1
|
Yoon JH, Han A, Lee SY. Salt can antagonize the lethal effect of weak organic acids against Escherichia coli O157:H7 inoculated in laboratory culture media and acidic/acidified foods. Food Res Int 2025; 212:116387. [PMID: 40382031 DOI: 10.1016/j.foodres.2025.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
From the last several decades, previous studies have found that salt can increase the resistance of Gram-negative human-pathogenic bacteria to acidic environments in the presence of weak organic acids (OAAs), significantly increasing or extending the survival of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Shigella sp., and Cronobacter sp., particularly in acidified foods. These pathogenic bacteria may be inclined to be less reduced after washing or dipping in weak OAAs combined with salt, thereby posing a potential food safety hazard. Particularly, it can be plausible that E. coli has varied and different mechanisms to cope with the detrimental effects imposed by weak OAAs with one carboxyl functional group by the addition of ionic or nonionic solutes, including salt, KCl, sucrose, glutamate, and fructose. Nevertheless, little is known about the intracellular physiological response of Gram-negative bacteria subjected to a simultaneous challenge with weak OAAs and salt, as well as the underlying principles of an antagonistic phenomenon (protection) affordable to E. coli by the combined treatments. Therefore, the objectives of this review are to introduce the current propensity of individual or combined treatments with weak OAAs and salt for inactivating food-borne pathogens, to compile a selected area of studies focusing on the antagonistic interaction between short-chained weak OAAs and salt for inhibiting or eliminating Gram-negative bacteria, and then to uncover the putative mechanisms mediating the improved resistance of E. coli O157:H7 to weak acids by the salt amendment.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Sunchon National University, 235 Jungang-ro, Suncheon-si, Jeollanam-do 57922, Republic of Korea
| | - Areum Han
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
2
|
Geng J, Long J, Hu Q, Liu M, Ge A, Du Y, Zhang T, Jin Y, Yang H, Chen S, Duan G. Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions. Microb Pathog 2025; 200:107295. [PMID: 39805345 DOI: 10.1016/j.micpath.2025.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs). Compelling evidence suggests a large role for the cfa gene and CFAs in bacterial adaptive responses. This review provides an overview of the relationship of CFAs with bacterial cell membrane properties and physiological functions, including the roles of cell membrane fluidity, stability, and permeability to protons, bacterial growth, acid resistance, and especially in bacterial antibiotic resistance and pathogenicity. The dysregulation and inhibition of the cfa gene may serve as potential therapeutic targets against bacterial drug resistance and pathogenicity. Therefore, elucidating the biological function of CFAs during the stationary growth phase therefore provides invaluable insights into the bacterial pathogenesis and the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengyue Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Anmin Ge
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China; Penglai Center for Disease Control and Prevention, Yantai, China
| | - Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Li Z, Huang Z, Gu P. Response of Escherichia coli to Acid Stress: Mechanisms and Applications-A Narrative Review. Microorganisms 2024; 12:1774. [PMID: 39338449 PMCID: PMC11434309 DOI: 10.3390/microorganisms12091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Change in pH in growth conditions is the primary stress for most neutralophilic bacteria, including model microorganism Escherichia coli. However, different survival capacities under acid stress in different bacteria are ubiquitous. Research on different acid-tolerance mechanisms in microorganisms is important for the field of combating harmful gut bacteria and promoting fermentation performance of industrial strains. Therefore, this study aimed to carry out a narrative review of acid-stress response mechanism of E. coli discovered so far, including six AR systems, cell membrane protection, and macromolecular repair. In addition, the application of acid-tolerant E. coli in industry was illustrated, such as production of industrial organic acid and developing bioprocessing for industrial wastes. Identifying these aspects will open the opportunity for discussing development aspects for subsequent research of acid-tolerant mechanisms and application in E. coli.
