1
|
Huang W, Ruyechan MC, Ralston KS. Work with me here: variations in genome content and emerging genetic tools in Entamoeba histolytica. Trends Parasitol 2025; 41:401-415. [PMID: 40251060 DOI: 10.1016/j.pt.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/20/2025]
Abstract
Entamoeba histolytica is the causative agent of amoebiasis, a significant source of morbidity and mortality in developing nations. Despite this, E. histolytica is understudied, leading to few treatment options and a poor understanding of pathogenesis. Genetic tools have historically been limited. By applying modern approaches, it was recently revealed that the genome is aneuploid. Interestingly, gene expression levels do not correlate with ploidy, potentially highlighting the importance of RNAi in gene regulation. Characterization of the RNAi pathway has led to potent tools for targeted gene knockdown, and the advent of RNAi-based forward genetics. CRISPR/Cas tools for editing the endogenous genome are an exciting possibility on the horizon. We celebrate the gains that have made E. histolytica tractable and anticipate continued advances.
Collapse
Affiliation(s)
- Wesley Huang
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Maura C Ruyechan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Sohn HJ, Kim JH, Kim K, Park S, Shin HJ. De Novo Transcriptome Profiling of Naegleria fowleri Trophozoites and Cysts via RNA Sequencing. Pathogens 2023; 12:pathogens12020174. [PMID: 36839446 PMCID: PMC9959186 DOI: 10.3390/pathogens12020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Naegleria fowleri is a pathogenic free-living amoeba, commonly found around the world in warm, fresh water and soil. N. fowleri trophozoites can infect humans by entering the brain through the nose and causing usually fatal primary amebic meningoencephalitis (PAM). Trophozoites can encyst to survive under unfavorable conditions such as cold temperature, starvation, and desiccation. Recent technological advances in genomics and bioinformatics have provided unique opportunities for the identification and pre-validation of pathogen-related and environmental resistance through improved understanding of the biology of pathogenic N. fowleri trophozoites and cysts at a molecular level. However, genomic and transcriptomic data on differential expression genes (DEGs) between trophozoites and cysts of N. fowleri are very limited. Here, we report transcriptome Illumina RNA sequencing (RNA-seq) for N. fowleri trophozoites and cysts and de novo transcriptome assembly. RNA-seq libraries were generated from RNA extracted from N. fowleri sampled from cysts, and a reference transcriptome was generated through the assembly of trophozoite data. In the database, the assembly procedure resulted in 42,220 contigs with a mean length of 11,254 nucleotides and a C+G content of 37.21%. RNA sequencing showed that 146 genes in cysts of N. fowleri indicated 2-fold upregulation in comparison with trophozoites of N. fowleri, and 163 genes were downregulated; these genes were found to participate in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The KEGG pathway included metabolic (131 sequences) and genetic information processing (66 sequences), cellular processing (43 sequences), environmental information processing (22 sequences), and organismal system (20 sequences) pathways. On the other hand, an analysis of 11,254 sequences via the Gene Ontology database showed that their annotations contained 1069 biological processes including the cellular process (228 sequences) and metabolic process (214 sequences); 923 cellular components including cells (240 sequences) and cell parts (225 sequences); and 415 molecular functions including catalytic activities (195 sequences) and binding processes (186 sequences). Differential expression levels increased in cysts of N. fowleri compared to trophozoites of N. fowleri, which were mainly categorized as serine/threonine protease, kinase, and lipid metabolism-related proteins. These results may provide new insights into pathogen-related genes or environment-resistant genes in the pathogenesis of N. fowleri.
