1
|
Franco A, Flores-Garcia Y, Venezia J, Daoud A, Scott AL, Zavala F, Sullivan DJ. Hemozoin-induced IFN-γ production mediates innate immune protection against sporozoite infection. Microbes Infect 2024; 26:105343. [PMID: 38670216 DOI: 10.1016/j.micinf.2024.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Hemozoin is a crystal synthesized by Plasmodium parasites during hemoglobin digestion in the erythrocytic stage. The hemozoin released when the parasites egress from the red blood cell, which is complexed with parasite DNA, is cleared from the circulation by circulating and tissue-resident monocytes and macrophages, respectively. Recently, we reported that intravenous administration of purified hemozoin complexed with Plasmodium berghei DNA (HzPbDNA) resulted in an innate immune response that blocked liver stage development of sporozoites that was dose-dependent and time-limited. Here, we further characterize the organismal, cellular, and molecular events associated with this protective innate response in the liver and report that a large proportion of the IV administered HzPbDNA localized to F4/80+ cells in the liver and that the rapid and strong protection against liver-stage development waned quickly such that by 1 week post-HzPbDNA treatment animals were fully susceptible to infection. RNAseq of the liver after IV administration of HzPbDNA demonstrated that the rapid and robust induction of genes associated with the acute phase response, innate immune activation, cellular recruitment, and IFN-γ signaling observed at day 1 was largely absent at day 7. RNAseq analysis implicated NK cells as the major cellular source of IFN-γ. In vivo cell depletion and IFN-γ neutralization experiments supported the hypothesis that tissue-resident macrophages and NK cells are major contributors to the protective response and the NK cell-derived IFN-γ is key to induction of the mechanisms that block sporozoite development in the liver. These findings advance our understanding of the innate immune responses that prevent liver stage malaria infection.
Collapse
Affiliation(s)
- Adriano Franco
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Jarrett Venezia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Abdel Daoud
- Department of Pathology, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Alan L Scott
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
3
|
Omorou R, Delabie B, Lavoignat A, Chaker V, Bonnot G, Traore K, Bienvenu AL, Picot S. Nanoparticle tracking analysis of natural hemozoin from Plasmodium parasites. Acta Trop 2024; 250:107105. [PMID: 38135133 DOI: 10.1016/j.actatropica.2023.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Hemozoin is a byproduct of hemoglobin digestion crucial for parasite survival. It forms crystals that can be of interest as drug targets or biomarkers of malaria infection. However, hemozoin has long been considered as an amorphous crystal of simple morphology. Studying the consequences of biomineralization of this crystal during the parasite growth may provide more comprehensive evidence of its role during malaria. OBJECTIVES This study aimed to investigate the interest of nanoparticles tracker analysis for measuring the concentration and size of hemozoin particles produced from different parasite sources and conditions. METHODS Hemozoin was extracted from several clones of Plasmodium falciparum both asexual and sexual parasites. Hemozoin was also extracted from blood samples of malaria patients and from saliva of asymptomatic malaria carriers. Nanoparticles tracking analysis (NTA) was performed to assess the size and concentration of hemozoin. RESULTS NTA data showed variation in hemozoin concentration, size, and crystal clusters between parasite clones, species, and stages. Among parasite clones, hemozoin concentration ranged from 131 to 2663 particles/infected red blood cell (iRBC) and size ranged from 149.6 ± 6.3 nm to 234.8 ± 40.1 nm. The mean size was lower for Plasmodium vivax (176 ± 79.2 nm) than for Plasmodium falciparum (254.8 ± 74.0 nm). Sexual NF54 parasites showed a 7.5-fold higher concentration of hemozoin particles (28.7 particles/iRBC) compared to asexual parasites (3.8 particles/iRBC). In addition, the mean hemozoin size also increased by approximately 60 % for sexual parasites. Compared to in vitro cultures of parasites, blood samples showed low hemozoin concentrations. CONCLUSIONS This study highlights the potential of NTA as a useful method for analyzing hemozoin, demonstrating its ability to provide detailed information on hemozoin characterization. However, further research is needed to adapt the NTA for hemozoin analysis.