Collapse
Affiliation(s)
| | | | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; (Z.L.); (Z.H.)
| |
Collapse
|
4
|
Santamaría-Aguirre J, Jacho D, Méndez MA, Poveda A, Carrión J, Fanarraga ML. Solid Lipid Nanoparticles Enhancing the Leishmanicidal Activity of Delamanid. Pharmaceutics 2023; 16:41. [PMID: 38258053 PMCID: PMC10818933 DOI: 10.3390/pharmaceutics16010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Leishmaniasis, a zoonotic parasitic disease transmitted by infected sandflies, impacts nearly 1 million people yearly and is endemic in many countries across Asia, Africa, the Americas, and the Mediterranean; despite this, it remains a neglected disease with limited effective treatments, particularly in impoverished communities with limited access to healthcare. This study aims to repurpose approved drugs for an affordable leishmaniasis treatment. After the screening of potential drug candidates by reviewing databases and utilizing molecular docking analysis, delamanid was chosen to be incorporated into solid lipid nanoparticles (SLNPs). Both in cellulo and in vivo tests confirmed the successful payload release within macrophages and through the epidermis following topical application on murine skin. The evaluation of macrophages infected with L. infantum amastigotes showed that the encapsulated delamanid exhibited greater leishmanicidal activity compared with the free drug. The process of encapsulating delamanid in SLNPs, as demonstrated in this study, places a strong emphasis on employing minimal technology, ensuring energy efficiency, cost-effectiveness, and reproducibility. It enables consistent, low-cost production of nanomedicines, even on a small scale, offering a promising step toward more accessible and effective leishmaniasis treatments.
Collapse
Affiliation(s)
- Javier Santamaría-Aguirre
- Departamento de Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain
- Grupo de Nanomedicina, Instituto Valdecilla—IDIVAL, 39011 Santander, Spain
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Daniela Jacho
- Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Miguel A. Méndez
- Departamento de Ingeniería Química, Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Ana Poveda
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Javier Carrión
- Grupo ICPVet, Departamento Sanidad Animal, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Mónica L. Fanarraga
- Departamento de Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain
- Grupo de Nanomedicina, Instituto Valdecilla—IDIVAL, 39011 Santander, Spain
| |
Collapse
|
5
|
Basu S, Pawlowic MC, Hsu FF, Thomas G, Zhang K. Ethanolaminephosphate cytidylyltransferase is essential for survival, lipid homeostasis and stress tolerance in Leishmania major. PLoS Pathog 2023; 19:e1011112. [PMID: 37506172 PMCID: PMC10411802 DOI: 10.1371/journal.ppat.1011112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Glycerophospholipids including phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are vital components of biological membranes. Trypanosomatid parasites of the genus Leishmania can acquire PE and PC via de novo synthesis and the uptake/remodeling of host lipids. In this study, we investigated the ethanolaminephosphate cytidylyltransferase (EPCT) in Leishmania major, which is the causative agent for cutaneous leishmaniasis. EPCT is a key enzyme in the ethanolamine branch of the Kennedy pathway which is responsible for the de novo synthesis of PE. Our results demonstrate that L. major EPCT is a cytosolic protein capable of catalyzing the formation of CDP-ethanolamine from ethanolamine-phosphate and cytidine triphosphate. Genetic manipulation experiments indicate that EPCT is essential in both the promastigote and amastigote stages of L. major as the chromosomal null mutants cannot survive without the episomal expression of EPCT. This differs from our previous findings on the choline branch of the Kennedy pathway (responsible for PC synthesis) which is required only in promastigotes but not amastigotes. While episomal EPCT expression does not affect promastigote proliferation under normal conditions, it leads to reduced production of ethanolamine plasmalogen or plasmenylethanolamine, the dominant PE subtype in Leishmania. In addition, parasites with episomal EPCT exhibit heightened sensitivity to acidic pH and starvation stress, and significant reduction in virulence. In summary, our investigation demonstrates that proper regulation of EPCT expression is crucial for PE synthesis, stress response, and survival of Leishmania parasites throughout their life cycle.