Collapse
Affiliation(s)
- Hae-Jin Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Jong-Hyun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyongmin Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Sun Park
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Republic of Korea
- Correspondence:
| |
Collapse
|
3
|
Gene expression of axenically-isolated clinical Entamoeba histolytica strains and its impact on disease severity of amebiasis. PLoS Pathog 2022; 18:e1010880. [PMID: 36178974 PMCID: PMC9555656 DOI: 10.1371/journal.ppat.1010880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/12/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
The severity of Entamoeba histolytica infection is determined by host immunology, pathogen virulence, and the intestinal environment. Conventional research for assessing pathogen virulence has been mainly performed using laboratory strains, such as a virulent HM-1: IMSS (HM-1) and an avirulent Rahman, under various artificial environmental conditions because of the difficulties of axenic isolation of the clinical strains. However, it is still unclear whether scientific knowledge based on laboratory strains are universally applicable to the true pathogenesis. Hereby, we performed transcriptomic analysis of clinical strains from patients with different degrees of disease severity, as well as HM-1 under different conditions. Even after several months of axenization, Clinical strains show the distinct profile in gene expression during in vitro passage, moreover, difference between any 2 of these strains was much greater than the changes on the liver challenge. Interestingly, 26 DEGs, which were closely related to the biological functions, were oppositely up- or down regulated between virulent Ax 19 (liver abscess) and avirulent Ax 11 (asymptomatic carrier). Additionally, RNAseq using laboratory strain (HM1) showed more than half of genes were differently expressed between continuously in vitro passaged HM1 (in vitro HM1) and periodically liver passaged HM1 (virulent HM1), which was much greater than the changes on the liver passage of virulent HM1. Also, transcriptomic analysis of a laboratory strain revealed that continuous environmental stress enhances its virulence via a shift in its gene expression profile. Changes in gene expression patterns on liver abscess formation were not consistent between clinical and laboratory strains. Various genotypes of Entamoeba histolytica are prevalent in the field. Some papers suggest the association between genotypes and disease severity. However, most studies for assessing pathogen virulence were performed using laboratory strains, such as virulent HM1: IMSS (HM1) and avirulent Rahman, because axenic isolation from clinical specimen is technically complex and time consuming. This transcriptomic analysis using clinical strains from the patients with different clinical severity, as well as the laboratory strain HM1 under different conditions showed unique gene expression patterns. Following things were confirmed; 1. Virulent clinical strain maintains its virulence with unique gene expression pattern after axenic isolation, 2. Continuous environmental stress enhances its virulence via the accumulation of altered gene expressions, and 3. Changes in gene expression on the liver abscess formation are not always the same amongst strains. For an accurate understanding the pathogenesis, comprehensive analyses of various clinical strains under different environmental conditions should be promoted.
Collapse
|
4
|
Abstract
Entamoeba histolytica is a parasitic protozoan and the causative agent of amoebiasis in humans. Amoebiasis has a high incidence of disease, resulting in ∼67,900 deaths per year, and it poses a tremendous burden of morbidity and mortality in children. Despite its importance, E. histolytica is an understudied parasite. These protocols describe the in vitro growth, maintenance, cryopreservation, genetic manipulation, and cloning of axenic E. histolytica trophozoites. There has been significant progress in genetic manipulation of this organism over the past decade, and these protocols outline the ways in which these advances can be implemented. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Culturing E. histolytica trophozoites Support Protocol 1: Preparation of TYI-S-33 medium Support Protocol 2: Lot testing of Biosate peptone and adult bovine serum for TYI-S-33 medium Basic Protocol 2: Cryopreservation of E. histolytica trophozoites Support Protocol 3: Preparation of cryoprotectant solutions Basic Protocol 3: Transfection of E. histolytica trophozoites with Attractene reagent Basic Protocol 4: Creating clonal lines using limiting dilution Basic Protocol 5: Knockdown of one to two genes with trigger-induced RNA interference Support Protocol 4: Evaluation of RNA interference knockdown with reverse transcriptase PCR Basic Protocol 6: E. histolytica growth curves.