Collapse
Affiliation(s)
- Roukayatou Omorou
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France.
| | - Blanche Delabie
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Adeline Lavoignat
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Victorien Chaker
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Guillaume Bonnot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France
| | - Karim Traore
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Anne-Lise Bienvenu
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France; Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon 69004, France
| | - Stephane Picot
- Malaria Research Unit, UMR 5246 CNRS-INSA-CPE, University Lyon1, University Lyon, Villeurbanne 69100, France; Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon 69004, France
| |
Collapse
|
4
|
Jajosky RP, Wu SC, Jajosky PG, Stowell SR. Plasmodium knowlesi ( Pk) Malaria: A Review & Proposal of Therapeutically Rational Exchange (T-REX) of Pk-Resistant Red Blood Cells. Trop Med Infect Dis 2023; 8:478. [PMID: 37888606 PMCID: PMC10610852 DOI: 10.3390/tropicalmed8100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Plasmodium knowlesi (Pk) causes zoonotic malaria and is known as the "fifth human malaria parasite". Pk malaria is an emerging threat because infections are increasing and can be fatal. While most infections are in Southeast Asia (SEA), especially Malaysia, travelers frequently visit this region and can present with Pk malaria around the world. So, clinicians need to know (1) patients who present with fever after recent travel to SEA might be infected with Pk and (2) Pk is often misdiagnosed as P. malariae (which typically causes less severe malaria). Here we review the history, pathophysiology, clinical features, diagnosis, and treatment of Pk malaria. Severe disease is most common in adults. Signs and symptoms can include fever, abdominal pain, jaundice, acute kidney injury, acute respiratory distress syndrome, hyponatremia, hyperparasitemia, and thrombocytopenia. Dengue is one of the diseases to be considered in the differential. Regarding pathophysiologic mechanisms, when Pk parasites invade mature red blood cells (RBCs, i.e., normocytes) and reticulocytes, changes in the red blood cell (RBC) surface can result in life-threatening cytoadherence, sequestration, and reduced RBC deformability. Since molecular mechanisms involving the erythrocytic stage are responsible for onset of severe disease and lethal outcomes, it is biologically plausible that manual exchange transfusion (ET) or automated RBC exchange (RBCX) could be highly beneficial by replacing "sticky" parasitized RBCs with uninfected, deformable, healthy donor RBCs. Here we suggest use of special Pk-resistant donor RBCs to optimize adjunctive manual ET/RBCX for malaria. "Therapeutically-rational exchange transfusion" (T-REX) is proposed in which Pk-resistant RBCs are transfused (instead of disease-promoting RBCs). Because expression of the Duffy antigen on the surface of human RBCs is essential for parasite invasion, T-REX of Duffy-negative RBCs-also known as Fy(a-b-) RBCs-could replace the majority of the patient's circulating normocytes with Pk invasion-resistant RBCs (in a single procedure lasting about 2 h). When sequestered or non-sequestered iRBCs rupture-in a 24 h Pk asexual life cycle-the released merozoites cannot invade Fy(a-b-) RBCs. When Fy(a-b-) RBC units are scarce (e.g., in Malaysia), clinicians can consider the risks and benefits of transfusing plausibly Pk-resistant RBCs, such as glucose-6-phosphate dehydrogenase deficient (G6PDd) RBCs and Southeast Asian ovalocytes (SAO). Patients typically require a very short recovery time (<1 h) after the procedure. Fy(a-b-) RBCs should have a normal lifespan, while SAO and G6PDd RBCs may have mildly reduced half-lives. Because SAO and G6PDd RBCs come from screened blood donors who are healthy and not anemic, these RBCs have a low-risk for hemolysis and do not need to be removed after the patient recovers from malaria. T-REX could be especially useful if (1) antimalarial medications are not readily available, (2) patients are likely to progress to severe disease, or (3) drug-resistant strains emerge. In conclusion, T-REX is a proposed optimization of manual ET/RBCX that has not yet been utilized but can be considered by physicians to treat Pk malaria patients.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
- Biconcavity Inc., Lilburn, GA 30047, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| |
Collapse
|
5
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
6
|
