1
|
Hung DT, Tran L, Tam DNH, Elshafei G, Cuong NTK, Ha NX, Khader SAE, Le Quang L, Shaikhkhalil HW, Abdallfatah A, Aziz JMA, Hirayama K, Huy NT. The prevalence of Pfk13 polymorphism in malaria patients treated with artemisinin-based therapy: a systematic review and meta-analysis. Parasitol Res 2024; 123:209. [PMID: 38740597 DOI: 10.1007/s00436-024-08203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Artemisinin (ART) combination therapy is the main treatment for malaria. Pfk13 mutations (or K13 mutations, Kelch 13) are associated with ART resistance. This study aims to conduct a systematic review and meta-analysis of the prevalence of K13 mutations with ART resistance in malaria-endemic countries. An electronic search of studies in 2018 and a manual search in 2020 were performed to identify relevant studies. The risk of bias was assessed using the National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies. Data analysis was performed using R 4.1.0. Heterogeneity was estimated using the statistic I2 and Cochran Q test. A total of 170 studies were included in our review. Of these, 55 studies investigated the prevalence of K13 mutations in Southeast Asia. The meta-analysis showed that Southeast Asia had the highest prevalence of K13 mutations, whereas Africa, South America, Oceania, and other Asian countries outside Southeast Asia had a low prevalence of K13 mutations. The C580Y mutation was the most common in Southeast Asia with 35.5% (95%CI: 25.4-46.4%), whereas the dominant mutation in Africa was K189T (22.8%, 95%CI: 7.6-43.2%). This study revealed the emergence of ART resistance associated with K13 mutations in Southeast Asia. The diversity of each type of K13 mutation in other regions was also reported.
Collapse
Affiliation(s)
- Dang The Hung
- School of Biomedical Engineering & Imaging Sciences, Faculty of life Sciences & Medicine, Kings College London, London, WC2R 2LS, UK
- Online Research Club, Nagasaki, 852-8523, Japan
| | - Linh Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam
| | - Dao Ngoc Hien Tam
- Online Research Club, Nagasaki, 852-8523, Japan
- Asia Shine Trading & Service Co., Ltd, Ho Chi Minh City, 700000, Vietnam
| | - Ghada Elshafei
- Online Research Club, Nagasaki, 852-8523, Japan
- Faculty of Medicine, Modern University for Technology and Information, Cairo, 4236044, Egypt
| | - Nguyen The Ky Cuong
- Online Research Club, Nagasaki, 852-8523, Japan
- International Cancer Specialists, Ho Chi Minh City, 70000, Vietnam
| | - Nam Xuan Ha
- Online Research Club, Nagasaki, 852-8523, Japan
- Hue University of Medicine and Pharmacy, Hue University, Hue City, 49000, Vietnam
| | - Sarah Abd Elaziz Khader
- Online Research Club, Nagasaki, 852-8523, Japan
- Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
| | - Loc Le Quang
- Online Research Club, Nagasaki, 852-8523, Japan
- Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 7000, Vietnam
| | - Hosam Waleed Shaikhkhalil
- Online Research Club, Nagasaki, 852-8523, Japan
- Faculty of Medicine, Islamic University of Gaza, Gaza Strip P840, Palestine
| | - Abdallfatah Abdallfatah
- Online Research Club, Nagasaki, 852-8523, Japan
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Jeza M Abdul Aziz
- Biomedical Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
- Baxshin Research Center, Baxshin Hospital, Sulaymaniyah, Iraq
| | - Kenji Hirayama
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
2
|
Sohail A, Barry A, Auburn S, Cheng Q, Lau CL, Lee R, Price RN, Furuya-Kanamori L, Bareng P, McGuinness SL, Leder K. Imported malaria into Australia: surveillance insights and opportunities. J Travel Med 2024; 31:taad164. [PMID: 38127641 PMCID: PMC10998534 DOI: 10.1093/jtm/taad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Malaria continues to pose a significant burden in endemic countries, many of which lack access to molecular surveillance. Insights from malaria cases in travellers returning to non-endemic areas can provide valuable data to inform endemic country programmes. To evaluate the potential for novel global insights into malaria, we examined epidemiological and molecular data from imported malaria cases to Australia. METHODS We analysed malaria cases reported in Australia from 2012 to 2022 using National Notifiable Disease Surveillance System data. Molecular data on imported malaria cases were obtained from literature searches. RESULTS Between 2012 and 2022, 3204 malaria cases were reported in Australia. Most cases (69%) were male and 44% occurred in young adults aged 20-39 years. Incidence rates initially declined between 2012 and 2015, then increased until 2019. During 2012-2019, the incidence in travellers ranged from 1.34 to 7.71 per 100 000 trips. Cases were primarily acquired in Sub-Saharan Africa (n = 1433; 45%), Oceania (n = 569; 18%) and Southern and Central Asia (n = 367; 12%). The most common countries of acquisition were Papua New Guinea (n = 474) and India (n = 277). Plasmodium falciparum accounted for 58% (1871/3204) of cases and was predominantly acquired in Sub-Saharan Africa, and Plasmodium vivax accounted for 32% (1016/3204), predominantly from Oceania and Asia. Molecular studies of imported malaria cases to Australia identified genetic mutations and deletions associated with drug resistance and false-negative rapid diagnostic test results, and led to the establishment of reference genomes for P. vivax and Plasmodium malariae. CONCLUSIONS Our analysis highlights the continuing burden of imported malaria into Australia. Molecular studies have offered valuable insights into drug resistance and diagnostic limitations, and established reference genomes. Integrating molecular data into national surveillance systems could provide important infectious disease intelligence to optimize treatment guidelines for returning travellers and support endemic country surveillance programmes.
Collapse
Affiliation(s)
- Asma Sohail
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
- Department of Infectious Diseases, Grampians Health, Ballarat 3350, Australia
| | - Alyssa Barry
- Institute for Physical and Mental Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong 3220, Australia
- Disease Elimination Program, Burnet Institute, Melbourne 3004, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin 0800, Australia
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane 4051, Australia
| | - Colleen L Lau
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston 4006, Australia
| | - Rogan Lee
- Parasitology Unit, Institute of Clinical Pathology and Medical Research, Sydney 2145, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin 0800, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Luis Furuya-Kanamori
- School of Public Health, Faculty of Medicine, The University of Queensland, Herston 4006, Australia
| | - Paolo Bareng
- Institute for Physical and Mental Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong 3220, Australia
| | - Sarah L McGuinness
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
- Department of Infectious Diseases, Alfred Health, Melbourne 3004, Australia
| | - Karin Leder
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
- Victorian Infectious Diseases Service, Melbourne Health, Melbourne 3052, Australia
| |
Collapse
|