1
|
Fung ES, Parker JA, Powell AM, Maier A. Estimating inhalation bioavailability for peptides and proteins 1 to 10 kDa in size. Regul Toxicol Pharmacol 2022; 137:105314. [PMID: 36463983 DOI: 10.1016/j.yrtph.2022.105314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Inhalation is a critical route for occupational exposure. To protect workers from adverse effects, health-based exposure limits (HBELs) are derived using chemical-specific information including inhalation bioavailability. Inhalation bioavailability of large proteins is well studied and generally accepted to be 1% or less. However, the inhalation bioavailability of peptides and proteins 1-10 kDa in size is not well defined. The goal of this study was to expand upon previous analyses and evaluate the inhalation bioavailability of small peptides. Inhalation bioavailability data for 72 peptides and protein samples ranging from 1.1 to 10.9 kDa in size were evaluated. The median inhalation bioavailability was 20%, which is in agreement with previously published analyses. Inhalation bioavailabilities for the vast majority were below 50%. Interestingly, species, peptide size, and peptide identity did not correlate with inhalation bioavailability. Other factors including inhalation dosimetry, peptide degradation, and chemical characteristics also decrease the amount of peptide available for absorption. Together, the median bioavailability of 20% is likely an appropriate estimate of systemic exposure and is sufficiently protective in most cases for the purposes of occupational exposure safety. Thus, in the absence of peptide-specific data or concerns, an inhalation bioavailability default of 20% is recommended for 1-10 kDa peptide and proteins.
Collapse
|
2
|
Pfister T, Dolan D, Bercu J, Gould J, Wang B, Bechter R, Barle EL, Pfannkuch F, Flueckiger A. Bioavailability of therapeutic proteins by inhalation--worker safety aspects. ACTA ACUST UNITED AC 2014; 58:899-911. [PMID: 24958792 DOI: 10.1093/annhyg/meu038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A literature review and analysis of inhalation bioavailability data for large therapeutic proteins was conducted in order to develop a practical estimate of the inhalation bioavailability of these drugs. This value is incorporated into equations used to derive occupational exposure limits(OELs) to protect biopharmaceutical manufacturing workers from systemic effects. Descriptive statistics implies that a value of 0.05, or 5% is an accurate estimate for large therapeutic proteins (molecular weight ≥ 40kDa). This estimate is confirmed by pharmacokinetic modeling of data from a human daily repeat-dose inhalation study of immunoglobulin G. In conclusion, we recommend using 5% bioavailability by inhalation when developing OELs for large therapeutic proteins.
Collapse
Affiliation(s)
- Thomas Pfister
- 1.F. Hoffmann - La Roche Ltd, Group Safety, Security, Health and Environmental Protection, CH-4070, Basel, Switzerland
| | - David Dolan
- 2.Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Joel Bercu
- 2.Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Janet Gould
- 3.Bristol-Myers Squibb Company New Brunswick, NJ 08903 , USA
| | - Bonnie Wang
- 3.Bristol-Myers Squibb Company New Brunswick, NJ 08903 , USA
| | | | | | - Friedlieb Pfannkuch
- 5.Roche Pharma Research and Early Development Department, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Andreas Flueckiger
- 1.F. Hoffmann - La Roche Ltd, Group Safety, Security, Health and Environmental Protection, CH-4070, Basel, Switzerland
| |
Collapse
|
3
|
Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv 2013; 4:1027-45. [PMID: 23919477 DOI: 10.4155/tde.13.67] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary drug delivery is an effective route for local or systemic drug administration. However, compared with other routes of administration, there is a scarcity of information on how drugs are absorbed from the lung. The different cell composition lining the airways and alveoli makes this task extremely complicated. Lung cell lines and primary culture cells are useful in studying the absorption mechanisms. However, it is imperative that these cell cultures express essential features required to study these mechanisms such as intact tight junctions and transporters. In vivo, the drug has to face defensive physical and immunological barriers such as mucociliary clearance and alveolar macrophages. Knowledge of the physicochemical properties of the drug and aerosol formulation is required. All of these factors interact together leading to either successful drug deposition followed by absorption or drug elimination. These aspects concerning drug transport in the lung are addressed in this review.
