1
|
Bonnell V, Zhang Y, Brown A, Horton J, Josling G, Chiu TP, Rohs R, Mahony S, Gordân R, Llinás M. DNA sequence and chromatin differentiate sequence-specific transcription factor binding in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2024; 52:10161-10179. [PMID: 38966997 PMCID: PMC11417369 DOI: 10.1093/nar/gkae585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Development of the malaria parasite, Plasmodium falciparum, is regulated by a limited number of sequence-specific transcription factors (TFs). However, the mechanisms by which these TFs recognize genome-wide binding sites is largely unknown. To address TF specificity, we investigated the binding of two TF subsets that either bind CACACA or GTGCAC DNA sequence motifs and further characterized two additional ApiAP2 TFs, PfAP2-G and PfAP2-EXP, which bind unique DNA motifs (GTAC and TGCATGCA). We also interrogated the impact of DNA sequence and chromatin context on P. falciparum TF binding by integrating high-throughput in vitro and in vivo binding assays, DNA shape predictions, epigenetic post-translational modifications, and chromatin accessibility. We found that DNA sequence context minimally impacts binding site selection for paralogous CACACA-binding TFs, while chromatin accessibility, epigenetic patterns, co-factor recruitment, and dimerization correlate with differential binding. In contrast, GTGCAC-binding TFs prefer different DNA sequence context in addition to chromatin dynamics. Finally, we determined that TFs that preferentially bind divergent DNA motifs may bind overlapping genomic regions due to low-affinity binding to other sequence motifs. Our results demonstrate that TF binding site selection relies on a combination of DNA sequence and chromatin features, thereby contributing to the complexity of P. falciparum gene regulatory mechanisms.
Collapse
Affiliation(s)
- Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuning Zhang
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Alan S Brown
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - John Horton
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Farrukh A, Musabyimana JP, Distler U, Mahlich VJ, Mueller J, Bick F, Tenzer S, Pradel G, Ngwa CJ. The Plasmodium falciparum CCCH zinc finger protein MD3 regulates male gametocytogenesis through its interaction with RNA-binding proteins. Mol Microbiol 2024; 121:543-564. [PMID: 38148574 DOI: 10.1111/mmi.15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The transmission of malaria parasites to mosquitoes is dependent on the formation of gametocytes. Once fully matured, gametocytes are able to transform into gametes in the mosquito's midgut, a process accompanied with their egress from the enveloping erythrocyte. Gametocyte maturation and gametogenesis require a well-coordinated gene expression program that involves a wide spectrum of regulatory proteins, ranging from histone modifiers to transcription factors to RNA-binding proteins. Here, we investigated the role of the CCCH zinc finger protein MD3 in Plasmodium falciparum gametocytogenesis. MD3 was originally identified as an epigenetically regulated protein of immature gametocytes and recently shown to be involved in male development in a barcode-based screen in P. berghei. We report that MD3 is mainly present in the cytoplasm of immature male P. falciparum gametocytes. Parasites deficient of MD3 are impaired in gametocyte maturation and male gametocytogenesis. BioID analysis in combination with co-immunoprecipitation assays unveiled an interaction network of MD3 with RNA-binding proteins like PABP1 and ALBA3, with translational initiators, regulators and repressors like elF4G, PUF1, NOT1 and CITH, and with further regulators of gametocytogenesis, including ZNF4, MD1 and GD1. We conclude that MD3 is part of a regulator complex crucial for post-transcriptional fine-tuning of male gametocytogenesis.
Collapse
Affiliation(s)
- Afia Farrukh
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Jean Pierre Musabyimana
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Ute Distler
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Vanessa Jil Mahlich
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Julius Mueller
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Fabian Bick
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute of Immunology, University Medical Centre of the Johannes-Gutenberg University, Mainz, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Devi SB, Kumar S. Designing a multi-epitope chimeric protein from different potential targets: A potential vaccine candidate against Plasmodium. Mol Biochem Parasitol 2023; 255:111560. [PMID: 37084957 DOI: 10.1016/j.molbiopara.2023.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Malaria is an infectious disease that has been a continuous threat to mankind since the time immemorial. Owing to the complex multi-staged life cycle of the plasmodium parasite, an effective malaria vaccine which is fully protective against the parasite infection is urgently needed to deal with the challenges. In the present study, essential parasite proteins were identified and a chimeric protein with multivalent epitopes was generated. The designed chimeric protein consists of best potential B and T cell epitopes from five different essential parasite proteins. Physiochemical studies of the chimeric protein showed that the modeled vaccine construct was thermo-stable, hydrophilic and antigenic in nature. And the binding of the vaccine construct with Toll-like receptor-4 (TLR-4) as revealed by the molecular docking suggests the possible interaction and role of the vaccine construct in activating the innate immune response. The constructed vaccine being a chimeric protein containing epitopes from different potential candidates could target different stages or pathways of the parasite. Moreover, the approach used in this study is time and cost effective, and can be applied in the discoveries of new potential vaccine targets for other pathogens.
Collapse
Affiliation(s)
- Sanasam Bijara Devi
- Department of Life science & Bioinformatics, Assam University, Silchar 788011 India.
| | - Sanjeev Kumar
- Department of Life science & Bioinformatics, Assam University, Silchar 788011 India
| |
Collapse
|