater 2023; 140:105685. [PMID: 36746046 DOI: 10.1016/j.jmbbm.2023.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
The invasion of a merozoite into an erythrocyte by membrane wrapping is a hallmark of malaria pathogenesis. The invasion involves biomechanical interactions whereby the merozoite exerts actomyosin-based forces to push itself into and through the erythrocyte membrane while concurrently inducing biochemical damage to the erythrocyte membrane. Whereas the biochemical damage process has been investigated, the detailed mechanistic understanding of the invasion mechanics remains limited. Thus, the current study aimed to develop a mathematical model describing the mechanical factors involved in the merozoite invasion into an erythrocyte and explore the invasion mechanics. A shell theory model was developed comprising constitutive, equilibrium and governing equations of the deformable erythrocyte membrane to predict membrane mechanics during the wrapping of an entire non-deformable ellipsoidal merozoite. Predicted parameters include principal erythrocyte membrane deformations and stresses, wrapping and indentation forces, and indentation work. The numerical investigations considered two limits for the erythrocyte membrane deformation during wrapping (4% and 51% areal strain) and erythrocyte membrane phosphorylation (decrease of membrane elastic modulus from 1 to 0.5 kPa). For an intact erythrocyte, the maximum indentation force was 1 and 8.5 pN, and the indentation work was 1.92 × 10-18 and 1.40 × 10-17 J for 4% and 51% areal membrane strain. Phosphorylation damage in the erythrocyte membrane reduced the required indentation work by 50% to 0.97 × 10-18 and 0.70 × 10-17 J for 4% and 51% areal strain. The current study demonstrated the developed model's feasibility to provide new knowledge on the physical mechanisms of the merozoite invasion process that contribute to the invasion efficiency towards the discovery of new invasion-blocking anti-malaria drugs.
Collapse
Affiliation(s)
- Chimwemwe Msosa
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, 7925, South Africa; Faculty of Engineering, Department of Electrical Engineering, Malawi University of Business and Applied Sciences, Blantyre, Malawi.
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, 7925, South Africa; Computational Mechanobiology, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin, Berlin, 13353, Germany
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, 7925, South Africa; Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO171BJ, UK
| |
Collapse
|
3
|
Saini E, Sheokand PK, Sharma V, Agrawal P, Kaur I, Singh S, Mohmmed A, Malhotra P. Plasmodium falciparum PhIL1-associated complex plays an essential role in merozoite reorientation and invasion of host erythrocytes. PLoS Pathog 2021; 17:e1009750. [PMID: 34324609 PMCID: PMC8321122 DOI: 10.1371/journal.ppat.1009750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
The human malaria parasite, Plasmodium falciparum possesses unique gliding machinery referred to as the glideosome that powers its entry into the insect and vertebrate hosts. Several parasite proteins including Photosensitized INA-labelled protein 1 (PhIL1) have been shown to associate with glideosome machinery. Here we describe a novel PhIL1 associated protein complex that co-exists with the glideosome motor complex in the inner membrane complex of the merozoite. Using an experimental genetics approach, we characterized the role(s) of three proteins associated with PhIL1: a glideosome associated protein- PfGAPM2, an IMC structural protein- PfALV5, and an uncharacterized protein—referred here as PfPhIP (PhIL1 Interacting Protein). Parasites lacking PfPhIP or PfGAPM2 were unable to invade host RBCs. Additionally, the downregulation of PfPhIP resulted in significant defects in merozoite segmentation. Furthermore, the PfPhIP and PfGAPM2 depleted parasites showed abrogation of reorientation/gliding. However, initial attachment with host RBCs was not affected in these parasites. Together, the data presented here show that proteins of the PhIL1-associated complex play an important role in the orientation of P. falciparum merozoites following initial attachment, which is crucial for the formation of a tight junction and hence invasion of host erythrocytes. Invasion of Plasmodium merozoites into RBCs is a multistep process that involves initial attachment of merozoites to the RBC surface, their reorientation, and subsequent gliding into RBCs using glideosome machinery. The glideosome machinery lies between the plasma membrane and inner membrane complex (IMC) and consists of MyoA, its interacting protein; MTIP, gliding associated proteins (GAPs), and a Photosensitized INA labeled protein (PhIL1)-associated protein complex. Here, we demonstrate that the deletion of any of two components of the PhIL1-associated complex, PfPhIP or PfGAPM2, aborts merozoite reorientation and blocks their invasion into RBCs. The study thus provides new molecular and mechanistic insights into merozoite invasion of RBCs.
Collapse
Affiliation(s)
- Ekta Saini
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Vaibhav Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prakhar Agrawal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (AM); (PM)
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (AM); (PM)
| |
Collapse
|
4
|
Ye L, Zhao F, Yang Q, Zhang J, Li Q, Wang C, Guo Z, Yang Y, Zhu Z. OK/basigin expression on red blood cells varies between blood donors and correlates with binding of recombinant Plasmodium falciparum reticulocyte-binding protein homolog 5. Transfusion 2018; 58:2046-2053. [PMID: 29707789 DOI: 10.1111/trf.14635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recently, basigin (BSG), which carries OK antigens on red blood cells (RBCs), was reported to be the receptor of the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRh5). BSG-PfRh5 is the only essential receptor-ligand pair in P. falciparum invasion that is known to date. However, the kind of OK/BSG polymorphism involved in the selection pressure caused by P. falciparum malaria has not been determined. STUDY DESIGN AND METHODS Blood samples were collected to detect the expression of OK/BSG. The coding region of PfRh5 was cloned and expressed. Enzyme-linked immunosorbent assay-based erythrocyte binding assay was used to measure the recombinant PfRh5 (rPfRh5) binding of RBCs with different OK/BSG expressions. Sequencing of the BSG gene and quantification of the BSG mRNA were performed for selected samples. The candidate microRNAs (miRNAs), which might target the BSG gene, were obtained by miRNA sequencing. Dual-Luciferase reporter assay and overexpression of identified miRNAs were performed in K562 cells. RESULTS The rPfRh5 was successfully expressed and verified. The OK/BSG expression levels varied among blood donors and were strongly associated with rPfRh5 binding. No single-nucleotide polymorphism was related to the OK/BSG expression. A potential BSG regulator, miR-501-3p, was identified by miRNA sequencing and Dual-Luciferase assay, but was not proven to regulate the expression of BSG in K562 cells. CONCLUSION Although the mechanism of OK/BSG expression and regulation on RBCs has not been fully clarified, our findings suggest that the OK/BSG expression levels on RBCs might be related to P. falciparum invasion. Moreover, posttranscriptional regulation might play a role in controlling the OK/BSG expression.