Collapse
Affiliation(s)
- Rene L. Suleiman
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA
| | - Katherine S. Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, USA
| |
Collapse
|
5
|
Bettadapur A, Hunter SS, Suleiman RL, Ruyechan MC, Huang W, Barbieri CG, Miller HW, Tam TSY, Settles ML, Ralston KS. Establishment of quantitative RNAi-based forward genetics in Entamoeba histolytica and identification of genes required for growth. PLoS Pathog 2021; 17:e1010088. [PMID: 34843592 PMCID: PMC8716031 DOI: 10.1371/journal.ppat.1010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/29/2021] [Accepted: 11/03/2021] [Indexed: 01/05/2023] Open
Abstract
While Entamoeba histolytica remains a globally important pathogen, it is dramatically understudied. The tractability of E. histolytica has historically been limited, which is largely due to challenging features of its genome. To enable forward genetics, we constructed and validated the first genome-wide E. histolytica RNAi knockdown mutant library. This library allows for Illumina deep sequencing analysis for quantitative identification of mutants that are enriched or depleted after selection. We developed a novel analysis pipeline to precisely define and quantify gene fragments. We used the library to perform the first RNAi screen in E. histolytica and identified slow growth (SG) mutants. Among genes targeted in SG mutants, many had annotated functions consistent with roles in cellular growth or metabolic pathways. Some targeted genes were annotated as hypothetical or lacked annotated domains, supporting the power of forward genetics in uncovering functional information that cannot be gleaned from databases. While the localization of neither of the proteins targeted in SG1 nor SG2 mutants could be predicted by sequence analysis, we showed experimentally that SG1 localized to the cytoplasm and cell surface, while SG2 localized to the cytoplasm. Overexpression of SG1 led to increased growth, while expression of a truncation mutant did not lead to increased growth, and thus aided in defining functional domains in this protein. Finally, in addition to establishing forward genetics, we uncovered new details of the unusual E. histolytica RNAi pathway. These studies dramatically improve the tractability of E. histolytica and open up the possibility of applying genetics to improve understanding of this important pathogen.
Collapse
Affiliation(s)
- Akhila Bettadapur
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Samuel S. Hunter
- Genome Center, University of California, Davis, California, United States of America
| | - Rene L. Suleiman
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Maura C. Ruyechan
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Wesley Huang
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | | | - Hannah W. Miller
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Tammie S. Y. Tam
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| | - Matthew L. Settles
- Genome Center, University of California, Davis, California, United States of America
| | - Katherine S. Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, United States of America
| |
Collapse
|
6
|
Possible role played by the SINE2 element in gene regulation, as demonstrated by differential processing and polyadenylation in avirulent strains of E. histolytica. Antonie van Leeuwenhoek 2021; 114:209-221. [PMID: 33394209 DOI: 10.1007/s10482-020-01504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Entamoeba histolytica represents a useful model in parasitic organisms due to its complex genomic organization and survival mechanisms. To counteract pathogenic organisms, it is necessary to characterize their molecular biology to design new strategies to combat them. In this report, we investigated a less-known genetic element, short interspersed nuclear element 2 (SINE2), that is present in this ameba and is highly transcribed and polyadenylated. In this study, we show that in two different nonvirulent strains of E. histolytica, SINE2 is differentially processed into two transcript fragments, that is, a full-length 560-nt fragment and a shorter 393-nt fragment bearing an approximately 18-nt polyadenylation tail. Sequence analysis of the SINE2 transcript showed that a Musashi-like protein may bind to it. Also, two putative Musashi-like sequences were identified on the transcript. Semiquantitative expression analysis of the two Musashi-like proteins identified in the E. histolytica genome (XP_648918 and XP_649094) showed that XP_64094 is overexpressed in the nonvirulent strains tested. The information available in the literature and the results presented in this report indicate that SINE2 may affect other genes, as observed with the epigenetic silencing of the G3 strain, by an antisense mechanism or via RNA-protein interactions that may ultimately be involved in the phenotype of nonvirulent strains of E. histolytica.
