1
|
Goodnight SR, McCoy MW. Cannibalism and competition can increase parasite abundance for parasites with complex life history strategies. Ecology 2024; 105:e4325. [PMID: 38859696 DOI: 10.1002/ecy.4325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 06/12/2024]
Abstract
Ecological interactions among hosts are critical to consider when predicting disease dynamics. Most theory predicts that intraguild predation (IGP) and cannibalism negatively impact parasite populations, but this is based primarily on assumptions of simple or single-host life cycles. Here we investigate the effects of cannibalism in a size-structured host population on two digenean trematodes that have complex, multihost life cycles. A high incidence of cannibalism among paratenic hosts produced higher parasite infection loads and abundance, whereas cannibalism among obligate hosts reduced parasite abundances. We attributed this difference to trophic transmission aggregating parasites in larger, potentially fitter hosts and also to transmission among paratenic hosts via cannibalism. Moreover, we found evidence of indirect competitive interactions between parasites that can also increase infections at small scales. Our results show there are multiple mechanisms through which high cannibalism environments can benefit parasites that use paratenic hosts and trophic transfer to complete their life cycles.
Collapse
Affiliation(s)
- Sarah R Goodnight
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Michael W McCoy
- Department of Biology, Florida Atlantic University, Harbor Branch Oceanographic Institute, Fort Pierce, Florida, USA
| |
Collapse
|
2
|
Thieltges DW, Johnson PTJ, van Leeuwen A, Koprivnikar J. Effects of predation risk on parasite-host interactions and wildlife diseases. Ecology 2024; 105:e4315. [PMID: 38679953 PMCID: PMC11147705 DOI: 10.1002/ecy.4315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 05/01/2024]
Abstract
Landscapes of fear can determine the dynamics of entire ecosystems. In response to perceived predation risk, prey can show physiological, behavioral, or morphological trait changes to avoid predation. This in turn can indirectly affect other species by modifying species interactions (e.g., altered feeding), with knock-on effects, such as trophic cascades, on the wider ecosystem. While such indirect effects stemming from the fear of predation have received extensive attention for herbivore-plant and predator-prey interactions, much less is known about how they alter parasite-host interactions and wildlife diseases. In this synthesis, we present a conceptual framework for how predation risk-as perceived by organisms that serve as hosts-can affect parasite-host interactions, with implications for infectious disease dynamics. By basing our approach on recent conceptual advances with respect to predation risk effects, we aim to expand this general framework to include parasite-host interactions and diseases. We further identify pathways through which parasite-host interactions can be affected, for example, through altered parasite avoidance behavior or tolerance of hosts to infections, and discuss the wider relevance of predation risk for parasite and host populations, including heuristic projections to population-level dynamics. Finally, we highlight the current unknowns, specifically the quantitative links from individual-level processes to population dynamics and community structure, and emphasize approaches to address these knowledge gaps.
Collapse
Affiliation(s)
- David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Groningen Institute for Evolutionary Life-Sciences, GELIFES, University of Groningen, Groningen, The Netherlands
| | - Pieter T J Johnson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Anieke van Leeuwen
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Janet Koprivnikar
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Schumacher GA, Pyle BR, Minchella DJ, Vannatta JT. Order and timing of infection with different parasite life stages impacts host and parasite life histories. Parasitol Res 2024; 123:187. [PMID: 38634931 DOI: 10.1007/s00436-024-08205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Co-exposure to multiple parasites can alter parasite success and host life history when compared to single infections. These infection outcomes can be affected by the order of parasite arrival, the host immune response, and the interspecific interactions among co-infecting parasites. In this study, we examined how the arrival order of two trematode parasites, Schistosoma mansoni and Echinostoma caproni, influenced parasite ecology and the life history of their snail host, Biomphalaria glabrata. Snail hosts were exposed to E. caproni cercariae before, with, and after their exposure to S. mansoni miracidia. We then measured the effects of this timing on infection prevalence, infection intensity of E. caproni metacercariae, and cercarial output of S. mansoni, as well as on snail reproduction and survival. Snails infected only with S. mansoni and snails exposed to E. caproni after S. mansoni both shed more cercariae than simultaneously exposed snails. Additionally, S. mansoni prevalence was lower in snails that were first exposed to E. caproni compared to snails that were exposed to E. caproni after S. mansoni. Moreover, snails exposed to E. caproni before S. mansoni did not differ in their survival compared to control snails, whereas simultaneously exposed snails and snails exposed to E. caproni after S. mansoni had lower survival than control snails. Combined, this prevalence and survival data suggest a potential protective role of early E. caproni exposure. The timing of E. caproni exposure impacts S. mansoni establishment and reproduction, but host survival patterns are likely driven by S. mansoni prevalence alone.