Plasmodium berghei Purified Hemozoin Associated with DNA Strongly Inhibits P. berghei Liver-Stage Development in BALB/c Mice after Intravenous Inoculation. Infect Immun 2023; 91:e0030422. [PMID: 36622216 PMCID: PMC9872621 DOI: 10.1128/iai.00304-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the acidic lysosome-like digestive vacuole, Plasmodium parasites crystallize heme from hemoglobin into hemozoin, or malaria pigment. Upon release of progeny merozoites, the residual hemozoin is phagocytized by macrophages principally in the liver and spleen where the heme crystals can persist for months to years, as heme oxygenase does not readily degrade the crystal. Previous studies demonstrated hemozoin modulation of monocytes and macrophages. Hemozoin modulates immune function activity of monocytes/macrophages. Here, we used purified/washed hemozoin (W-Hz) isolated from murine Plasmodium berghei infections and intravenously (i.v.) injected it back into naive mice. We characterized the modulating effect of W-Hz on liver-stage replication. Purified washed hemozoin decreases P. berghei liver levels both at 1 week and 1 month after i.v. injection in a dose and time dependent fashion. The injected hemozoin fully protected in nine out of 10 mice given a 50 sporozoite inoculum, and in 10 out of 10 mice against 2,000 sporozoites when they were infected an hour or a day after hemozoin inoculation. DNase treatment at the hemozoin reversed the observed liver load reduction. The liver load reduction was similar in mature B- and T-cell-deficient RAG-1 knockout (KO) mice suggesting an innate immune protection mechanism. This work indicates a role for residual hemozoin in down modulation of Plasmodium liver stages.
Collapse
|
7
|
Baptista V, Silva M, Ferreira GM, Calçada C, Minas G, Veiga MI, Catarino SO. Optical Spectrophotometry as a Promising Method for Quantification and Stage Differentiation of Plasmodium falciparum Parasites. ACS Infect Dis 2023; 9:140-149. [PMID: 36490289 DOI: 10.1021/acsinfecdis.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide, claiming half a million lives yearly. Prompt and accurate diagnosis is crucial for disease control and elimination. Currently used diagnostic methods require blood sampling and fail to detect low-level infections. At the symptomatic stage of infection, the parasites feed on red blood cells' (RBCs) hemoglobin, forming inert crystals, the hemozoin, in the process. Thus, along with parasite maturation inside the RBCs, the hemoglobin and hemozoin proportion is inversely related, and they generate specific optical spectra, according to their concentration. Herein, to address the issues of finger prick sampling and the lack of sensitivity of the parasitological test, we explored the optical features of Plasmodium falciparum-infected RBCs through absorbance and reflectance spectrophotometric characterization, aiming for their detection. This is the first work fully characterizing the spectrophotometric properties of P. falciparum-infected RBCs by using only 16 specific wavelengths within the visible optical spectra and two different post-processing algorithms. With such an innovative methodology, low-level infections can be detected and quantified, and early- and late-stage development can be clearly distinguished, not only improving the current detection limits but also proving the successful applicability of spectrophotometry for competitive and accurate malaria diagnosis.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Miguel Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Gabriel M Ferreira
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,ICVS/3B's─PT Government Associate Laboratory, 4806-909 Guimarães, Braga/, Portugal
| | - Susana O Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.,LABBELS─Associate Laboratory, 4800-058 Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Kuaprasert B, Chitnumsub P, Leartsakulpanich U, Suginta W, Leelayoova S, Mungthin M, Sitthichot N, Rattanabunyong S, Kiriwan D, Choowongkomon K. Dual role of azo compounds in inhibiting Plasmodium falciparum adenosine deaminase and hemozoin biocrystallization. Exp Parasitol 2022; 243:108384. [PMID: 36154837 DOI: 10.1016/j.exppara.2022.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022]
Abstract
Protein-ligand (GOLD) docking of the NCI compounds into the ligand-binding site of Plasmodium falciparum adenosine deaminase (PfADA) identified three most active azo compounds containing 4-[(4-hydroxy-2-oxo-1H-quinolin-3-yl) moiety. These compounds showed IC50 of 3.7-15.4 μM against PfADA, as well as inhibited the growth of P. falciparum strains 3D7 (chloroquine (CQ)-sensitive) and K1 (CQ-resistant) with IC50 of 1.8-3.1 and 1.7-3.6 μM, respectively. The identified compounds have structures similar to the backbone structure (4-N-(7-chloroquinolin-4-yl)) in CQ, and NSC45545 could mimic CQ by inhibiting the bioformation of hemozoin in parasitic food vacuole. The amount of in situ hemozoin in the ring-stage parasite was determined using a combination of synchrotron transmission Fourier transform infrared microspectroscopy and Principal Component Analysis. Stretching of the C-O bond of hemozoin propionate group measured at 1220-1210 cm-1 in untreated intraerythrocytic P. falciparum strains 3D7 and K1 was disappeared following treatment with 1.85 and 1.74 μM NSC45545, similar to those treated with 0.02 and 0.13 μM CQ, respectively. These findings indicate a novel dual function of 4-[(4-hydroxy-2-oxo-1H-quinolin-3-yl) azo compounds in inhibiting both PfADA and in situ hemozoin biocrystallization. These lead compounds hold promise for further development of new antimalarial therapeutics that could delay the onset of parasitic drug resistance.
