1
|
Tekale SU, Rottenberg Y, Ingle RD, Domb AJ, Pawar RP. Recent developments in biodegradable block copolymers. POLYM ADVAN TECHNOL 2021; 32:3877-3899. [DOI: 10.1002/pat.5460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/11/2021] [Indexed: 01/06/2025]
Abstract
AbstractBlock copolymers consist of two or more segments of polymer chains in a typical arrangement through connected covalent bonds. Biodegradable block copolymers have emerged as useful carriers for controlled drug release, tissue engineering, and other biomedical applications due to their ability to form colloidal systems and tunable properties. This review focuses on recent advancements in the synthesis, characterization, and biomedical applications of biodegradable block copolymers.
Collapse
Affiliation(s)
- Sunil U. Tekale
- Department of Chemistry Deogiri College Aurangabad Maharashtra India
| | | | - Rajita D. Ingle
- Department of Chemistry Deogiri College Aurangabad Maharashtra India
| | - Abraham J. Domb
- School of Pharmacy‐Faculty of Medicine and Institute of Drug Research, Alex Grass Center for Drug Research The Hebrew University of Jerusalem Jerusalem Israel
| | - Rajendra P. Pawar
- Department of Chemistry Shiv Chhatrapati College Aurangabad Maharashtra India
| |
Collapse
|
2
|
Van Gheluwe L, Buchy E, Chourpa I, Munnier E. Three-Step Synthesis of a Redox-Responsive Blend of PEG- block-PLA and PLA and Application to the Nanoencapsulation of Retinol. Polymers (Basel) 2020; 12:E2350. [PMID: 33066418 PMCID: PMC7602167 DOI: 10.3390/polym12102350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 01/06/2023] Open
Abstract
Smart polymeric nanocarriers have been developed to deliver therapeutic agents directly to the intended site of action, with superior efficacy. Herein, a mixture of poly(lactide) (PLA) and redox-responsive poly(ethylene glycol)-block-poly(lactide) (PEG-block-PLA) containing a disulfide bond was synthesized in three steps. The nanoprecipitation method was used to prepare an aqueous suspension of polymeric nanocarriers with a hydrodynamic diameter close to 100 nm. Retinol, an anti-aging agent very common in cosmetics, was loaded into these smart nanocarriers as a model to measure their capacity to encapsulate and to protect a lipophilic active molecule. Retinol was encapsulated with a high efficiency with final loading close to 10% w/w. The stimuli-responsive behavior of these nanocarriers was demonstrated in vitro, in the presence of l-Glutathione, susceptible to break of disulfide bond. The toxicity was low on human keratinocytes in vitro and was mainly related to the active molecule. Those results show that it is not necessary to use 100% of smart copolymer in a nanosystem to obtain a triggered release of their content.
Collapse
Affiliation(s)
- Louise Van Gheluwe
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| | - Eric Buchy
- Laboratoires Eriger, 39 Rue des Granges Galand, 37550 Saint-Avertin, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37 200 Tours, France; (L.V.G.); (I.C.)
| |
Collapse
|
3
|
Guo R, Long Y, Lu Z, Deng M, He P, Li M, He Q. Enhanced stability and efficacy of GEM-TOS prodrug by co-assembly with antimetastatic shell LMWH-TOS. Acta Pharm Sin B 2020; 10:1977-1988. [PMID: 33163348 PMCID: PMC7606181 DOI: 10.1016/j.apsb.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/08/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy agents have been widely used for cancer treatment, while the insolubility, instability and toxicity seriously restrict their efficacy. Thus, prodrug strategy was devised. Since some prodrugs are still with poor solubility or stability, a synergy strategy is needed to enhance their efficacy. Gemcitabine (GEM) is a prescribed anticancer drug, however, the rapid clearance, growing resistance and serious side effects limit its clinical efficacy. Conjugating GEM with d-α-tocopherol succinate (TOS) is an effective solution, while the GEM-TOS (GT) is unstable in aqueous solution. d-α-Tocopherol polyethylene glycol succinate (TPGS) has been used to enhance the stability, but GT stabilized by TPGS (GTT) has limited effect on tumor metastases. Tumor metastases lead to high mortality in patients suffering from cancers. In order to further achieve antimetastatic effect, an amphiphilic polymer (LT) was synthesized by connecting low-molecular-weight heparin (LMWH) with TOS, and eventually obtained desired self-delivery micellar NPs (GLT) by co-assembly GT with LT. The GLT not only possessed excellent stability, but also inhibited the metastases by acting on different phases of the metastatic cascade. The hydrophobic TOS inhibited the secretion of matrix metalloproteinase-9 (MMP-9), the hydrophilic LMWH inhibited the interaction between tumor cells and platelets. As a result, GLT reduced tumor cells entering the blood and implanting at the distant organs, leading to a much more excellent inhibitory effect on the lung metastasis than GEM and GTT.