Collapse
Affiliation(s)
- Grace A Schumacher
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Bailey R Pyle
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Dennis J Minchella
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - J Trevor Vannatta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biological and Health Sciences, Crown College, Saint Bonifacius, MN, USA
| |
Collapse
|
4
|
Schwantes U. Impact of anthropogenous environmental factors on the marine ecosystem of trophically transmitted helminths and hosting seabirds: Focus on North Atlantic, North Sea, Baltic and the Arctic seas. Helminthologia 2023; 60:300-326. [PMID: 38222492 PMCID: PMC10787638 DOI: 10.2478/helm-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/21/2023] [Indexed: 01/16/2024] Open
Abstract
Alongside natural factors, human activities have a major impact on the marine environment and thus influence processes in vulnerable ecosystems. The major purpose of this review is to summarise the current understanding as to how manmade factors influence the marine biocenosis of helminths, their intermediate hosts as well as seabirds as their final hosts. Moreover, it highlights current knowledge gaps regarding this ecosystem, which should be closed in order to gain a more complete understanding of these interactions. This work is primarily focused on helminths parasitizing seabirds of the North Atlantic and the Arctic Ocean. The complex life cycles of seabird helminths may be impacted by fishing and aquaculture, as they interfere with the abundance of fish and seabird species, while the latter also affects the geographical distribution of intermediate hosts (marine bivalve and fish species), and may therefore alter the intertwined marine ecosystem. Increasing temperatures and seawater acidification as well as environmental pollutants may have negative or positive effects on different parts of this interactive ecosystem and may entail shifts in the abundance or regional distribution of parasites and/or intermediate and final hosts. Organic pollutants and trace elements may weaken the immune system of the hosting seabirds and hence affect the final host's ability to control the endoparasites. On the other hand, in some cases helminths seem to function as a sink for trace elements resulting in decreased concentrations of heavy metals in birds' tissues. Furthermore, this article also describes the role of helminths in mass mortality events amongst seabird populations, which beside natural causes (weather, viral and bacterial infections) have anthropogenous origin as well (e.g. oil spills, climate change, overfishing and environmental pollution).
Collapse
Affiliation(s)
- U. Schwantes
- Verein Jordsand zum Schutz der Seevögel und der Natur e.V., Ahrensburg, Germany
| |
Collapse
|
5
|
Abstract
In 1978, the theory behind helminth parasites having the potential to regulate the abundance of their host populations was formalized based on the understanding that those helminth macroparasites that reduce survival or fecundity of the infected host population would be among the forces limiting unregulated host population growth. Now, 45 years later, a phenomenal breadth of factors that directly or indirectly affect the host-helminth interaction has emerged. Based largely on publications from the past 5 years, this review explores the host-helminth interaction from three lenses: the perspective of the helminth, the host, and the environment. What biotic and abiotic as well as social and intrinsic host factors affect helminths? What are the negative, and positive, implications for host populations and communities? What are the larger-scale implications of the host-helminth dynamic on the environment, and what evidence do we have that human-induced environmental change will modify this dynamic? The overwhelming message is that context is everything. Our understanding of second-, third-, and fourth-level interactions is extremely limited, and we are far from drawing generalizations about the myriad of microbe-helminth-host interactions.Yet the intricate, co-evolved balance and complexity of these interactions may provide a level of resilience in the face of global environmental change. Hopefully, this albeit limited compilation of recent research will spark new interdisciplinary studies, and application of the One Health approach to all helminth systems will generate new and testable conceptual frameworks that encompass our understanding of the host-helminth-environment triad.