Collapse
Affiliation(s)
- Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Mattie C. Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Geoff Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
6
|
Zhu X, Guo Z, Wang N, Liu J, Zuo Y, Li K, Song C, Song Y, Gong C, Xu X, Yuan F, Zhang L. Environmental stress stimulates microbial activities as indicated by cyclopropane fatty acid enhancement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162338. [PMID: 36813189 DOI: 10.1016/j.scitotenv.2023.162338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Soil microbial responses to environmental stress remain a critical question in microbial ecology. The content of cyclopropane fatty acid (CFA) in cytomembrane has been widely used to evaluate environmental stress on microorganisms. Here, we used CFA to investigate the ecological suitability of microbial communities and found a stimulating impact of CFA on microbial activities during wetland reclamation in Sanjiang Plain, Northeastern China. The seasonality of environmental stress resulted in the fluctuation of CFA content in the soil, which suppressed microbial activities due to nutrient loss upon wetland reclamation. After land conversion, the aggravation of temperature stress to microbes increased the CFA content by 5 % (autumn) to 163 % (winter), which led to the suppression of microbial activities by 7 %-47 %. By contrast, the warmer soil temperature and permeability decreased the CFA content by 3 % to 41 % and consequently aggravated the microbial reduction by 15 %-72 % in spring and summer. Complex microbial communities of 1300 CFA-produced species were identified using a sequencing approach, suggesting that soil nutrients dominated the differentiation in these microbial community structures. Further analysis with structural equation modeling highlighted the important function of CFA content to environmental stress and the stimulating influence of CFA induced by environmental stress on microbial activities. Our study shows the biological mechanisms of seasonal CFA content for microbial adaption to environmental stress under wetland reclamation. It advances our knowledge of microbial physiology affecting soil element cycling caused by anthropogenic activities.
Collapse
Affiliation(s)
- Xinhao Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Ziyu Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Jianzhao Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunjiang Zuo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Chao Gong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Fenghui Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Lihua Zhang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
7
|
Xu J, Guo L, Zhao N, Meng X, Zhang J, Wang T, Wei X, Fan M. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry. Crit Rev Biotechnol 2023; 43:258-274. [PMID: 35114869 DOI: 10.1080/07388551.2021.2025335] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acid-resistant bacteria are more and more widely used in industrial production due to their unique acid-resistant properties. In order to survive in various acidic environments, acid-resistant bacteria have developed diverse protective mechanisms such as sensing acid stress and signal transduction, maintaining intracellular pH homeostasis by controlling the flow of H+, protecting and repairing biological macromolecules, metabolic modification, and cross-protection. Acid-resistant bacteria have broad biotechnological application prospects in the food field. The production of fermented foods with high acidity and acidophilic enzymes are the main applications of this kind of bacteria in the food industry. Their acid resistance modules can also be used to construct acid-resistant recombinant engineering strains for special purposes. However, they can also cause negative effects on foods, such as spoilage and toxicity. Herein, the aim of this paper is to summarize the research progress of molecular mechanisms against acid stress of acid-resistant bacteria. Moreover, their effects on the food industry were also discussed. It is useful to lay a foundation for broadening our understanding of the physiological metabolism of acid-resistant bacteria and better serving the food industry.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Guo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Tieru Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Leroux M, Luquain-Costaz C, Lawton P, Azzouz-Maache S, Delton I. Fatty Acid Composition and Metabolism in Leishmania Parasite Species: Potential Biomarkers or Drug Targets for Leishmaniasis? Int J Mol Sci 2023; 24:ijms24054702. [PMID: 36902138 PMCID: PMC10003364 DOI: 10.3390/ijms24054702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Fatty acids have received growing interest in Leishmania biology with the characterization of the enzymes allowing the complete fatty acid synthesis of this trypanosomatid parasite. This review presents a comparative analysis of the fatty acid profiles of the major classes of lipids and phospholipids in different species of Leishmania with cutaneous or visceral tropism. Specificities relating to the parasite forms, resistance to antileishmanial drugs, and host/parasite interactions are described as well as comparisons with other trypanosomatids. Emphasis is placed on polyunsaturated fatty acids and their metabolic and functional specificities, in particular, their conversion into oxygenated metabolites that are inflammatory mediators able to modulate metacyclogenesis and parasite infectivity. The impact of lipid status on the development of leishmaniasis and the potential of fatty acids as therapeutic targets or candidates for nutritional interventions are discussed.