Collapse
|
7
|
Zhang H, Ehrenkaufer GM, Hall N, Singh U. Identification of oligo-adenylated small RNAs in the parasite Entamoeba and a potential role for small RNA control. BMC Genomics 2020; 21:879. [PMID: 33297948 PMCID: PMC7724847 DOI: 10.1186/s12864-020-07275-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/24/2020] [Indexed: 11/15/2022] Open
Abstract
Background The RNA interference (RNAi) pathway is a gene regulation mechanism that utilizes small RNA (sRNA) and Argonaute (Ago) proteins to silence target genes. Our previous work identified a functional RNAi pathway in the protozoan parasite Entamoeba histolytica, including abundant 27 nt antisense sRNA populations which associate with EhAgo2–2 protein. However, there is lack of understanding about the sRNAs that are bound to two other EhAgos (EhAgo2–1 and 2–3), and the mechanism of sRNA regulation itself is unclear in this parasite. Therefore, identification of the entire pool of sRNA species and their sub-populations that associate with each individual EhAgo protein would be a major step forward. Results In the present study, we sequenced sRNA libraries from both total RNAs and EhAgo bound RNAs. We identified a new population of 31 nt sRNAs that results from the addition of a non-templated 3–4 adenosine nucleotides at the 3′-end of the 27 nt sRNAs, indicating a non-templated RNA-tailing event in the parasite. The relative abundance of these two sRNA populations is linked to the efficacy of gene silencing for the target gene when parasites are transfected with an RNAi-trigger construct, indicating that non-templated sRNA-tailing likely play a role in sRNA regulation in this parasite. We found that both sRNA populations (27 nt and 31 nt) are present in the related parasite Entamoeba invadens, and are unchanged during the development. In sequencing the sRNAs associating with the three EhAgo proteins, we observed that despite distinct cellular localization, all three EhAgo sRNA libraries contain 27 nt sRNAs with 5′-polyphosphate (5′-polyP) structure and share a largely overlapping sRNA repertoire. In addition, our data showed that a fraction of 31 nt sRNAs associate with EhAgo2–2 but not with its mutant protein (C-terminal deletion), nor other two EhAgos, indicating a specific EhAgo site may be required for sRNA modification process in the parasite. Conclusion We identified a new population of sRNA with non-templated oligo-adenylation modification, which is the first such observation amongst single celled protozoan parasites. Our sRNA sequencing libraries provide the first comprehensive sRNA dataset for all three Entamoeba Ago proteins, which can serve as a useful database for the amoeba community. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07275-6.
Collapse
Affiliation(s)
- Hanbang Zhang
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, S-143 Grant Building, 300 Pasteur Drive, Stanford, CA, 94305-5107, USA
| | - Gretchen M Ehrenkaufer
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, S-143 Grant Building, 300 Pasteur Drive, Stanford, CA, 94305-5107, USA
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Upinder Singh
- Division of Infectious Diseases, Department of Internal Medicine, Stanford University School of Medicine, S-143 Grant Building, 300 Pasteur Drive, Stanford, CA, 94305-5107, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, 94305-5107, USA.
| |
Collapse
|
8
|
Hasan MM, Teixeira JE, Lam YW, Huston CD. Coactosin Phosphorylation Controls Entamoeba histolytica Cell Membrane Protrusions and Cell Motility. mBio 2020; 11:e00660-20. [PMID: 32753489 PMCID: PMC7407079 DOI: 10.1128/mbio.00660-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.