Collapse
Affiliation(s)
- Luyi Ye
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Fengyong Zhao
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Qixiu Yang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Jiamin Zhang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Qin Li
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Chen Wang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Zhonghui Guo
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Ying Yang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Ziyan Zhu
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| |
Collapse
|
5
|
Disrupting CD147-RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum. Blood 2018; 131:1111-1121. [PMID: 29352039 DOI: 10.1182/blood-2017-08-802918] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Effective vaccines against malaria caused by Plasmodium falciparum are still lacking, and the molecular mechanism of the host-parasite interaction is not fully understood. Here we demonstrate that the interaction of RAP2, a parasite-secreted rhoptry protein that functions in the parasitophorous vacuole formation stage of the invasion, and CD147 on the host erythrocyte is essential for erythrocyte invasion by P falciparum and is independent from all previously identified interactions involved. Importantly, the blockade of the CD147-RAP2 interaction by HP6H8, a humanized CD147 antibody, completely abolished the parasite invasion with both cure and preventative functions in a humanized mouse model. Together with its long half-life on human red blood cells and its safety profile in cynomolgus monkeys, HP6H8 is the first antibody that offers an advantageous approach by targeting a more conserved late-stage parasite ligand for preventing as well as treating severe malaria.
Collapse
|
6
|
Human Cyclophilin B forms part of a multi-protein complex during erythrocyte invasion by Plasmodium falciparum. Nat Commun 2017; 8:1548. [PMID: 29146974 PMCID: PMC5691159 DOI: 10.1038/s41467-017-01638-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Invasion of human erythrocytes by Plasmodium falciparum merozoites involves multiple interactions between host receptors and their merozoite ligands. Here we report human Cyclophilin B as a receptor for PfRhopH3 during merozoite invasion. Localization and binding studies show that Cyclophilin B is present on the erythrocytes and binds strongly to merozoites. We demonstrate that PfRhopH3 binds to the RBCs and their treatment with Cyclosporin A prevents merozoite invasion. We also show a multi-protein complex involving Cyclophilin B and Basigin, as well as PfRhopH3 and PfRh5 that aids the invasion. Furthermore, we report identification of a de novo peptide CDP3 that binds Cyclophilin B and blocks invasion by up to 80%. Collectively, our data provide evidence of compounded interactions between host receptors and merozoite surface proteins and paves the way for developing peptide and small-molecules that inhibit the protein−protein interactions, individually or in toto, leading to abrogation of the invasion process. Invasion of red blood cells by Plasmodium falciparum is a complex process and relies on several receptor-ligand interactions. Here, the authors show that human cyclophilin B binds Plasmodium surface protein PfRhopH3 and that interruption of this interaction reduces invasion by 80%.
Collapse
|
7
|
Chowdhury P, Sen S, Kanjilal SD, Sengupta S. Genetic structure of two erythrocyte binding antigens of Plasmodium falciparum reveals a contrasting pattern of selection. INFECTION GENETICS AND EVOLUTION 2017; 57:64-74. [PMID: 29128519 DOI: 10.1016/j.meegid.2017.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022]
Abstract
Erythrocyte binding antigens 175 (EBA-175) and 140 (EBA-140) play key roles in erythrocyte invasion by binding to glycophorin A (GPA) and C (GPC) respectively in human malaria. Since antigenic variation in malaria endemic region is a major barrier to development of effective vaccine, we explore the nature and pattern of sequence diversity of these two vaccine candidates in Kolkata, India. Population genetic parameters based on parasite sequences representing region II of Pfeba-175 and Pfeba-140 genes were estimated using DnaSP V.5.10 and MEGA version 6.0. A novel molecular docking approach was implemented to assess the binding affinities of Kolkata Pfeba-175 variants with GPA. P. falciparum Kolkata isolates experienced a recent population expansion as documented by negative Tajima's D, Fu & Li's statistics, unimodal mismatch distribution and star-like median-joining network for both loci. Positive selection seemed to play a major role in shaping the diversity of Pfeba-175 (dN/dS=2.45, and McDonald-Kreitman P-value=0.04) with successive accumulation of Q584K/E, E592A and R664S deriving high frequency haplotypes designated here as F2KH3 and F2KH1. In silico molecular docking demonstrated that polypeptides encoded by F2KH1 and F2KH3 were capable of engaging the parasite ligand into energetically favorable interaction with GPA. Our data demonstrated emergence of Pfeba-175 sequences harboring selectively advantageous nonsynonymous substitutions on Pf3D7 sequence background in the Kolkata parasite isolates. A contrasting pattern of Pf3D7-centric expansion of parasite sequences was noted for Pfeba-140. Together, this study provides a firm genetic and biological support favoring a dominant role of EBA-175 in erythrocyte invasion.
Collapse
Affiliation(s)
- Pramita Chowdhury
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India
| | - Srikanta Sen
- Mitra Tower, Lake Town, Block-A, Kolkata 700 089, India
| | - Sumana Datta Kanjilal
- Department of Pediatric Medicine, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700 019, West Bengal, India.
| |
Collapse
|
8
|
Counihan NA, Chisholm SA, Bullen HE, Srivastava A, Sanders PR, Jonsdottir TK, Weiss GE, Ghosh S, Crabb BS, Creek DJ, Gilson PR, de Koning-Ward TF. Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. eLife 2017; 6. [PMID: 28252383 PMCID: PMC5365316 DOI: 10.7554/elife.23217] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/26/2017] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.