Collapse
|
4
|
Henninge J, Pepaj M, Hullstein I, Hemmersbach P. Identification of CJC-1295, a growth-hormone-releasing peptide, in an unknown pharmaceutical preparation. Drug Test Anal 2010; 2:647-50. [DOI: 10.1002/dta.233] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 11/12/2022]
|
5
|
Abstract
Delivery of biologically active agents to animals is often perceived to be the poor relation of human drug delivery. Yet this field has a long and successful history of species-specific device and formulation development, ranging from simple approaches and devices used in production animals to more sophisticated formulations and approaches for a wide range of species. While several technologies using biodegradable polymers have been successfully marketed in a range of veterinary and human products, the transfer of delivery technologies has not been similarly applied across species. This may be due to a combination of specific technical requirements for use of devices in different species, inter-species pharmacokinetic, pharmacodynamic and physiological differences, and distinct market drivers for drug classes used in companion and food-producing animals. This chapter reviews selected commercialised and research-based parenteral and non-parenteral veterinary drug delivery technologies in selected domestic species. Emphasis is also placed on the impact of endogenous drug transporters on drug distribution characteristics in different species. In vitro models used to investigate carrier-dependent transport are reviewed. Species-specific expression of transporters in several tissues can account for inter-animal or inter-species pharmacokinetic variability, lack of predictability of drug efficacy, and potential drug-drug interactions.
Collapse
Affiliation(s)
- David J Brayden
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin (UCD) and UCD Conway Institute, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
6
|
Fernandes CA, Vanbever R. Preclinical models for pulmonary drug delivery. Expert Opin Drug Deliv 2009; 6:1231-45. [DOI: 10.1517/17425240903241788] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Wang Y, Tomlinson B. Tesamorelin, a human growth hormone releasing factor analogue. Expert Opin Investig Drugs 2009; 18:303-10. [DOI: 10.1517/13543780802707658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Mariappan T, Singh S, Pandey R, Khuller G. Determination of Absolute Bioavailability of Rifampicin by Varying the Mode of Intravenous Administration and the Time of Sampling. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10601330500371524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Ferdinandi ES, Brazeau P, High K, Procter B, Fennell S, Dubreuil P. Non-Clinical Pharmacology and Safety Evaluation of TH9507, a Human Growth Hormone-Releasing Factor Analogue. Basic Clin Pharmacol Toxicol 2007; 100:49-58. [PMID: 17214611 DOI: 10.1111/j.1742-7843.2007.00008.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TH9507, an analogue of human growth hormone-releasing factor (hGRF1-44NH2) minimally modified by addition of a trans-3-hexenoyl moiety to Tyr1 of the amino acid sequence, was found to be resistant to dipeptidyl aminopeptidase-IV deactivation. Compared to natural hGRF1-44NH2, the modification slowed the in vitro degradation of the peptide in rat, dog and human plasma and prolonged the in vivo plasma elimination kinetics of immunoreactive TH9507. Plasma growth hormone and insulin-like growth factor-1 (IGF-1) markedly increased in pigs, rats and dogs after daily repeat intravenous or subcutaneous injections of TH9507 at doses up to 600 microg/kg. Subchronic toxicity studies in rats and dogs with TH9507 treatment for up to 4 months showed a significant, but not dose-related, increase in body weight gain associated with increased biomarker response. Although TH9507 was well tolerated by both rats and dogs, a more pronounced anabolic effect and more evident (reversible) adverse effects (liver and kidney findings, anaemia, clinical chemistry changes, organ weight effects) were observed in dogs after repeat daily subcutaneous injections, which were attributed to prolonged exposure to supraphysiological levels of growth hormone and/or IGF-1. In both rats and dogs, toxicokinetic evaluations indicated that exposure to immunoreactive TH9507 was dose related after both routes of administration. The apparent elimination t1/2 in dogs ranged from 21 to 45 min. In conclusion, TH9507 is a modified hGRF peptide having enhanced potency and duration of action. The adverse treatment-related effects in dogs appear to be associated with sustained exposure to supraphysiological levels of growth hormone and IGF-1 induced by prolonged TH9507 treatment.
Collapse
|
10
|
Abstract
Sarcopenia is the term widely used to describe the progressive loss of muscle mass with advancing age. Even before significant muscle wasting becomes apparent, ageing is associated with a slowing of movement and a gradual decline in muscle strength, factors that increase the risk of injury from sudden falls and the reliance of the frail elderly on assistance in accomplishing even basic tasks of independent living. Sarcopenia is recognised as one of the major public health problems now facing industrialised nations, and its effects are expected to place increasing demands on public healthcare systems worldwide. Although the effects of ageing on skeletal muscle are unlikely to be halted or reversed, the underlying mechanisms responsible for these deleterious changes present numerous targets for drug discovery with potential opportunities to attenuate muscle wasting, improve muscle function, and preserve functional independence. Very few drugs have been developed with sarcopenia specifically in mind. However, because many of the effects of ageing on skeletal muscle resemble those indicated in many neuromuscular disorders, drugs that target neurodegenerative diseases may also have important relevance for treating age-related muscle wasting and weakness. This review describes a selection of the emerging drugs that have been developed during the period 1997 - 2004, relevant to sarcopenia.
Collapse
Affiliation(s)
- Gordon S Lynch
- The University of Melbourne, Department of Physiology and Centre for Neuroscience, Victoria, 3010, Australia.
| |
Collapse
|