1
|
Wong Y, Rosa BA, Becker L, Camberis M, LeGros G, Zhan B, Bottazzi ME, Fujiwara RT, Ritmejeryte E, Laha T, Chaiyadet S, Taweethavonsawat P, Brindley PJ, Bracken BK, Giacomin PR, Mitreva M, Loukas A. Proteomic characterization and comparison of the infective and adult life stage secretomes from Necator americanus and Ancylostoma ceylanicum. PLoS Negl Trop Dis 2025; 19:e0012780. [PMID: 39832284 PMCID: PMC11745416 DOI: 10.1371/journal.pntd.0012780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance. Subunit vaccines based on proteins excreted and secreted (ES) by hookworms that reduce worm numbers and associated disease burden are a promising management strategy to overcome these limitations. However, studies on the ES proteomes of hookworms have mainly described proteins from the adult life stage which may preclude the opportunity to target the infective larva. Here, we employed high resolution mass spectrometry to identify 103 and 57 ES proteins from the infective third larvae stage (L3) as well as 106 and 512 ES proteins from the adult N. americanus and A. ceylanicum respectively. Comparisons between these developmental stages identified 91 and 41 proteins uniquely expressed in the L3 ES products of N. americanus and A. ceylanicum, respectively. We characterized these proteins based on functional annotation, KEGG pathway analysis, InterProScan signature and gene ontology. We also performed reciprocal BLAST analysis to identify orthologs across species for both the L3 and adult stages and identified five orthologous proteins in both life stages and 15 proteins that could be detected only in the L3 stage of both species. Last, we performed a three-way reciprocal BLAST on the L3 proteomes from both hookworm species together with a previously reported L3 proteome from the rodent hookworm Nippostrongylus brasiliensis, and identified eight L3 proteins that could be readily deployed for testing using well established rodent models. This novel characterization of L3 proteins and taxonomic conservation across hookworm species provides a raft of potential candidates for vaccine discovery for prevention of hookworm infection and disease.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Australia
| | - Bruce A. Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Luke Becker
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham LeGros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ricardo T. Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edita Ritmejeryte
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyanan Taweethavonsawat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Bethany K. Bracken
- Charles River Analytics, Cambridge, Massachusetts, United States of America
| | - Paul R. Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| |
Collapse
|
2
|
The potential for vaccines against scour worms of small ruminants. Int J Parasitol 2020; 50:533-553. [PMID: 32569640 DOI: 10.1016/j.ijpara.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
This review addresses the research landscape regarding vaccines against scour worms, particularly Trichostrongylus spp. and Teladorsagia circumcincta. The inability of past research to deliver scour-worm vaccines with reliable and reproducible efficacy has been due in part to gaps in knowledge concerning: (i) host-parasite interactions leading to development of type-2 immunity, (ii) definition of an optimal suite of parasite antigens, and (iii) rational formulation and administration to induce protective immunity against gastrointestinal nematodes (GIN) at the site of infestation. Recent 'omics' developments enable more systematic analyses. GIN genomes are reaching completion, facilitating "reverse vaccinology" approaches that have been used successfully for the Rhipicephalus australis vaccine for cattle tick, while methods for gene silencing and editing in GIN enable identification and validation of potential vaccine antigens. We envisage that any efficacious scour worm vaccine(s) would be adopted similarly to "Barbervax™" within integrated parasite management schemes. Vaccines would therefore effectively parallel the use of resistant animals, and reduce the frequency of drenching and pasture contamination. These aspects of integration, efficacy and operation require updated models and validation in the field. The conclusion of this review outlines an approach to facilitate an integrated research program.