Collapse
Affiliation(s)
| | | | | | - Anubhav Srivastava
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Thorey K Jonsdottir
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | | | - Sreejoyee Ghosh
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Monash University, Melbourne, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, Australia.,Monash University, Melbourne, Australia
| | | |
Collapse
|
9
|
Buitrago SP, Garzón-Ospina D, Patarroyo MA. Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar J 2016; 15:501. [PMID: 27756311 PMCID: PMC5069803 DOI: 10.1186/s12936-016-1563-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 11/12/2022] Open
Abstract
Background Designing a vaccine against Plasmodium vivax has focused on selecting antigens involved in invasion mechanisms that must have domains with low polymorphism for avoiding allele-specific immune responses. The rhoptry neck protein 4 (RON4) forms part of the tight junction, which is essential in the invasion of hepatocytes and/or erythrocytes; however, little is known about this locus’ genetic diversity. Methods DNA sequences from 73 Colombian clinical isolates from pvron4 gene were analysed for characterizing their genetic diversity; pvron4 haplotype number and distribution, as well as the evolutionary forces determining diversity pattern, were assessed by population genetics and molecular evolutionary approaches. Results ron4 has low genetic diversity in P. vivax at sequence level; however, a variable amount of tandem repeats at the N-terminal region leads to extensive size polymorphism. This region seems to be exposed to the immune system. The central region has a putative esterase/lipase domain which, like the protein’s C-terminal fragment, is highly conserved at intra- and inter-species level. Both regions are under purifying selection. Conclusions pvron4 is the locus having the lowest genetic diversity described to date for P. vivax. The repeat regions in the N-terminal region could be associated with immune evasion mechanisms while the central region and the C-terminal region seem to be under functional or structural constraint. Bearing such results in mind, the PvRON4 central and/or C-terminal portions represent promising candidates when designing a subunit-based vaccine as they are aimed at avoiding an allele-specific immune response, which might limit vaccine efficacy. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1563-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sindy P Buitrago
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia.,Microbiology Postgraduate Program, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Diego Garzón-Ospina
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá D.C., Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.
| |
Collapse
|
10
|
Hierarchical phosphorylation of apical membrane antigen 1 is required for efficient red blood cell invasion by malaria parasites. Sci Rep 2016; 6:34479. [PMID: 27698395 PMCID: PMC5048298 DOI: 10.1038/srep34479] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/08/2016] [Indexed: 12/03/2022] Open
Abstract
Central to the pathogenesis of malaria is the proliferation of Plasmodium falciparum parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor-ligand interactions between the parasite and host cell. One key ligand, Apical Membrane Antigen 1 (AMA1), is a leading blood-stage vaccine and previous work indicates that phosphorylation of its cytoplasmic domain (CPD) is important to its function during invasion. Here we investigate the significance of each of the six available phospho-sites in the CPD. We confirm that the cyclic AMP/protein kinase A (PKA) signalling pathway elicits a phospho-priming step upon serine 610 (S610), which enables subsequent phosphorylation in vitro of a conserved, downstream threonine residue (T613) by glycogen synthase kinase 3 (GSK3). Both phosphorylation steps are required for AMA1 to function efficiently during invasion. This provides the first evidence that the functions of key invasion ligands of the malaria parasite are regulated by sequential phosphorylation steps.
Collapse
|
11
|
Silva LDS, Peruchetti DDB, Silva CTFD, Ferreira-DaSilva AT, Perales J, Caruso-Neves C, Pinheiro AAS. Interaction between bradykinin B2 and Ang-(1-7) Mas receptors regulates erythrocyte invasion by Plasmodium falciparum. Biochim Biophys Acta Gen Subj 2016; 1860:2438-2444. [PMID: 27431603 DOI: 10.1016/j.bbagen.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/05/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The molecular mechanisms involved in erythrocyte invasion by malaria parasite are well understood, but the contribution of host components is not. We recently reported that Ang-(1-7) impairs the erythrocytic cycle of P. falciparum through Mas receptor-mediated reduction of protein kinase A (PKA) activity. The effects of bradykinin (BK), a peptide of the kallikrein-kinin system (KKS), can be potentiated by Ang-(1-7), or angiotensin-converting enzyme (ACE) inhibitors, such as captopril. We investigated the coordinated action between renin-angiotensin system (RAS) and KKS peptides in the erythrocyte invasion by P. falciparum. METHODS We used human erythrocytes infected with P. falciparum to assess the influence of RAS and KKS peptides in the invasion of new erythrocytes. RESULTS The inhibitory effects of Ang-(1-7) were mimicked by captopril. 10(-8)M BK decreased new ring forms and this effect was sensitive to 10(-8)M HOE-140 and 10(-7)M A779, B2 and Mas receptor antagonists, respectively. However, DALBK, a B1 receptor blocker, had no effect. The inhibitory effect of Ang-(1-7) was reversed by HOE-140 and A779 at the same concentrations. Co-immunoprecipitation assay revealed an association between B2 and Mas receptors. BK also inhibited PKA activity, which was sensitive to both HOE-140 and A779. CONCLUSIONS The results suggest that B2 and Mas receptors are mediators of Ang-(1-7) and BK inhibitory effects, through a cross-signaling pathway, possibly by the formation of a heterodimer. GENERAL SIGNIFICANCE Our results describe new elements in host signaling that could be involved in parasite invasion during the erythrocyte cycle of P. falciparum.
Collapse
Affiliation(s)
- Leandro de Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo de Barros Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Jonas Perales
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Rede Proteômica do Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brazil
| | - Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brazil.
| |
Collapse
|
12
|
Yiangou L, Montandon R, Modrzynska K, Rosen B, Bushell W, Hale C, Billker O, Rayner JC, Pance A. A Stem Cell Strategy Identifies Glycophorin C as a Major Erythrocyte Receptor for the Rodent Malaria Parasite Plasmodium berghei. PLoS One 2016; 11:e0158238. [PMID: 27362409 PMCID: PMC4928779 DOI: 10.1371/journal.pone.0158238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/12/2016] [Indexed: 12/26/2022] Open
Abstract
The clinical complications of malaria are caused by the parasite expansion in the blood. Invasion of erythrocytes is a complex process that depends on multiple receptor-ligand interactions. Identification of host receptors is paramount for fighting the disease as it could reveal new intervention targets, but the enucleated nature of erythrocytes makes genetic approaches impossible and many receptors remain unknown. Host-parasite interactions evolve rapidly and are therefore likely to be species-specific. As a results, understanding of invasion receptors outside the major human pathogen Plasmodium falciparum is very limited. Here we use mouse embryonic stem cells (mESCs) that can be genetically engineered and differentiated into erythrocytes to identify receptors for the rodent malaria parasite Plasmodium berghei. Two proteins previously implicated in human malaria infection: glycophorin C (GYPC) and Band-3 (Slc4a1) were deleted in mESCs to generate stable cell lines, which were differentiated towards erythropoiesis. In vitro infection assays revealed that while deletion of Band-3 has no effect, absence of GYPC results in a dramatic decrease in invasion, demonstrating the crucial role of this protein for P. berghei infection. This stem cell approach offers the possibility of targeting genes that may be essential and therefore difficult to disrupt in whole organisms and has the potential to be applied to a variety of parasites in diverse host cell types.