Collapse
|
4
|
Omaníková L, Bočkaj J, Černák M, Plavec R, Feranc J, Jurkovič P. Influence of Composition and Plasma Power on Properties of Film from Biodegradable Polymer Blends. Polymers (Basel) 2020; 12:polym12071592. [PMID: 32709099 PMCID: PMC7407839 DOI: 10.3390/polym12071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022] Open
Abstract
The work is focused on the study of surface plasma treatment (DCSBD) of films from biodegradable polymers from renewable sources based on polylactic acid (PLA) and polyhydroxybutyrate (PHB). A 4-factor design of experiment was used where the selected variable parameters were the plasma device power, the time of plasma treatment, the ratio of PHB in the polymer blend with PLA, and the content of acetyl tributyl citrate (ATBC) plasticizer in the PLA + PHB blend. The surface total energy and the polar component were evaluated immediately after surface plasma treatment and after 5 h of sitting. Topography of foil surfaces was also studied by AFM. In terms of plasma power and activation time, the greatest increase in surface energy values was observed with a short plasma time of 2 s and a high power of 400 W. Increasing the content of ATBC in interaction with the high concentration of PHB in the blend results in a reduction in the difference of both the polar component and the total free surface energy.
Collapse
Affiliation(s)
- Leona Omaníková
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (J.B.); (R.P.); (J.F.); (P.J.)
- Correspondence:
| | - Ján Bočkaj
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (J.B.); (R.P.); (J.F.); (P.J.)
| | - Mirko Černák
- CEPLANT, Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic;
| | - Roderik Plavec
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (J.B.); (R.P.); (J.F.); (P.J.)
| | - Jozef Feranc
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (J.B.); (R.P.); (J.F.); (P.J.)
| | - Patrik Jurkovič
- Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (J.B.); (R.P.); (J.F.); (P.J.)
| |
Collapse
|
5
|
Zhou H, Qin C, Chen R, Liu Y, Zhou W, Zhang G, Gao Y, Xiao L, Jia S. Quantum Coherent Modulation-Enhanced Single-Molecule Imaging Microscopy. J Phys Chem Lett 2019; 10:223-228. [PMID: 30599135 DOI: 10.1021/acs.jpclett.8b03606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In fluorescence imaging and detection, undesired fluorescence interference (such as autofluorescence) often hampers the contrast of the image and even prevents the identification of structures of interest. Here, we develop a quantum coherent modulation-enhanced (QCME) single-molecule imaging microscopy (SMIM) to substantially eliminate the strong fluorescence interference, based on manipulation of the excited-state population probability of a single molecule. By periodically modulating the phase difference between the ultrashort pulse pairs and performing a discrete Fourier transform of the arrival time of emitted photons, the decimation of single molecules from strong interference in QCME-SMIM has been clearly determined, where the signal-to-interference ratio is enhanced by more than 2 orders of magnitude. This technique, confirmed to be universal to organic dyes and linked with biomacromolecules, paves the way to high-contrast bioimaging under unfavorable conditions.