Collapse
Affiliation(s)
- M E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, QuebecH9X 3V9, Canada
| |
Collapse
|
6
|
Grunberg RL, Joyner BN, Mitchell CE. Historical contingency in parasite community assembly: Community divergence results from early host exposure to symbionts and ecological drift. PLoS One 2023; 18:e0285129. [PMID: 37192205 DOI: 10.1371/journal.pone.0285129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
Host individuals are commonly coinfected with multiple parasite species that may interact to shape within-host parasite community structure. In addition to within-host species interactions, parasite communities may also be structured by other processes like dispersal and ecological drift. The timing of dispersal (in particular, the temporal sequence in which parasite species infect a host individual) can alter within-host species interactions, setting the stage for historical contingency by priority effects, but how persistently such effects drive the trajectory of parasite community assembly is unclear, particularly under continued dispersal and ecological drift. We tested the role of species interactions under continued dispersal and ecological drift by simultaneously inoculating individual plants of tall fescue with a factorial combination of three symbionts (two foliar fungal parasites and a mutualistic endophyte), then deploying the plants in the field and tracking parasite communities as they assembled within host individuals. In the field, hosts were exposed to continued dispersal from a common pool of parasites, which should promote convergence in the structure of within-host parasite communities. Yet, analysis of parasite community trajectories found no signal of convergence. Instead, parasite community trajectories generally diverged from each other, and the magnitude of divergence depended on the initial composition of symbionts within each host, indicating historical contingency. Early in assembly, parasite communities also showed evidence of drift, revealing another source of among-host divergence in parasite community structure. Overall, these results show that both historical contingency and ecological drift contributed to divergence in parasite community assembly within hosts.
Collapse
Affiliation(s)
- Rita L Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooklynn N Joyner
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Charles E Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
7
|
Hiillos AL, Rony I, Rueckert S, Knott KE. Coinfection patterns of two marine apicomplexans are not associated with genetic diversity of their polychaete host. J Eukaryot Microbiol 2023; 70:e12932. [PMID: 35711085 PMCID: PMC10084031 DOI: 10.1111/jeu.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 05/08/2022] [Indexed: 01/13/2023]
Abstract
Coinfections of two or more parasites within one host are more of a rule than an exception in nature. Interactions between coinfecting parasites can greatly affect their abundance and prevalence. Characteristics of the host, such as genetic diversity, can also affect the infection dynamics of coinfecting parasites. Here, we investigate for the first time the association of coinfection patterns of two marine apicomplexans, Rhytidocystis sp. and Selenidium pygospionis, with the genetic diversity of their host, the polychaete Pygospio elegans, from natural populations. Host genetic diversity was determined with seven microsatellite loci and summarized as allelic richness, inbreeding coefficient, and individual heterozygosity. We detected nonsignificant correlations between infection loads and both individual host heterozygosity and population genetic diversity. Prevalence and infection load of Rhytidocystis sp. were higher than those of S. pygospionis, and both varied spatially. Coinfections were common, and almost all hosts infected by S. pygospionis were also infected by Rhytidocystis sp. Rhytidocystis sp. infection load was significantly higher in dual infections. Our results suggest that factors other than host genetic diversity might be more important in marine apicomplexan infection patterns and experimental approaches would be needed to further determine how interactions between the apicomplexans and their host influence infection.