Collapse
Affiliation(s)
- Loukia Yiangou
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Ruddy Montandon
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Barry Rosen
- Mouse Developmental Genetics and ES Cells Mutagenesis, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Wendy Bushell
- Cellular Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Christine Hale
- Microbial Pathogenesis, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Oliver Billker
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- * E-mail: (AP); (JCR)
| | - Alena Pance
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- * E-mail: (AP); (JCR)
| |
Collapse
|
13
|
Ahouidi AD, Amambua-Ngwa A, Awandare GA, Bei AK, Conway DJ, Diakite M, Duraisingh MT, Rayner JC, Zenonos ZA. Malaria Vaccine Development: Focusing Field Erythrocyte Invasion Studies on Phenotypic Diversity: The West African Merozoite Invasion Network (WAMIN). Trends Parasitol 2016; 32:274-283. [PMID: 26725306 PMCID: PMC7021314 DOI: 10.1016/j.pt.2015.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Erythrocyte invasion by Plasmodium falciparum merozoites is an essential step for parasite survival and proliferation. Invasion is mediated by multiple ligands, which could be promising vaccine targets. The usage and sequence of these ligands differs between parasites, yet most studies of them have been carried out in only a few laboratory-adapted lines. To understand the true extent of natural variation in invasion phenotypes and prioritize vaccine candidates on a relevant evidence base, we need to develop and apply standardized assays to large numbers of field isolates. The West African Merozoite Invasion Network (WAMIN) has been formed to meet these goals, expand training in Plasmodium phenotyping, and perform large-scale field phenotyping studies in order to prioritize blood stage vaccine candidates.
Collapse
Affiliation(s)
- Ambroise D Ahouidi
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens and Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Amy K Bei
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Mahamadou Diakite
- Faculty of Medicine, Pharmacy, and Odontostomatology, University of Bamako, Bamako, Mali
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| | - Zenon A Zenonos
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| |
Collapse
|
14
|
Weiss GE, Crabb BS, Gilson PR. Overlaying Molecular and Temporal Aspects of Malaria Parasite Invasion. Trends Parasitol 2016; 32:284-295. [DOI: 10.1016/j.pt.2015.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
|
15
|
Satchwell TJ. Erythrocyte invasion receptors for Plasmodium falciparum: new and old. Transfus Med 2016; 26:77-88. [PMID: 26862042 DOI: 10.1111/tme.12280] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
Abstract
Understanding the complex process by which the invasive form of the Plasmodium falciparum parasite, the merozoite, attaches to and invades erythrocytes as part of its blood stage life cycle represents a key area of research in the battle to combat malaria. Central to this are efforts to determine the identity of receptors on the host cell surface, their corresponding merozoite-binding proteins and the functional relevance of these binding events as part of the invasion process. This review will provide an updated summary of studies identifying receptor interactions essential for or implicated in P. falciparum merozoite invasion of human erythrocytes, highlighting the recent identification of new receptors using groundbreaking high throughput approaches and with particular focus on the properties and putative involvement of the erythrocyte proteins targeted by these invasion pathways.
Collapse
Affiliation(s)
- T J Satchwell
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, UK
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. RECENT FINDINGS Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. SUMMARY New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism, and indicate opportunities for malaria control.
Collapse
|
17
|
Dinko B, Pradel G. Immune evasion by <i>Plasmodium falciparum</i> parasites: converting a host protection mechanism for the parasite′s benefit. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aid.2016.62011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015; 270:143-55. [PMID: 26474512 DOI: 10.1016/j.mbs.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since their earliest days, humans have been struggling with infectious diseases. Caused by viruses, bacteria, protozoa, or even higher organisms like worms, these diseases depend critically on numerous intricate interactions between parasites and hosts, and while we have learned much about these interactions, many details are still obscure. It is evident that the combined host-parasite dynamics constitutes a complex system that involves components and processes at multiple scales of time, space, and biological organization. At one end of this hierarchy we know of individual molecules that play crucial roles for the survival of a parasite or for the response and survival of its host. At the other end, one realizes that the spread of infectious diseases by far exceeds specific locales and, due to today's easy travel of hosts carrying a multitude of organisms, can quickly reach global proportions. The community of mathematical modelers has been addressing specific aspects of infectious diseases for a long time. Most of these efforts have focused on one or two select scales of a multi-level disease and used quite different computational approaches. This restriction to a molecular, physiological, or epidemiological level was prudent, as it has produced solid pillars of a foundation from which it might eventually be possible to launch comprehensive, multi-scale modeling efforts that make full use of the recent advances in biology and, in particular, the various high-throughput methodologies accompanying the emerging -omics revolution. This special issue contains contributions from biologists and modelers, most of whom presented and discussed their work at the workshop From within Host Dynamics to the Epidemiology of Infectious Disease, which was held at the Mathematical Biosciences Institute at Ohio State University in April 2014. These contributions highlight some of the forays into a deeper understanding of the dynamics between parasites and their hosts, and the consequences of this dynamics for the spread and treatment of infectious diseases.
Collapse
|
19
|
de Cassan SC, Shakri AR, Llewellyn D, Elias SC, Cho JS, Goodman AL, Jin J, Douglas AD, Suwanarusk R, Nosten FH, Rénia L, Russell B, Chitnis CE, Draper SJ. Preclinical Assessment of Viral Vectored and Protein Vaccines Targeting the Duffy-Binding Protein Region II of Plasmodium Vivax. Front Immunol 2015. [PMID: 26217340 PMCID: PMC4495344 DOI: 10.3389/fimmu.2015.00348] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Malaria vaccine development has largely focused on Plasmodium falciparum; however, a reawakening to the importance of Plasmodium vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII) with the human Duffy antigen receptor for chemokines (DARC) makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5), chimpanzee adenovirus serotype 63 (ChAd63), and modified vaccinia virus Ankara (MVA) vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime or in “mixed-modality” adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants). Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII, and have recently entered clinical trials, which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.