Collapse
Affiliation(s)
- Marine Leroux
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Céline Luquain-Costaz
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
| | - Philippe Lawton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Samira Azzouz-Maache
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Isabelle Delton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
- Correspondence:
| |
Collapse
|
9
|
Parreira de Aquino G, Mendes Gomes MA, Köpke Salinas R, Laranjeira-Silva MF. Lipid and fatty acid metabolism in trypanosomatids. MICROBIAL CELL 2021; 8:262-275. [PMID: 34782859 PMCID: PMC8561143 DOI: 10.15698/mic2021.11.764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Trypanosomiases and leishmaniases are neglected tropical diseases that have been spreading to previously non-affected areas in recent years. Identification of new chemotherapeutics is needed as there are no vaccines and the currently available treatment options are highly toxic and often ineffective. The causative agents for these diseases are the protozoan parasites of the Trypanosomatidae family, and they alternate between invertebrate and vertebrate hosts during their life cycles. Hence, these parasites must be able to adapt to different environments and compete with their hosts for several essential compounds, such as amino acids, vitamins, ions, carbohydrates, and lipids. Among these nutrients, lipids and fatty acids (FAs) are essential for parasite survival. Trypanosomatids require massive amounts of FAs, and they can either synthesize FAs de novo or scavenge them from the host. Moreover, FAs are the major energy source during specific life cycle stages of T. brucei, T. cruzi, and Leishmania. Therefore, considering the distinctive features of FAs metabolism in trypanosomatids, these pathways could be exploited for the development of novel antiparasitic drugs. In this review, we highlight specific aspects of lipid and FA metabolism in the protozoan parasites T. brucei, T. cruzi, and Leishmania spp., as well as the pathways that have been explored for the development of new chemotherapies.
Collapse
Affiliation(s)
| | | | - Roberto Köpke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Arya R, Dhembla C, Makde RD, Sundd M, Kundu S. An overview of the fatty acid biosynthesis in the protozoan parasite Leishmania and its relevance as a drug target against leishmaniasis. Mol Biochem Parasitol 2021; 246:111416. [PMID: 34555376 DOI: 10.1016/j.molbiopara.2021.111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is one of the fast-growing parasitic diseases worldwide. The treatment of this fatal disease presents a daunting challenge because of its adverse effects, necessity for long-term treatment regime, unavailability of functional drugs, emergence of drug resistance and the related expenditure. This calls for an urgent need for novel drugs and the evaluation of new targets. Proteins of the fatty acid biosynthetic pathway are validated as drug targets in pathogenic bacteria and certain viruses. Likewise, this pathway has been speculated as a suitable target against parasite infections. Fatty acid synthesis in parasites seems to be very complex and distinct from the counterpart mammalian host due to the presence of unique mechanisms for fatty acid biosynthesis and acquisition. In recent times, there have been few evidences of the existence of this pathway in the bloodstream form of some pathogens. The fatty acid biosynthesis thus presents a viable and attractive target for emerging therapeutics. Understanding the mechanisms underlying fatty acid metabolism is key to identifying a potential drug target. However, investigations in this direction are still limited and this article attempts to outline the existing knowledge, while highlighting the scope and relevance of the fatty acid biosynthetic pathway as a drug target. This review highlights the advances in the treatment of leishmaniasis, the importance of lipids in the pathogen, known facts about the fatty acid biosynthesis in Leishmania and how this pathway can be manipulated to combat leishmaniasis, suggesting novel drug targets.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
11
|
Molecular mapping and candidate gene analysis of the semi-dominant gene Vestigial glume1 in maize. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Amiri Moghaddam J, Dávila-Céspedes A, Kehraus S, Crüsemann M, Köse M, Müller CE, König GM. Cyclopropane-Containing Fatty Acids from the Marine Bacterium Labrenzia sp. 011 with Antimicrobial and GPR84 Activity. Mar Drugs 2018; 16:md16100369. [PMID: 30297608 PMCID: PMC6213206 DOI: 10.3390/md16100369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022] Open
Abstract
Bacteria of the family Rhodobacteraceae are widespread in marine environments and known to colonize surfaces, such as those of e.g., oysters and shells. The marine bacterium Labrenzia sp. 011 is here investigated and it was found to produce two cyclopropane-containing medium-chain fatty acids (1, 2), which inhibit the growth of a range of bacteria and fungi, most effectively that of a causative agent of Roseovarius oyster disease (ROD), Pseudoroseovarius crassostreae DSM 16950. Additionally, compound 2 acts as a potent partial, β-arrestin-biased agonist at the medium-chain fatty acid-activated orphan G-protein coupled receptor GPR84, which is highly expressed on immune cells. The genome of Labrenzia sp. 011 was sequenced and bioinformatically compared with those of other Labrenzia spp. This analysis revealed several cyclopropane fatty acid synthases (CFAS) conserved in all Labrenzia strains analyzed and a putative gene cluster encoding for two distinct CFASs is proposed as the biosynthetic origin of 1 and 2.
Collapse
Affiliation(s)
| | | | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | - Meryem Köse
- Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Gabriele Maria König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|