Collapse
Affiliation(s)
- Anna-Lotta Hiillos
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Irin Rony
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK.,Centre for Conservation and Restoration Science, Edinburgh Napier University, Edinburgh, UK
| | - K Emily Knott
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
8
|
Laidemitt MR, Gleichsner AM, Ingram CD, Gay SD, Reinhart EM, Mutuku MW, Oraro P, Minchella DJ, Mkoji GM, Loker ES, Steinauer ML. Host preference of field‐derived
Schistosoma mansoni
is influenced by snail host compatibility and infection status. Ecosphere 2022; 13. [PMID: 36285193 PMCID: PMC9592064 DOI: 10.1002/ecs2.4004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schistosome parasites cause a chronic inflammatory disease in humans, and recent studies have emphasized the importance of control programs for understanding the aquatic phases of schistosomiasis transmission. The host-seeking behavior of larval schistosomes (miracidia) for their snail intermediate hosts plays a critical role in parasite transmission. Using field-derived strains of Kenyan snails and parasites, we tested two main hypotheses: (1) Parasites prefer the most compatible host, and (2) parasites avoid hosts that are already infected. We tested preference to three Biomphalaria host snail taxa (B. pfeifferi, B. sudanica, and B. choanomphala), using allopatric and sympatric Schistosoma mansoni isolates and two different nonhost snail species that co-occur with Biomphalaria, Bulinus globosus, and Physa acuta. We also tested whether schistosomes avoid snail hosts that are already infected by another trematode species and whether competitive dominance played a role in their behavior. Preference was assessed using two-way choice chambers and by visually counting parasites that moved toward competing stimuli. In pairwise comparisons, we found that S. mansoni did not always prefer the more compatible snail taxon, but never favored an incompatible host over a compatible host. While parasites preferred B. pfeifferi to the nonhost species B. globosus, they did not significantly prefer B. pfeifferi versus P. acuta, an introduced species in Kenya. Finally, we demonstrated that parasites avoid infected snails if the resident parasite was competitively dominant (Patagifer sp.), and preferred snails infected with subordinates (xiphidiocercariae) to uninfected snails. These results provide evidence of “fine tuning” in the ability of schistosome miracidia to detect hosts; however, they did not always select hosts that would maximize fitness. Appreciating such discriminatory abilities could lead to a better understanding of how ecosystem host and parasite diversity influences disease transmission and could provide novel control mechanisms to improve human health.
Collapse
Affiliation(s)
- Martina R. Laidemitt
- Center for Evolutionary and Theoretical Immunology, Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Alyssa M. Gleichsner
- Department of Biological Sciences State University of New York, College at Plattsburgh Plattsburgh New York USA
| | - Christopher D. Ingram
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| | - Steven D. Gay
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| | | | - Martin W. Mutuku
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Polycup Oraro
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Dennis J. Minchella
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Michelle L. Steinauer
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| |
Collapse
|
9
|
Sequential infection of Daphnia magna by a gut microsporidium followed by a haemolymph yeast decreases transmission of both parasites. Parasitology 2021; 148:1566-1577. [PMID: 35060463 PMCID: PMC8564772 DOI: 10.1017/s0031182021001384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Over the course of seasonal epidemics, populations of susceptible hosts may encounter a wide variety of parasites. Parasite phenology affects the order in which these species encounter their hosts, leading to sequential infections, with potentially strong effects on within-host growth and host population dynamics. Here, the cladoceran Daphnia magna was exposed sequentially to a haemolymph-infecting yeast (Metschnikowia bicuspidata) and a gut microsporidium (Ordospora colligata), with experimental treatments reflecting two possible scenarios of parasite succession. The effects of single and co-exposure were compared on parasite infectivity, spore production and the overall virulence experienced by the host. We show that neither parasite benefited from coinfection; instead, when hosts encountered Ordospora, followed by Metschnikowia, higher levels of host mortality contributed to an overall decrease in the transmission of both parasites. These results showcase an example of sequential infections generating unilateral priority effects, in which antagonistic interactions between parasites can alleviate the intensity of infection and coincide with maladaptive levels of damage inflicted on the host.
Collapse
|