Collapse
Affiliation(s)
- Buabarn Kuaprasert
- Research and Facility Department, Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand.
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahon Yothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Ubolsree Leartsakulpanich
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Phahon Yothin Road, Klong Luang, Pathumthani, 12120, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, 317 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, 317 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Naruemon Sitthichot
- Department of Parasitology, Phramongkutklao College of Medicine, 317 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Siriluk Rattanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| | - Duangnapa Kiriwan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Ladyaow, Chatuchak, Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Ladyaow, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, 50 Ngam Wong Wan Road, Ladyaow, Chatuchak, Kasetsart University, Bangkok, 10700, Thailand
| |
Collapse
|
9
|
Abstract
Despite a remarkable improvement in health care and continued drug discovery efforts, malaria control efforts are continuously challenged by the emergence of drug-resistant parasite strains. Given a long and risky development path of new drugs, repurposing existing drugs for the treatment of malaria is an attractive and shorter path. Tamoxifen, a selective estrogen receptor modulator (SERM) for the treatment and prevention of estrogen receptor-positive breast cancer, possesses antibacterial, antifungal, and antiparasitic activities. Hence, we assessed tamoxifen, raloxifene, and bazedoxifene, which represent the first-, second-, and third-generation SERMs, respectively, for antimalarial activity. Raloxifene and bazedoxifene inhibited the erythrocytic development of Plasmodium falciparum with submicromolar 50% inhibitory concentration (IC50) values. Among the three, bazedoxifene was the most potent and also decreased P. berghei infection in female mice but not in male mice. However, bazedoxifene similarly inhibited P. falciparum growth in erythrocytes of male and female origin, which highlights the importance of sex-specific host physiology in drug efficacy. Bazedoxifene was most potent on early ring-stage parasites, and about 35% of the treated parasites did not contain hemozoin in the food vacuole. Bazedoxifene-treated parasites had almost 34% less hemozoin content than the control parasites. However, both control and bazedoxifene-treated parasites had similar hemoglobin levels, suggesting that bazedoxifene inhibits hemozoin formation and that toxicity due to accumulation of free heme could be a mechanism of its antimalarial activity. Because bazedoxifene is in clinical use and bazedoxifene-chloroquine combination shows an additive antiparasitic effect, bazedoxifene could be an adjunctive partner of currently used antimalarial regimens. IMPORTANCE The emergence and spread of drug-resistant strains of the human malaria parasite Plasmodium falciparum has necessitated new drugs. Selective estrogen receptor modulators are in clinical use for the prevention and treatment of breast cancer and postmenopausal osteoporosis. We demonstrate that bazedoxifene, a third-generation selective estrogen receptor modulator, has potent inhibitory activity against both susceptible and drug-resistant strains of Plasmodium falciparum. It also blocked the development of Plasmodium berghei in mice. The inhibitory effect was strongest on the ring stage and resulted in the inhibition of hemozoin formation, which could be the major mechanism of bazedoxifene action. Hemozoin is a nontoxic polymer of heme, which is a by-product of hemoglobin degradation by the malaria parasite during its development within the erythrocyte. Because bazedoxifene is already in clinical use for the treatment of postmenopausal osteoporosis, our findings support repurposing of bazedoxifene as an antimalarial.