Collapse
Affiliation(s)
| | - A Rushdi Shakri
- International Center for Genetic Engineering and Biotechnology , New Delhi , India
| | | | - Sean C Elias
- The Jenner Institute, University of Oxford , Oxford , UK
| | - Jee Sun Cho
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore , Singapore , Singapore ; Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - Anna L Goodman
- The Jenner Institute, University of Oxford , Oxford , UK
| | - Jing Jin
- The Jenner Institute, University of Oxford , Oxford , UK
| | | | - Rossarin Suwanarusk
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore , Singapore , Singapore ; Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - François H Nosten
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University , Mae Sot , Thailand
| | - Laurent Rénia
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore , Singapore , Singapore ; Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR) , Singapore , Singapore
| | - Bruce Russell
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore , Singapore , Singapore
| | - Chetan E Chitnis
- International Center for Genetic Engineering and Biotechnology , New Delhi , India
| | - Simon J Draper
- The Jenner Institute, University of Oxford , Oxford , UK
| |
Collapse
|
20
|
Srivastava A, Creek DJ, Evans KJ, De Souza D, Schofield L, Müller S, Barrett MP, McConville MJ, Waters AP. Host reticulocytes provide metabolic reservoirs that can be exploited by malaria parasites. PLoS Pathog 2015; 11:e1004882. [PMID: 26042734 PMCID: PMC4456406 DOI: 10.1371/journal.ppat.1004882] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/14/2015] [Indexed: 11/18/2022] Open
Abstract
Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5'-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites.
Collapse
Affiliation(s)
- Anubhav Srivastava
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Darren J. Creek
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Krystal J. Evans
- Walter and Eliza Hall Institute of Medical Research, Division of Infection and Immunity, Parkville, Victoria, Australia
| | - David De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Louis Schofield
- Walter and Eliza Hall Institute of Medical Research, Division of Infection and Immunity, Parkville, Victoria, Australia
- Australian Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Townsville, Australia
| | - Sylke Müller
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Michael P. Barrett
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
| | - Malcolm J. McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew P. Waters
- Wellcome Trust Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Bianchin A, Bell A, Chubb AJ, Doolan N, Leneghan D, Stavropoulos I, Shields DC, Mooney C. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion. PLoS One 2015; 10:e0127383. [PMID: 26039561 PMCID: PMC4454681 DOI: 10.1371/journal.pone.0127383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/15/2015] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to investigate the blood stage of the malaria causing parasite, Plasmodium falciparum, to predict potential protein interactions between the parasite merozoite and the host erythrocyte and design peptides that could interrupt these predicted interactions. We screened the P. falciparum and human proteomes for computationally predicted short linear motifs (SLiMs) in cytoplasmic portions of transmembrane proteins that could play roles in the invasion of the erythrocyte by the merozoite, an essential step in malarial pathogenesis. We tested thirteen peptides predicted to contain SLiMs, twelve of them palmitoylated to enhance membrane targeting, and found three that blocked parasite growth in culture by inhibiting the initiation of new infections in erythrocytes. Scrambled peptides for two of the most promising peptides suggested that their activity may be reflective of amino acid properties, in particular, positive charge. However, one peptide showed effects which were stronger than those of scrambled peptides. This was derived from human red blood cell glycophorin-B. We concluded that proteome-wide computational screening of the intracellular regions of both host and pathogen adhesion proteins provides potential lead peptides for the development of anti-malarial compounds.
Collapse
Affiliation(s)
- Alessandra Bianchin
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Angus Bell
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Anthony J. Chubb
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Nathalie Doolan
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Darren Leneghan
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
| | - Ilias Stavropoulos
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Catherine Mooney
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
22
|
Gutierrez JB, Galinski MR, Cantrell S, Voit EO. WITHDRAWN: From within host dynamics to the epidemiology of infectious disease: Scientific overview and challenges. Math Biosci 2015:S0025-5564(15)00085-1. [PMID: 25890102 DOI: 10.1016/j.mbs.2015.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Juan B Gutierrez
- Department of Mathematics, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States .
| | - Mary R Galinski
- Emory University School of Medicine, Division of Infectious Diseases, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, United States .
| | - Stephen Cantrell
- Department of Mathematics, University of Miami, Coral Gables, FL 33124, United States .
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, United States .
| |
Collapse
|
23
|
Arévalo-Pinzón G, Bermúdez M, Curtidor H, Patarroyo MA. The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J 2015; 14:106. [PMID: 25888962 PMCID: PMC4359499 DOI: 10.1186/s12936-015-0619-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different proteins derived from the membrane or the apical organelles become involved in malarial parasite invasion of host cells. Among these, the rhoptry neck proteins (RONs) interact with a protein component of the micronemes to enable the formation of a strong bond which is crucial for the parasite's successful invasion. The present study was aimed at identifying and characterizing the RON5 protein in Plasmodium vivax and evaluating its ability to bind to reticulocytes. METHODS Taking the Plasmodium falciparum and Plasmodium knowlesi RON5 amino acid sequences as template, an in-silico search was made in the P. vivax genome for identifying the orthologous gene. Different molecular tools were used for experimentally ascertaining pvron5 gene presence and transcription in P. vivax VCG-1 strain schizonts. Polyclonal antibodies against PvRON5 peptides were used for evaluating protein expression (by Western blot) and sub-cellular localization (by immunofluorescence). A 33 kDa PvRON5 fragment was expressed in Escherichia coli and used for evaluating the reactivity of sera from patients infected by P. vivax. Two assays were made for determining the RON5 recombinant fragment's ability to bind to reticulocyte-enriched human umbilical cord samples. RESULTS The pvron5 gene (3,477 bp) was transcribed in VCG-1 strain schizonts and encoded a ~133 kDa protein which was expressed in the rhoptry neck of VCG-1 strain late schizonts, together with PvRON2 and PvRON4. Polyclonal sera against PvRON5 peptides specifically detected ~85 and ~30 kDa fragments in parasite lysate, thereby suggesting proteolytic processing in this protein. Comparative analysis of VCG-1 strain PvRON5 with other P. vivax strains having different geographic localizations suggested its low polymorphism regarding other malarial antigens. A recombinant fragment of the PvRON5 protein (rPvRON5) was recognized by sera from P. vivax-infected patients and bound to red blood cells, having a marked preference for human reticulocytes. CONCLUSIONS The pvron5 gene is transcribed in the VCG-1 strain, the encoded protein is expressed at the parasite's apical pole and might be participating in merozoite invasion of host cells, taking into account its marked binding preference for human reticulocytes.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia. .,Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia.
| | - Maritza Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia. .,Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia.
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia. .,Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia.