Collapse
Affiliation(s)
- Muhammad M Hasan
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Proteomics Facility, Vermont Genetics Network, University of Vermont, Burlington, Vermont, USA
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
9
|
Functional Characterization of Entamoeba histolytica Argonaute Proteins Reveals a Repetitive DR-Rich Motif Region That Controls Nuclear Localization. mSphere 2019; 4:4/5/e00580-19. [PMID: 31619501 PMCID: PMC6796981 DOI: 10.1128/msphere.00580-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The RNA interference (RNAi) pathway regulates gene expression in many eukaryotic organisms. Argonaute (Ago) proteins, together with bound small RNAs (sRNAs), are key effectors that mediate gene silencing function. However, there is limited knowledge of Ago proteins and their functions in nonmodel systems. In the protozoan parasite Entamoeba histolytica, RNAi is a robust means for stable gene silencing mediated via large populations of antisense sRNAs. Here, we report functional characterization of three Ago proteins in E. histolytica (EhAgo2-1, EhAgo2-2, and EhAgo2-3). Our data show that each EhAgo protein has a distinct subcellular localization and binds 27-nucleotide (nt) sRNAs and that the localization of EhAgo proteins is altered in response to stress conditions. Via mutagenesis analyses, we demonstrated that the Ago PAZ (Piwi/Argonaute/Zwille) domain in all three EhAgos is essential for sRNA binding. With mutation of the PAZ domain in EhAgo2-2, there was no effect on the nuclear localization of the protein but a strong phenotype and a growth defect. We further show that EhAgo2-2 contains an unusual repetitive DR-rich (aspartic acid, arginine-rich) motif region which functions as a nuclear localization signal (NLS) and is both necessary and sufficient to mediate nuclear localization. Overall, our data delineate the localization and sRNA binding features of the three E. histolytica Ago proteins and demonstrate that the PAZ domain is necessary for sRNA binding. The repetitive DR-rich motif region in EhAgo2-2 has not previously been defined in other systems, which adds to the novel observations that can be made when studies of the RNAi pathway are extended to nonmodel systems.IMPORTANCE The protozoan parasite Entamoeba histolytica, which causes amebiasis and affects over 50 million people worldwide, contains an important RNAi pathway for gene silencing. Gene silencing via the RNAi pathway is mediated by the Argonaute (Ago) proteins. However, we lack knowledge on Ago function(s) in this nonmodel system. In this paper, we discovered that three E. histolytica Ago proteins (EhAgo2-1, EhAgo2-2, and EhAgo2-3) all bind 27-nt small RNAs and have distinct subcellular localizations, which change in response to stress conditions. The EhAgos bind small RNA populations via their PAZ domains. An unusual repetitive DR-rich motif region is identified in EhAgo2-2 that functions as a nuclear localization signal. Our results show for the first time an active nuclear transport process of the EhAgo2-2 RNA-induced silencing complex (RISC) in this parasite. These data add to the novel observations that can be made when studies of the RNAi pathway are extended to nonmodel systems.
Collapse
|
10
|
Trogocytosis by Entamoeba histolytica Mediates Acquisition and Display of Human Cell Membrane Proteins and Evasion of Lysis by Human Serum. mBio 2019; 10:mBio.00068-19. [PMID: 31040235 PMCID: PMC6495370 DOI: 10.1128/mbio.00068-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Entamoeba histolytica causes amoebiasis, a potentially fatal diarrheal disease. Abscesses in organs such as the liver can occur when amoebae are able to breach the intestinal wall and travel through the bloodstream to other areas of the body. Therefore, understanding how E. histolytica evades immune detection is of great interest. Here, we demonstrate for the first time that E. histolytica acquires and displays human cell membrane proteins by taking “bites” of human cell material in a process named trogocytosis (“trogo-” means “nibble”), and that this allows amoebae to survive in human serum. Display of acquired proteins through trogocytosis has been previously characterized only in mammalian immune cells. Our study suggests that this is a more general feature of trogocytosis not restricted to immune cells and broadens our knowledge of eukaryotic biology. These findings also reveal a novel strategy for immune evasion by a pathogen and may apply to the pathogenesis of other infections. We previously showed that Entamoeba histolytica kills human cells through a mechanism that we termed trogocytosis (“trogo-” means “nibble”), due to its resemblance to trogocytosis in other organisms. In microbial eukaryotes like E. histolytica, trogocytosis is used to kill host cells. In multicellular eukaryotes, trogocytosis is used for cell killing and cell-cell communication in a variety of contexts. Thus, nibbling is an emerging theme in cell-cell interactions both within and between species. When trogocytosis occurs between mammalian immune cells, cell membrane proteins from the nibbled cell are acquired and displayed by the recipient cell. In this study, we tested the hypothesis that through trogocytosis, amoebae acquire and display human cell membrane proteins. We demonstrate that E. histolytica acquires and displays human cell membrane proteins through trogocytosis and that this leads to protection from lysis by human serum. Protection from human serum occurs only after amoebae have undergone trogocytosis of live cells but not phagocytosis of dead cells. Likewise, mutant amoebae defective in phagocytosis, but unaltered in their capacity to perform trogocytosis, are protected from human serum. Our studies are the first to reveal that amoebae can display human cell membrane proteins and suggest that the acquisition and display of membrane proteins is a general feature of trogocytosis. These studies have major implications for interactions between E. histolytica and the immune system and also reveal a novel strategy for immune evasion by a pathogen. Since other microbial eukaryotes use trogocytosis for cell killing, our findings may apply to the pathogenesis of other infections.