Collapse
|
10
|
IL-10 Producing Regulatory B Cells Mediated Protection against Murine Malaria Pathogenesis. BIOLOGY 2022; 11:biology11050669. [PMID: 35625397 PMCID: PMC9138363 DOI: 10.3390/biology11050669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary The immunomodulatory role of B cell subset called regulatory B cells was evaluated during Plasmodium infection to study their role in susceptibility or resistance during infection. The expansion of regulatory B cells during Plasmodium infection indicated their important role in regulating the immune response. Adoptive transfer of regulatory B cells following infection with a lethal parasite resulted in enhanced survival of mice and inhibited growth of the Plasmodium parasite. Moreover, by inhibiting the production of the pro-inflammatory cytokine, IFN-γ, and stimulating anti-inflammatory IL-10 production, regulatory B cells may serve as an important contributor to protective immune response. Abstract Various immune cells are known to participate in combating infection. Regulatory B cells represent a subset of B cells that take part in immunomodulation and control inflammation. The immunoregulatory function of regulatory B cells has been shown in various murine models of several disorders. In this study, a comparable IL-10 competent B-10 cell subset (regulatory B cells) was characterized during lethal and non-lethal infection with malaria parasites using the mouse model. We observed that infection of Balb/c mice with P. yoelii I 7XL was lethal, and a rapid increase in dynamics of IL-10 producing B220+CD5+CD1d+ regulatory B cells over the course of infection was observed. However, animals infected with a less virulent strain of the parasite P. yoelii I7XNL attained complete resistance. It was observed that there is an increase in the population of regulatory B cells with an increase of parasitemia; however, a sudden drop in the frequency of these cells was observed with parasite clearance. Adoptive transfer of regulatory B cells to naïve mice followed by infection results in slow parasite growth and enhancement of survival in P. yoelii 17XL (lethal) infected animals. Adoptively transferred regulatory B cells also resulted in decreased production of pro-inflammatory cytokine (IFN-γ) and enhanced production of anti-inflammatory cytokine (IL-10). It infers that these regulatory B cells may contribute in immune protection by preventing the inflammation associated with disease and inhibiting the parasite growth.
Collapse
|
11
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
12
|
Baptista V, Peng WK, Minas G, Veiga MI, Catarino SO. Review of Microdevices for Hemozoin-Based Malaria Detection. BIOSENSORS 2022; 12:bios12020110. [PMID: 35200370 PMCID: PMC8870200 DOI: 10.3390/bios12020110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 05/21/2023]
Abstract
Despite being preventable and treatable, malaria still puts almost half of the world's population at risk. Thus, prompt, accurate and sensitive malaria diagnosis is crucial for disease control and elimination. Optical microscopy and immuno-rapid tests are the standard malaria diagnostic methods in the field. However, these are time-consuming and fail to detect low-level parasitemia. Biosensors and lab-on-a-chip devices, as reported to different applications, usually offer high sensitivity, specificity, and ease of use at the point of care. Thus, these can be explored as an alternative for malaria diagnosis. Alongside malaria infection inside the human red blood cells, parasites consume host hemoglobin generating the hemozoin crystal as a by-product. Hemozoin is produced in all parasite species either in symptomatic and asymptomatic individuals. Furthermore, hemozoin crystals are produced as the parasites invade the red blood cells and their content relates to disease progression. Hemozoin is, therefore, a unique indicator of infection, being used as a malaria biomarker. Herein, the so-far developed biosensors and lab-on-a-chip devices aiming for malaria detection by targeting hemozoin as a biomarker are reviewed and discussed to fulfil all the medical demands for malaria management towards elimination.
Collapse
Affiliation(s)
- Vitória Baptista
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Correspondence:
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Building A1, University Innovation Park, Dongguan 523808, China;
| | - Graça Minas
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | - Susana O. Catarino
- Microelectromechanical Systems Research Unit (CMEMS-UMinho), School of Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (G.M.); (S.O.C.)