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia. .,Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia.
| |
Collapse
|
24
|
Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NWM, Harvey KL, Fowkes FJI, Barlow PN, Rayner JC, Wright GJ, Cowman AF, Crabb BS. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 2015; 11:e1004670. [PMID: 25723550 PMCID: PMC4344246 DOI: 10.1371/journal.ppat.1004670] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Abstract
During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite’s life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite’s actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1–RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine. The development of an effective malaria vaccine is a world health priority and would be a critical step toward the control and eventual elimination of this disease. In addition, new pharmacological solutions are necessary as Plasmodium falciparum, the deadliest of the malaria-causing parasites, has developed resistance to every drug currently approved for treatment. Understanding the interactions required for the parasite to invade its erythrocyte host, as well as being valuable to our basic knowledge of parasite biology, is important for the development of drug-based therapies and vaccines. In this study we have, for the first time, filmed P. falciparum parasites invading erythrocytes while systematically blocking several specific interactions between the parasite and the erythrocyte. We have shown there is a sequential progression of specific interactions that occur in at least four distinct steps leading up to invasion. Previous vaccine attempts have targeted one or two of these steps, however, if a single vaccine were designed to block interactions at all four steps, the combined effect might so reduce invasion that parasite growth and disease progression would be arrested. A better understanding of each interaction during invasion, their role and order, can also inform the development of new anti-malarial drugs.
Collapse
Affiliation(s)
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- * E-mail: (PRG); (BSC)
| | - Tana Taechalertpaisarn
- Burnet Institute, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne, Australia
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Katherine L. Harvey
- Burnet Institute, Melbourne, Australia
- Department of Microbiology & Immunology, University of Melbourne, Australia
| | - Freya J. I. Fowkes
- Burnet Institute, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Australia
- Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Paul N. Barlow
- Schools of Chemistry and Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Alan F. Cowman
- Department of Medical Biology, University of Melbourne, Australia
- The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Microbiology & Immunology, University of Melbourne, Australia
- * E-mail: (PRG); (BSC)
| |
Collapse
|
25
|
Tonkin ML, Boulanger MJ. The shear stress of host cell invasion: exploring the role of biomolecular complexes. PLoS Pathog 2015; 11:e1004539. [PMID: 25629317 PMCID: PMC4309608 DOI: 10.1371/journal.ppat.1004539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michelle L. Tonkin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
26
|
Harvey KL, Yap A, Gilson PR, Cowman AF, Crabb BS. Insights and controversies into the role of the key apicomplexan invasion ligand, Apical Membrane Antigen 1. Int J Parasitol 2014; 44:853-7. [PMID: 25157917 DOI: 10.1016/j.ijpara.2014.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Apicomplexan parasites are obligate intracellular pathogens that cause a host of human and animal diseases. These parasites have developed a universal mechanism of invasion involving formation of a 'moving junction' that provides a stable anchoring point through which the parasite invades host cells. The composition of the moving junction, particularly the presence of the protein Apical Membrane Antigen 1 (AMA1), has recently been the subject of some controversy. In this commentary we review findings that led to the current model of the moving junction complex and dissect the major conflicts to determine whether a substantial reassessment of the role of AMA1 is justified.
Collapse
Affiliation(s)
- Katherine L Harvey
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan Yap
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Infection and Immunity Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Paul R Gilson
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Alan F Cowman
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Infection and Immunity Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Brendan S Crabb
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia; Department of Immunology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
27
|
Gellan sulfate inhibits Plasmodium falciparum growth and invasion of red blood cells in vitro. Sci Rep 2014; 4:4723. [PMID: 24740150 PMCID: PMC3989555 DOI: 10.1038/srep04723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/01/2014] [Indexed: 11/08/2022] Open
Abstract
Here, we assessed the sulfated derivative of the microbial polysaccharide gellan gum and derivatives of λ and κ-carrageenans for their ability to inhibit Plasmodium falciparum 3D7 and Dd2 growth and invasion of red blood cells in vitro. Growth inhibition was assessed by means of flow cytometry after a 96-h exposure to the inhibitors and invasion inhibition was assessed by counting ring parasites after a 20-h exposure to them. Gellan sulfate strongly inhibited invasion and modestly inhibited growth for both P. falciparum 3D7 and Dd2; both inhibitory effects exceeded those achieved with native gellan gum. The hydrolyzed λ-carrageenan and oversulfated κ-carrageenan were less inhibitory than their native forms. In vitro cytotoxicity and anticoagulation assays performed to determine the suitability of the modified polysaccharides for in vivo studies showed that our synthesized gellan sulfate had low cytotoxicity and anticoagulant activity.
Collapse
|
28
|
Pallial mucus of the oyster Crassostrea virginica regulates the expression of putative virulence genes of its pathogen Perkinsus marinus. Int J Parasitol 2014; 44:305-17. [DOI: 10.1016/j.ijpara.2014.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/10/2014] [Accepted: 01/15/2014] [Indexed: 01/11/2023]
|
29
|
Affiliation(s)
- Gavin J. Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (GJW); (JCR)
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (GJW); (JCR)
| |
Collapse
|
30
|
RH5-Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc Natl Acad Sci U S A 2013; 110:20735-40. [PMID: 24297912 DOI: 10.1073/pnas.1320771110] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum, the cause of almost all human malaria mortality, is a member of the Laverania subgenus which infects African great apes. Interestingly, Laverania parasites exhibit strict host specificity in their natural environment: P. reichenowi, P. billcollinsi, and P. gaboni infect only chimpanzees; P. praefalciparum, P. blacklocki, and P. adleri are restricted to gorillas, and P. falciparum is pandemic in humans. The molecular mechanism(s) responsible for these host restrictions are not understood, although the interaction between the parasite blood-stage invasion ligand EBA175 and the host erythrocyte receptor Glycophorin-A (GYPA) has been implicated previously. We reexamined the role of the EBA175-GYPA interaction in host tropism using recombinant proteins and biophysical assays and found that EBA175 orthologs from the chimpanzee-restricted parasites P. reichenowi and P. billcollinsi both bound to human GYPA with affinities similar to that of P. falciparum, suggesting that the EBA175-GYPA interaction is unlikely to be the sole determinant of Laverania host specificity. We next investigated the contribution of the recently discovered Reticulocyte-binding protein Homolog 5 (RH5)-Basigin (BSG) interaction in host-species selectivity and found that P. falciparum RH5 bound chimpanzee BSG with a significantly lower affinity than human BSG and did not bind gorilla BSG, mirroring the known host tropism of P. falciparum. Using site-directed mutagenesis, we identified residues in BSG that are responsible for the species specificity of PfRH5 binding. Consistent with the essential role of the PfRH5-BSG interaction in erythrocyte invasion, we conclude that species-specific differences in the BSG receptor provide a molecular explanation for the restriction of P. falciparum to its human host.
