1
|
Radwan NA, Atlam AI, Abdel-Malek AR, Moustafa AY. Nematicidal Potentiality of Four Marine Molluscans' Defensive Secretions From the Red Sea Against Syphacia obvelata (Nematoda: Oxyuridae) In Vitro. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:149-158. [PMID: 39473236 DOI: 10.1002/jez.2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 02/04/2025]
Abstract
The continuous requirement to substitute safe and affordable alternatives for helminth medications, as well as address the resistance of some used drug classes, introduced bioactive products derived from marine animals into the field of competition; however, almost all the previous research only focused on their impact on bacterial and protozoal infection. In the present work, we investigated the potential in vitro nematocidal effect of the aqueous extract of defense secretions for four species of marine mollusks: two cephalopods, namely the cuttlefish Sepia pharaonis and the common Octopus Octopus vulagris and two gastropods, the sea hare Aplysia argus and the sea slug Berthillina citrina, against the adult murine pinworm Syphacia obvelata. Data showed dose and time efficacy in all examined extracts. The sea slug's skin acid secretion has the highest impact, causing death in the cultivated worms, followed by the ink of the sea hare, the common octopus and the cuttlefish, where LC90 after 10 h of exposure were 250, 290, 316, and 391 µg/mL, respectively. Comparatively with the control and albendazole-treated groups, the skin acid secretion of the sea slug caused the highest levels of the antioxidant enzymes SOD, Cat and GSH-PX; however, albendazole prompted the highest level of GSH-PX enzyme in all experimental groups.
Collapse
Affiliation(s)
- Nahla A Radwan
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Aalaa I Atlam
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Alaa Y Moustafa
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
2
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
3
|
Alvarez-Sánchez ME, Arreola R, Quintero-Fabián S, Pérez-Sánchez G. Modified peptides and organic metabolites of cyanobacterial origin with antiplasmodial properties. Int J Parasitol Drugs Drug Resist 2024; 24:100530. [PMID: 38447332 PMCID: PMC10924210 DOI: 10.1016/j.ijpddr.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
As etiological agents of malaria disease, Plasmodium spp. parasites are responsible for one of the most severe global health problems occurring in tropical regions of the world. This work involved compiling marine cyanobacteria metabolites reported in the scientific literature that exhibit antiplasmodial activity. Out of the 111 compounds mined and 106 tested, two showed antiplasmodial activity at very low concentrations, with IC50 at 0.1 and 1.5 nM (peptides: dolastatin 10 and lyngbyabellin A, 1.9% of total tested). Examples of chemical derivatives generated from natural cyanobacterial compounds to enhance antiplasmodial activity and Plasmodium selectivity can be found in successful findings from nostocarboline, eudistomin, and carmaphycin derivatives, while bastimolide derivatives have not yet been found. Overall, 57% of the reviewed compounds are peptides with modified residues producing interesting active moieties, such as α- and β-epoxyketone in camaphycins. The remaining compounds belong to diverse chemical groups such as alkaloids, macrolides, polycyclic compounds, and halogenated compounds. The Dolastatin 10 and lyngbyabellin A, compounds with antiplasmodial high activity, are cytoskeletal disruptors with different protein targets.
Collapse
Affiliation(s)
- Maria Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, 03100, Mexico City, Mexico.
| | - Rodrigo Arreola
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| | - Saray Quintero-Fabián
- Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico.
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Arberas-Jiménez I, Nocchi N, Chao-Pellicer J, Sifaoui I, Soares AR, Díaz-Marrero AR, Fernández JJ, Piñero JE, Lorenzo-Morales J. Chamigrane-Type Sesquiterpenes from Laurencia dendroidea as Lead Compounds against Naegleria fowleri. Mar Drugs 2023; 21:md21040224. [PMID: 37103363 PMCID: PMC10143968 DOI: 10.3390/md21040224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Naegleria fowleri is an opportunistic protozoon that can be found in warm water bodies. It is the causative agent of the primary amoebic meningoencephalitis. Focused on our interest to develop promising lead structures for the development of antiparasitic agents, this study was aimed at identifying new anti-Naegleria marine natural products from a collection of chamigrane-type sesquiterpenes with structural variety in the levels of saturation, halogenation and oxygenation isolated from Laurencia dendroidea. (+)-Elatol (1) was the most active compound against Naegleria fowleri trophozoites with IC50 values of 1.08 μM against the ATCC 30808™ strain and 1.14 μM against the ATCC 30215™ strain. Furthermore, the activity of (+)-elatol (1) against the resistant stage of N. fowleri was also assessed, showing great cysticidal properties with a very similar IC50 value (1.14 µM) to the one obtained for the trophozoite stage. Moreover, at low concentrations (+)-elatol (1) showed no toxic effect towards murine macrophages and could induce the appearance of different cellular events related to the programmed cell death, such as an increase of the plasma membrane permeability, reactive oxygen species overproduction, mitochondrial malfunction or chromatin condensation. Its enantiomer (−)-elatol (2) was shown to be 34-fold less potent with an IC50 of 36.77 μM and 38.03 μM. An analysis of the structure–activity relationship suggests that dehalogenation leads to a significant decrease of activity. The lipophilic character of these compounds is an essential property to cross the blood-brain barrier, therefore they represent interesting chemical scaffolds to develop new drugs.
Collapse
|
5
|
Endres CT, Rigo GV, Loges LA, Landell MF, Silva DB, Macedo AJ, Tasca T. Mass Spectrometry Metabolomics Approach Reveals Anti-Trichomonas vaginalis Scaffolds from Marine Fungi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1014-1022. [PMID: 36102994 DOI: 10.1007/s10126-022-10164-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Trichomoniasis is the most common non-viral sexually transmitted infection (STI) in the world caused by Trichomonas vaginalis. Failures in the treatment with the 5-nitroimidazole class including parasite resistance to metronidazole elicit new alternatives. Marine natural products are sources of several relevant molecules, presenting a variety of metabolites with numerous biological activities. In this work, we evaluated the anti-T. vaginalis activity of fungi associated with marine invertebrates by mass spectrometry-based metabolomics approaches. After screening of six marine fungi, extract from Penicillium citrinum FMPV 15 has shown to be 100% active against T. vaginalis, and the gel permeation column on Sephadex LH-20® yielded twelve organic fractions which five showed to be active. Metabolomics and statistical analyses were performed with all the samples (extract and fractions), and several compounds were suggested to be related to the activity. These components include citrinin, dicitrinin C, citreoisocoumarin, dihydrocitrinone, decarboxycitrinin, penicitrinone C, and others. The minimum inhibitory concentration (MIC) value of anti-T. vaginalis activity of citrinin was 200 µM. The marine fungi metabolites show potential as new alternatives to overcome drug resistance in T. vaginalis infections.
Collapse
Affiliation(s)
- Carla Teresinha Endres
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Graziela Vargas Rigo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Luciana Angelo Loges
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Melissa Fontes Landell
- Laboratório de Diversidade Molecular, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais E Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos E Nutrição (FACFAN), Universidade Federal de Mato Grosso Do Sul, Mato Grosso Do Sul, Campo Grande, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Tiana Tasca
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|