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| |
Collapse
|
13
|
Traore O, Compaore M, Okusa P, Hubinon F, Duez P, Blankert B, Kindrebeogo M. Development and validation of an original magneto-chromatography device for the whole blood determination of hemozoin, the paramagnetic malaria pigment. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Shi X, Hai L, Govindasamy K, Gao J, Coppens I, Hu J, Wang Q, Bhanot P. A Plasmodium homolog of ER tubule-forming proteins is required for parasite virulence. Mol Microbiol 2020; 114:454-467. [PMID: 32432369 DOI: 10.1111/mmi.14526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/27/2023]
Abstract
Reticulon and REEP family of proteins stabilize the high curvature of endoplasmic reticulum (ER) tubules. Plasmodium berghei Yop1 (PbYop1) is a REEP5 homolog in Plasmodium. Here, we characterize its function using a gene-knockout (Pbyop1∆). Pbyop1∆ asexual stage parasites display abnormal ER architecture and an enlarged digestive vacuole. The erythrocytic cycle of Pbyop1∆ parasites is severely attenuated and the incidence of experimental cerebral malaria is significantly decreased in Pbyop1∆-infected mice. Pbyop1∆ sporozoites have reduced speed, are slower to invade host cells but give rise to equal numbers of infected HepG2 cells, as WT sporozoites. We propose that PbYOP1's disruption may lead to defects in trafficking and secretion of a subset of proteins required for parasite development and invasion of erythrocytes. Furthermore, the maintenance of ER morphology in different parasite stages is likely to depend on different proteins.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Lei Hai
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Kavitha Govindasamy
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jian Gao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Medical University, Tianjin, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
15
|
Abstract
Malaria is major public health concerns which continues to claim the lives of more than 435,000 people each year. The challenges with anti-malarial drug resistance and detection of low parasitaemia forms an immediate barrier to achieve the fast-approaching United Nations Sustainable Development Goals of ending malaria epidemics by 2030. In this Opinion article, focusing on the recent published technologies, in particularly the nuclear magnetic resonance (NMR)-based diagnostic technologies, the authors offer their perspectives and highlight ways to bring these point-of-care technologies towards personalized medicine. To this end, they advocate an open sourcing initiative to rapidly close the gap between technological innovations and field implementation.
Collapse
Affiliation(s)
- Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Weng Kung Peng
- Precision Medicine-Engineering Group, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| |
Collapse
|
16
|
Gorki V, Singh R, Walter NS, Bagai U, Salunke DB. Synthesis and Evaluation of Antiplasmodial Efficacy of β-Carboline Derivatives against Murine Malaria. ACS OMEGA 2018; 3:13200-13210. [PMID: 30411030 PMCID: PMC6217594 DOI: 10.1021/acsomega.8b01833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 05/26/2023]
Abstract
The difficulty of developing an efficient malaria vaccine along with increasing spread of multidrug resistant strain of Plasmodium falciparum to the available antimalarial drugs poses the need to discover safe and efficacious antimalarial drugs to control malaria. An alternative strategy is to synthesize compounds possessing structures similar to the active natural products or marketed drugs. Several biologically active natural products and drugs contain β-carboline moiety. In the present study, few selected β-carboline derivatives have been synthesized and tested for their in vitro and in vivo antiplasmodial activity against the rodent malaria parasite Plasmodium berghei (NK-65). The designed analogs exhibited considerable in vitro antimalarial activity. Two compounds (1R,3S)-methyl 1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (9a) and (1R,3S)-methyl 1-(pyridin-3-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (9b) were further selected for in vivo studies. Both the lead compounds (9a and 9b) were observed to be safe for oral administration. The therapeutic effective dose (ED50) for 9a and 9b were determined and in the animal model, 9a (at 50 mg/kg dose) exhibited better activity in terms of parasite clearance and enhancement of host survival. Biochemical investigations also point toward the safety of the compound to the hepatic and renal functions of the rodent host. Further studies are underway to explore its activity alone as well as in combination therapy with artesunate against the human malaria parasite P. falciparum.