Collapse
Affiliation(s)
- Haitao Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yaoming Liu
- Scientific Instrument Center , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Wenjin Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Yan Gao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan , Shanxi 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan , Shanxi 030006 , China
| |
Collapse
|
6
|
Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv Transl Res 2017; 7:416-427. [DOI: 10.1007/s13346-017-0372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Mérian J, Boisgard R, Decleves X, Thezé B, Texier I, Tavitian B. Synthetic lipid nanoparticles targeting steroid organs. J Nucl Med 2013; 54:1996-2003. [PMID: 24071507 DOI: 10.2967/jnumed.113.121657] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Lipidots are original nanoparticulate lipid delivery vectors for drugs and contrast agents made from materials generally regarded as safe. Here, we characterized the in vivo stability, biodistribution, and pharmacokinetics of lipidots. METHODS Lipidots 55 nm in diameter and coated with a phospholipid/poly(ethyleneglycol) surfactant shell were triply labeled with (3)H-cholesteryl-hexadecyl-ether, cholesteryl-(14)C-oleate, and the 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine infrared fluorescent dye and injected intravenously into immunocompetent Friend virus B-type mice. The pharmacokinetics and biodistribution of lipidots were analyzed quantitatively in serial samples of blood and tissue and with in vivo optical imaging and were refined by microscopic examination of selected target tissues. RESULTS The plasmatic half-life of lipidots was approximately 30 min. Radioactive and fluorescent tracers displayed a similar nanoparticle-driven biodistribution, indicative of the lipidots' integrity during the first hours after injection. Lipidots distributed in the liver and, surprisingly, in the steroid-rich organs adrenals and ovaries, but not in the spleen. This tropism was confirmed at the microscopic level by histologic detection of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine. Nanoparticle loading with cholesterol derivatives increased accumulation in ovaries in a dose-dependent manner. CONCLUSION This previously unreported distribution pattern is specific to lipidots and attributed to their nanometric size and composition, conferring on them a lipoproteinlike behavior. The affinity of lipidots for steroid hormone-rich areas is of interest to address drugs and contrast agents to lipoprotein-receptor-overexpressing cancer cells found in hormone-dependent tumors.
Collapse
|
8
|
Chu H, Ajiro H, Takahashi Y, Chen M, Akashi M. Nanoparticle Fabrication with Biodegradable Block Copolymer Composed of Hydrophilic Poly(trimethylene carbonate) Derivative and Hydrophobic Polylactide. CHEM LETT 2013. [DOI: 10.1246/cl.2013.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hong Chu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
| | - Hiroharu Ajiro
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- The Center for Advanced Medical Engineering and Informatics, Osaka University
| | - Yoshikazu Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Mingqing Chen
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- The Center for Advanced Medical Engineering and Informatics, Osaka University
| |
Collapse
|
9
|
Lu WF, Chen SF, Wen ZY, Li Q, Chen JH. In vitroevaluation of efficacy of dihydroartemisinin-loaded methoxy poly(ethylene glycol)/poly(l-lactic acid) amphiphilic block copolymeric micelles. J Appl Polym Sci 2012. [DOI: 10.1002/app.38518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Nie Y, Zhang ZR, He B, Gu Z. Investigation of PEG-PLGA-PEG nanoparticles-based multipolyplexes for IL-18 gene delivery. J Biomater Appl 2011; 26:893-916. [PMID: 21273262 DOI: 10.1177/0885328210384889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanoparticles were formulated with biodegradable monomethoxy (poly ethylene glycol)-poly(lactide-co-glycolide)-monomethoxy (poly ethylene glycol) of three different proportional (PEG-PLGA-PEG, lactic acid: glycolic acid = 80/20, 70/30, 50/50) and the cytotoxicity of nanoparticle was characterized according to US Pharmacopoeia XXIII recommendations on various cell lines, including L929, Chang's hepatocytes, primary mouse myoblasts, osteoblasts, and renal vascular endothelial cells. mIL-18 gene was first condensed by polycationic peptide polylysine (PLL), and then encapsulated in the PEG-PLGA-PEG NPs as a novel multi-polyplex gene delivery system - Polymer-PLL-DNA. (PPDs) After lyopholization, the morphology, particle size, zeta potential, and the integrity of DNA in the NPs were investigated. The expression of mIL-18 gene on CT-26 cells in vitro were determined by western blot, while in vivo efficacy was evaluated by tumor inhibition rate, histological section, and survival curve in pulmonary metastasis of colon cancer in BALB/c mice model. Results showed that the cytotoxicity of blank nanoparticles was related to the degradation properties of the polymers with different compositions. The NPs with LA:GA = 70/30 (NPs-73) was optimal for intravenous injection due to its low cytotoxicity. Physicochemical properties of the PPDs were not changed during the lyopholization, while mIL-18 was successfully expressed in vitro. The anti-tumor efficacy in vivo of PPDs showed improvement especially combined with chemotherapy of cisplatin, and confirmed the promising application of the PPDs system, which compared with any single treatment.