Collapse
|
31
|
Cursino-Santos JR, Halverson G, Rodriguez M, Narla M, Lobo CA. Identification of binding domains on red blood cell glycophorins for Babesia divergens. Transfusion 2013; 54:982-9. [PMID: 23944874 DOI: 10.1111/trf.12388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/13/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Invasion of red blood cells (RBCs) is one of the critical points in the lifecycle of Babesia. The parasite does not invade other host cells. Earlier work has shown that GPA and GPB function as putative receptors during parasite invasion. The primary focus of this study was the delineation of parasite-binding domains on GPA and GPB. STUDY DESIGN AND METHODS The assay of choice to validate molecules that participate in invasion is an inhibition of invasion assay, in which changes in parasitemia are assessed relative to a wild-type assay (no inhibitors). Inhibition of invasion can be achieved by modification of different components of the assay or by the addition of competitors of the molecules that participate in invasion. In this study purified antibody fragments to various domains on GPA and GPB were tested for magnitude of inhibition of parasite invasion. Effects on invasion were monitored by assessment of Giemsa-stained smears every 24 hours. RESULTS Among 10 selected antibodies directed at various epitopes on GPA and GPB, antibodies directed against GPA(M) epitopes had the most severe effect (up to 35%) on inhibition of invasion, followed by antibodies directed against GPB(S) epitope (up to 24%). CONCLUSION This study confirms the role of RBC glycophorins A and B in Babesia divergens invasion and shows that the GPA(M) and GPB(S) epitopes are likely to play an important role in the entry process.
Collapse
Affiliation(s)
- Jeny R Cursino-Santos
- Department of Blood-Borne Parasites, Lindsley Kimball Research Institute, New York Blood Center, New York, New York
| | | | | | | | | |
Collapse
|
32
|
Acquired antibodies to merozoite antigens in children from Uganda with uncomplicated or severe Plasmodium falciparum malaria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1170-80. [PMID: 23740926 DOI: 10.1128/cvi.00156-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria can present itself as an uncomplicated or severe disease. We have here studied the quantity and quality of antibody responses against merozoite antigens, as well as multiplicity of infection (MOI), in children from Uganda. We found higher levels of IgG antibodies toward erythrocyte-binding antigen EBA181, MSP2 of Plasmodium falciparum 3D7 and FC27 (MSP2-3D7/FC27), and apical membrane antigen 1 (AMA1) in patients with uncomplicated malaria by enzyme-linked immunosorbent assay (ELISA) but no differences against EBA140, EBA175, MSP1, and reticulocyte-binding protein homologues Rh2 and Rh4 or for IgM against MSP2-3D7/FC27.Patients with uncomplicated malaria were also shown to have higher antibody affinities for AMA1 by surface plasmon resonance (SPR). Decreased invasion of two clinical P. falciparum isolates in the presence of patient plasma correlated with lower initial parasitemia in the patients, in contrast to comparisons of parasitemia to ELISA values or antibody affinities, which did not show any correlations. Analysis of the heterogeneity of the infections revealed a higher MOI in patients with uncomplicated disease, with the P. falciparum K1 MSP1 (MSP1-K1) and MSP2-3D7 being the most discriminative allelic markers. Higher MOIs also correlated positively with higher antibody levels in several of the ELISAs. In conclusion, certain antibody responses and MOIs were associated with differences between uncomplicated and severe malaria. When different assays were combined, some antibodies, like those against AMA1, seemed particularly discriminative. However, only decreased invasion correlated with initial parasitemia in the patient, signaling the importance of functional assays in understanding development of immunity against malaria and in evaluating vaccine candidates.
Collapse
|
33
|
Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One 2013; 8:e63888. [PMID: 23717506 PMCID: PMC3662707 DOI: 10.1371/journal.pone.0063888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/07/2013] [Indexed: 02/02/2023] Open
Abstract
Background Three members of the Plasmodium vivax merozoite surface protein-3 (PvMSP3) family (PvMSP3-α, PvMSP3-β and PvMSP3-γ) were initially characterized and later shown to be part of a larger highly diverse family, encoded by a cluster of genes arranged head-to-tail in chromosome 10. PvMSP3-α and PvMSP3-β have become genetic markers in epidemiological studies, and are being evaluated as vaccine candidates. This research investigates the gene and protein expression of the entire family and pertinent implications. Methodology/Principal Findings A 60 kb multigene locus from chromosome 10 in P. vivax (Salvador 1 strain) was studied to classify the number of pvmsp3 genes present, and compare their transcription, translation and protein localization patterns during blood-stage development. Eleven pvmsp3 paralogs encode an N-terminal NLRNG signature motif, a central domain containing repeated variable heptad sequences, and conserved hydrophilic C-terminal features. One additional ORF in the locus lacks these features and was excluded as a member of the family. Transcripts representing all eleven pvmsp3 genes were detected in trophozoite- and schizont-stage RNA. Quantitative immunoblots using schizont-stage extracts and antibodies specific for each PvMSP3 protein demonstrated that all but PvMSP3.11 could be detected. Homologs were also detected by immunoblot in the closely related simian species, P. cynomolgi and P. knowlesi. Immunofluorescence assays confirmed that eight of the PvMSP3s are present in mature schizonts. Uniquely, PvMSP3.7 was expressed exclusively at the apical end of merozoites. Conclusion/Significance Specific proteins were detected representing the expression of 10 out of 11 genes confirmed as members of the pvmsp3 family. Eight PvMSP3s were visualized surrounding merozoites. In contrast, PvMSP3.7 was detected at the apical end of the merozoites. Pvmsp3.11 transcripts were present, though no corresponding protein was detected. PvMSP3 functions remain unknown. The ten expressed PvMSP3s are predicted to have unique and complementary functions in merozoite biology.
Collapse
|
34
|
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured? J Trop Med 2013; 2013:493834. [PMID: 23690791 PMCID: PMC3652195 DOI: 10.1155/2013/493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Collapse
|
35
|
Bartholdson SJ, Crosnier C, Bustamante LY, Rayner JC, Wright GJ. Identifying novel Plasmodium falciparum erythrocyte invasion receptors using systematic extracellular protein interaction screens. Cell Microbiol 2013; 15:1304-12. [PMID: 23617720 PMCID: PMC3798119 DOI: 10.1111/cmi.12151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/11/2013] [Accepted: 04/22/2013] [Indexed: 12/22/2022]
Abstract
The invasion of host erythrocytes by the parasite Plasmodium falciparum initiates the blood stage of infection responsible for the symptoms of malaria. Invasion involves extracellular protein interactions between host erythrocyte receptors and ligands on the merozoite, the invasive form of the parasite. Despite significant research effort, many merozoite surface ligands have no known erythrocyte binding partner, most likely due to the intractable biochemical nature of membrane-tethered receptor proteins and their interactions. The few receptor–ligand pairs that have been described have largely relied on sourcing erythrocytes from patients with rare blood groups, a serendipitous approach that is unsatisfactory for systematically identifying novel receptors. We have recently developed a scalable assay called AVEXIS (for AVidity-based EXtracellular Interaction Screen), designed to circumvent the technical difficulties associated with the identification of extracellular protein interactions, and applied it to identify erythrocyte receptors for orphan P. falciparum merozoite ligands. Using this approach, we have recently identified Basigin (CD147) and Semaphorin-7A (CD108) as receptors for RH5 and MTRAP respectively. In this essay, we review techniques used to identify Plasmodium receptors and discuss how they could beapplied in the future to identify novel receptors both for Plasmodium parasites but also other pathogens.