Collapse
Affiliation(s)
- Varun Gorki
- Parasitology
Laboratory, Department of Zoology, and Department of Chemistry and Centre
of Advanced Studies in Chemistry, Panjab
University, Chandigarh 160014, India
| | - Rahul Singh
- Parasitology
Laboratory, Department of Zoology, and Department of Chemistry and Centre
of Advanced Studies in Chemistry, Panjab
University, Chandigarh 160014, India
| | - Neha Sylvia Walter
- Parasitology
Laboratory, Department of Zoology, and Department of Chemistry and Centre
of Advanced Studies in Chemistry, Panjab
University, Chandigarh 160014, India
| | - Upma Bagai
- Parasitology
Laboratory, Department of Zoology, and Department of Chemistry and Centre
of Advanced Studies in Chemistry, Panjab
University, Chandigarh 160014, India
| | - Deepak B. Salunke
- Parasitology
Laboratory, Department of Zoology, and Department of Chemistry and Centre
of Advanced Studies in Chemistry, Panjab
University, Chandigarh 160014, India
| |
Collapse
|
17
|
Vandermosten L, Pham TT, Possemiers H, Knoops S, Van Herck E, Deckers J, Franke-Fayard B, Lamb TJ, Janse CJ, Opdenakker G, Van den Steen PE. Experimental malaria-associated acute respiratory distress syndrome is dependent on the parasite-host combination and coincides with normocyte invasion. Malar J 2018; 17:102. [PMID: 29506544 PMCID: PMC5839036 DOI: 10.1186/s12936-018-2251-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a complication of malaria with a lethality rate of up to 80% despite anti-malarial treatment. It is characterized by a vast infiltration of leukocytes, microhaemorrhages and vasogenic oedema in the lungs. Previously, a mouse model for MA-ARDS was developed by infection of C57BL/6 mice with the Edinburgh line NK65-E of Plasmodium berghei. Results Here, both host and parasite factors were demonstrated to play crucial roles in the development and severity of lung pathology. In particular, the genetic constitution of the host was an important determinant in the development of MA-ARDS. Both male and female C57BL/6, but not BALB/c, mice developed MA-ARDS when infected with P. berghei NK65-E. However, the New York line of P. berghei NK65 (NK65-NY) did not induce demonstrable MA-ARDS, despite its accumulation in the lungs and fat tissue to a similar or even higher extent as P. berghei NK65-E. These two commonly used lines of P. berghei differ in their red blood cell preference. P. berghei NK65-NY showed a stronger predilection for reticulocytes than P. berghei NK65-E and this appeared to be associated with a lower pathogenicity in the lungs. The pulmonary pathology in the C57BL/6/P. berghei NK65-E model was more pronounced than in the model with infection of DBA/2 mice with P. berghei strain ANKA. The transient lung pathology in DBA/2 mice infected with P. berghei ANKA coincided with the infection phase in which parasites mainly infected normocytes. This phase was followed by a less pathogenic phase in which P. berghei ANKA mainly infected reticulocytes. Conclusions The propensity of mice to develop MA-ARDS during P. berghei infection depends on both host and parasite factors and appears to correlate with RBC preference. These data provide insights in induction of MA-ARDS and may guide the choice of different mouse-parasite combinations to study lung pathology.
Collapse
Affiliation(s)
- Leen Vandermosten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Herestraat 49, box 1044, 3000, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Herestraat 49, box 1044, 3000, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Herestraat 49, box 1044, 3000, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Herestraat 49, box 1044, 3000, Leuven, Belgium
| | - Evelien Van Herck
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Herestraat 49, box 1044, 3000, Leuven, Belgium
| | - Julie Deckers
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Herestraat 49, box 1044, 3000, Leuven, Belgium.,Laboratory of Immunoregulation, VIB Center for Inflammation Research, Department of Internal Medicine, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Tracey J Lamb
- Department of Pathology, University of Utah, 15 N Medical Drive E, Salt Lake City, UT, 84112, USA
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Herestraat 49, box 1044, 3000, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Herestraat 49, box 1044, 3000, Leuven, Belgium.
| |
Collapse
|