Collapse
|
3
|
Loer CM, Calvo AC, Watschinger K, Werner-Felmayer G, O'Rourke D, Stroud D, Tong A, Gotenstein JR, Chisholm AD, Hodgkin J, Werner ER, Martinez A. Cuticle integrity and biogenic amine synthesis in Caenorhabditis elegans require the cofactor tetrahydrobiopterin (BH4). Genetics 2015; 200:237-53. [PMID: 25808955 PMCID: PMC4423366 DOI: 10.1534/genetics.114.174110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/12/2015] [Indexed: 11/18/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is the natural cofactor of several enzymes widely distributed among eukaryotes, including aromatic amino acid hydroxylases (AAAHs), nitric oxide synthases (NOSs), and alkylglycerol monooxygenase (AGMO). We show here that the nematode Caenorhabditis elegans, which has three AAAH genes and one AGMO gene, contains BH4 and has genes that function in BH4 synthesis and regeneration. Knockout mutants for putative BH4 synthetic enzyme genes lack the predicted enzymatic activities, synthesize no BH4, and have indistinguishable behavioral and neurotransmitter phenotypes, including serotonin and dopamine deficiency. The BH4 regeneration enzymes are not required for steady-state levels of biogenic amines, but become rate limiting in conditions of reduced BH4 synthesis. BH4-deficient mutants also have a fragile cuticle and are generally hypersensitive to exogenous agents, a phenotype that is not due to AAAH deficiency, but rather to dysfunction in the lipid metabolic enzyme AGMO, which is expressed in the epidermis. Loss of AGMO or BH4 synthesis also specifically alters the sensitivity of C. elegans to bacterial pathogens, revealing a cuticular function for AGMO-dependent lipid metabolism in host-pathogen interactions.
Collapse
Affiliation(s)
- Curtis M Loer
- Department of Biology, University of San Diego, San Diego, California, 92110
| | - Ana C Calvo
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Katrin Watschinger
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Gabriele Werner-Felmayer
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Delia O'Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Amy Tong
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Jennifer R Gotenstein
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Andrew D Chisholm
- Division of Biological Sciences, University of California, San Diego, California 92093
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
4
|
Chisholm AD. Epidermal Wound Healing in the Nematode Caenorhabditis elegans. Adv Wound Care (New Rochelle) 2015; 4:264-271. [PMID: 25945288 PMCID: PMC4398003 DOI: 10.1089/wound.2014.0552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 01/03/2023] Open
Abstract
Significance: Healing of epidermal wounds is a fundamentally conserved process found in essentially all multicellular organisms. Studies of anatomically simple and genetically tractable model invertebrates can illuminate the roles of key genes and mechanisms in wound healing. Recent Advances: The nematode skin is composed of a simple epithelium, the epidermis (also known as hypodermis), and an associated extracellular cuticle. Nematodes likely have a robust capacity for epidermal repair; yet until recently, relatively few studies have directly analyzed wound healing. Here we review epidermal wound responses and repair in the model nematode Caenorhabditis elegans. Critical Issues: Wounding the epidermis triggers a cutaneous innate immune response and wound closure. The innate immune response involves upregulation of a suite of antimicrobial peptides. Wound closure involves a Ca2+-triggered rearrangement of the actin cytoskeleton. These processes appear to be initiated independently, yet, their coordinated activity allows the animal to survive otherwise fatal skin wounds. Future Directions: Unanswered questions include the nature of the damage-associated molecular patterns sensed by the epidermis, the signaling pathways relaying Ca2+ to the cytoskeleton, and the mechanisms of permeability barrier repair.
Collapse
Affiliation(s)
- Andrew D. Chisholm
- Section of Cell and Developmental Biology, Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California
| |
Collapse
|
5
|
Animal health aspects of adaptation to climate change: beating the heat and parasites in a warming Europe. Animal 2013; 7 Suppl 2:333-45. [PMID: 23739475 DOI: 10.1017/s175173111300075x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Weather patterns in northern European regions have changed noticeably over the past several decades, featuring warmer, wetter weather with more extreme events. The climate is projected to continue on this trajectory for the foreseeable future, even under the most modest warming scenarios. Such changes will have a significant impact on livestock farming, both directly through effects on the animals themselves, and indirectly through changing exposure to pests and pathogens. Adaptation options aimed at taking advantage of new opportunities and/or minimising the risks of negative impacts will, in themselves, have implications for animal health and welfare. In this review, we consider the potential consequences of future intensification of animal production, challenges associated with indoor and outdoor rearing of animals and aspects of animal transportation as key examples. We investigate the direct and indirect effects of climate change on the epidemiology of important livestock pathogens, with a particular focus on parasitic infections, and the likely animal health consequences associated with selected adaptation options. Finally, we attempt to identify key gaps in our knowledge and suggest future research priorities.
Collapse
|