Collapse
Affiliation(s)
- S Josefin Bartholdson
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | | |
Collapse
|
36
|
Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol 2013; 29:228-36. [PMID: 23570755 DOI: 10.1016/j.pt.2013.03.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 11/26/2022]
Abstract
Apicomplexan parasites, including the Plasmodium species that cause malaria, contain three unusual apical secretory organelles (micronemes, rhoptries, and dense granules) that are required for the infection of new host cells. Because of their specialized nature, the majority of proteins secreted from these organelles are unique to Apicomplexans and are consequently poorly characterized. Although rhoptry proteins of Plasmodium have been implicated in events central to invasion, there is growing evidence to suggest that proteins originating from this organelle play key roles downstream of parasite entry into the host cell. Here we discuss recent work that has advanced our knowledge of rhoptry protein trafficking and function, and highlight areas of research that require further investigation.
Collapse
|
37
|
Arévalo-Pinzón G, Curtidor H, Muñoz M, Suarez D, Patarroyo MA, Patarroyo ME. Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. Vaccine 2013; 31:1830-7. [PMID: 23398931 DOI: 10.1016/j.vaccine.2013.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/12/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
Identifying the minimal functional regions of the proteins which the malaria parasite uses when invading its host cells constitutes the first and most important approach in an effective design for a chemically synthesised, multi-antigen, multi-stage, subunit-based vaccine. This work has been aimed at identifying the PfRh1 protein binding regions (residues 1-2580) belonging to the reticulocyte binding-like (RBL or P. falciparum Rh [PfRh]) family implicated in the parasite's alternative target cell invasion routes. Eighteen peptide regions (called high activity binding peptides - HABPs) binding to red blood cells (RBC) were identified in peptides mapped in a highly robust, specific and sensitive receptor-ligand assay. These HABPs were saturable in the experimental conditions assayed here and most had an alpha helix structure. Polymorphism studies revealed that only six of the eighteen HABPs identified had changes at amino acid level amongst the seven P. falciparum strains evaluated. Most HABPs' specific binding became altered when RBC were treated with neuraminidase, chymotrypsin and trypsin, suggesting differing sensitivity for RBC membrane receptors. After ascertaining that the Rh1 gene was transcribed and expressed in late-stage schizonts of the FCB-2 strain, invasion inhibition assays were carried out. When most of these HABPs were assayed in P. falciparum in vitro culture they were able to inhibit high percentages of FVO strain invasion compared to low inhibition percentages observed with the FCB-2 strain. This data shows small Rh1 regions' participation during invasion and suggests that these units should be included in further immunological and structural studies.
Collapse
|
38
|
Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, Kappe SHI. Total and putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics 2013; 12:1127-43. [PMID: 23325771 DOI: 10.1074/mcp.m112.024505] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria infections of mammals are initiated by the transmission of Plasmodium salivary gland sporozoites during an Anopheles mosquito vector bite. Sporozoites make their way through the skin and eventually to the liver, where they infect hepatocytes. Blocking this initial stage of infection is a promising malaria vaccine strategy. Therefore, comprehensively elucidating the protein composition of sporozoites will be invaluable in identifying novel targets for blocking infection. Previous efforts to identify the proteins expressed in Plasmodium mosquito stages were hampered by the technical difficulty of separating the parasite from its vector; without effective purifications, the large majority of proteins identified were of vector origin. Here we describe the proteomic profiling of highly purified salivary gland sporozoites from two Plasmodium species: human-infective Plasmodium falciparum and rodent-infective Plasmodium yoelii. The combination of improved sample purification and high mass accuracy mass spectrometry has facilitated the most complete proteome coverage to date for a pre-erythrocytic stage of the parasite. A total of 1991 P. falciparum sporozoite proteins and 1876 P. yoelii sporozoite proteins were identified, with >86% identified with high sequence coverage. The proteomic data were used to confirm the presence of components of three features critical for sporozoite infection of the mammalian host: the sporozoite motility and invasion apparatus (glideosome), sporozoite signaling pathways, and the contents of the apical secretory organelles. Furthermore, chemical labeling and identification of proteins on live sporozoites revealed previously uncharacterized complexity of the putative sporozoite surface-exposed proteome. Taken together, the data constitute the most comprehensive analysis to date of the protein expression of salivary gland sporozoites and reveal novel potential surface-exposed proteins that might be valuable targets for antibody blockage of infection.
Collapse
Affiliation(s)
- Scott E Lindner
- Malaria Program, Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, Washington 98109, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Boyle MJ, Wilson DW, Beeson JG. New approaches to studying Plasmodium falciparum merozoite invasion and insights into invasion biology. Int J Parasitol 2012; 43:1-10. [PMID: 23220090 DOI: 10.1016/j.ijpara.2012.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
Merozoite invasion of human red blood cells by Plasmodium falciparum is essential for blood stage asexual replication and the development of malaria disease. Despite this, many of the processes involved in invasion are poorly understood. Recent advances have been made in methods to isolate viable merozoites for studies of invasion. The application of these approaches is providing new insights into the kinetics of invasion and merozoite survival, as well as proteins and interactions involved in invasion, and will facilitate the development and testing of anti-merozoite vaccines and the identification of invasion-inhibitory compounds with potential for drug development. This review discusses these recent advances and considers potential avenues for future research.
Collapse
Affiliation(s)
- Michelle J Boyle
- The Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
40
|
Baum J, Saliba KJ, Cooke BM. Editorial--Molecular Approaches to Malaria 2012 (MAM 2012). Int J Parasitol 2012; 42:517. [PMID: 22656266 DOI: 10.1016/j.ijpara.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|