Collapse
|
11
|
Matthiesen J, Lender C, Haferkorn A, Fehling H, Meyer M, Matthies T, Tannich E, Roeder T, Lotter H, Bruchhaus I. Trigger-induced RNAi gene silencing to identify pathogenicity factors of Entamoeba histolytica. FASEB J 2018; 33:1658-1668. [PMID: 30169111 DOI: 10.1096/fj.201801313r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, Entamoeba histolytica clones derived from isolate HM-1:IMSS that differ in their pathogenicity were identified. Whereas some clones induce amoebic liver abscesses (ALAs) in animal models of amoebiasis, others provoke only minimal liver lesions. Based on transcriptome studies of pathogenic and nonpathogenic clones, differentially expressed genes associated with reduced or increased liver pathology can be identified. Here, to analyze the influence of these genes on ALA formation in more detail, an RNA interference-trigger mediated silencing approach was used. Using newly identified trigger sequences, the expression of 15 genes was silenced. The respective transfectants were analyzed for their ability to induce liver destruction in the murine model for the disease. Silencing of EHI_180390 (encoding an AIG1 protein) increased liver pathology induced by a nonpathogenic parent clone, whereas silencing of EHI_127670 (encoding a hypothetical protein) decreased the pathogenicity of an initially pathogenic parent clone. Additional phenotypical in vitro analyses of EHI_127670 silencing as well as overexpression transfectants indicated that this molecule has an influence on size, growth, and cysteine peptidase activity of E. histolytica. This work describes an example of how the sole operational method for effective gene silencing in E. histolytica can be used for comprehensive analyses of putative pathogenicity factors.-Matthiesen, J., Lender, C., Haferkorn, A., Fehling, H., Meyer, M., Matthies, T., Tannich, E., Roeder, T., Lotter, H., Bruchhaus, I. Trigger-induced RNAi gene silencing to identify pathogenicity factors of Entamoeba histolytica.
Collapse
Affiliation(s)
- Jenny Matthiesen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Corinna Lender
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Anne Haferkorn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Helena Fehling
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Martin Meyer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Thorben Matthies
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; and
| |
Collapse
|
12
|
Invadosome-Mediated Human Extracellular Matrix Degradation by Entamoeba histolytica. Infect Immun 2018; 86:IAI.00287-18. [PMID: 29914929 DOI: 10.1128/iai.00287-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/13/2018] [Indexed: 02/03/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite that causes invasive amoebiasis when it invades the human colon. Tissue invasion requires a shift from an adhesive lifestyle in the colonic lumen to a motile and extracellular matrix (ECM) degradative lifestyle in the colonic tissue layers. How the parasite regulates these two lifestyles is largely unknown. Previously, we showed that silencing the E. histolytica surface metalloprotease EhMSP-1 results in parasites that are hyperadherent and less motile. To better understand the molecular mechanism of this phenotype, we now show that the parasites with EhMSP-1 silenced cannot efficiently form specialized dot-like polymerized actin (F actin) structures upon interaction with the human ECM component fibronectin. We characterized these F actin structures and found that they are very short-lived structures that are the sites of fibronectin degradation. Motile mammalian cells form F actin structures called invadosomes that are similar in stability and function to these amoebic actin dots. Therefore, we propose here that E. histolytica forms amoebic invadosomes to facilitate colonic tissue invasion.
Collapse
|