Collapse
Affiliation(s)
- Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | | | | | | |
Collapse
|
11
|
Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM. Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomedicine 2010; 5:1057-65. [PMID: 21170353 PMCID: PMC3000205 DOI: 10.2147/ijn.s14912] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Due to their small particle size and large and modifiable surface, nanoparticles have unique advantages compared with other drug carriers. As a research focus in recent years, polyethylene glycol-polylactic acid (PEG-PLA) block copolymer and its end-group derivative nanoparticles can enhance the drug loading of hydrophobic drugs, reduce the burst effect, avoid being engulfed by phagocytes, increase the circulation time of drugs in blood, and improve bioavailability. Additionally, due to their smaller particle size and modified surface, these nanoparticles can accumulate in inflammation or target locations to enhance drug efficacy and reduce toxicity. Recent advances in PEG-PLA block copolymer nanoparticles, including the synthesis of PEG-PLA and the preparation of PEG-PLA nanoparticles, were introduced in this study, in particular the drug release and modifiable characteristics of PEG-PLA nanoparticles and their application in pharmaceutical preparations.
Collapse
Affiliation(s)
- Ren Zhong Xiao
- Research Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhao Wu Zeng
- Research Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guang Lin Zhou
- Research Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun Jie Wang
- Research Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fan Zhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - An Ming Wang
- Research Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Pereira MA, Mosqueira VCF, Carmo VAS, Ferrari CS, Reis ECO, Ramaldes GA, Cardoso VN. Biodistribution study and identification of inflammatory sites using nanocapsules labeled with (99m)Tc-HMPAO. Nucl Med Commun 2009; 30:749-55. [PMID: 19593235 DOI: 10.1097/mnm.0b013e32832f2b59] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the ability of polymeric nanocapsules (NCs) radiolabeled with technetium-99m D,L-hexamethylpropyleneamine oxime (Tc-HMPAO) to identify inflammatory process in an experimental model. METHODS NCs were prepared by interfacial deposition of preformed biodegradable polymer [poly (D,L-lactic acid) (PLA) and PLA-PEG (polyethyleneglycol)] followed by a solvent displacement. The size and homogeneity, and zeta potential of the NC preparations were determined in a Zetasizer by photon correlation spectroscopy and laser Doppler anemometry, respectively. The NCs radiolabeled with Tc-HMPAO were administered intravenously to Wistar male rats bearing a focal inflammation induced by subplantar injection of carrageenan in the right foot. At preestablished time intervals, the animals were anesthetized, tissues were removed and radioactivity was determined using an automatic scintillation apparatus. RESULTS The average diameter calculated by photon correlation spectroscopy varied from 216 to 323 nm. The biodistribution studies showed a greater uptake of the PEG surface-modified Tc-HMPAO-NC by the inflamed paws when compared with the respective controls. There was no significant difference in the uptake of conventional Tc-HMPAO-NC and of free Tc-HMPAO by inflamed and control paws. These results indicate that the PLA-PEG Tc-NC showed a higher uptake in inflammation compared with free complex and may be useful as a radiotracer to identify these foci.
Collapse
Affiliation(s)
- Maira A Pereira
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Cheng Y, Deng S, Chen P, Ruan R. Polylactic acid (PLA) synthesis and modifications: a review. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11458-009-0092-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Ueki K, Onishi H, Sasatsu M, Machida Y. Preparation of carboxy-PEG-PLA nanoparticles loaded with camptothecin and their body distribution in solid tumor-bearing mice. Drug Dev Res 2009. [DOI: 10.1002/ddr.20322] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Ishihara T, Kubota T, Choi T, Higaki M. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate. J Pharmacol Exp Ther 2009; 329:412-7. [PMID: 19244548 DOI: 10.1124/jpet.108.150276] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
We examined the therapeutic activity of betamethasone disodium 21-phosphate (BP) encapsulated in biocompatible and biodegradable blended nanoparticles of poly (D,L-lactic/glycolic acid) (PLGA)/poly(D,L-lactic acid) (PLA) homopolymers and polyethylene glycol (PEG)-block-PLGA/PLA copolymers (stealth nanosteroid) in experimental arthritis models. Various stealth nanosteroids with a size of 45 to 115 nm were prepared and then intravenously administered to rats with adjuvant arthritis (AA) rats and mice with anti-type II collagen antibody-induced arthritis (AbIA). The accumulation of stealth nanoparticles with Cy7 in inflamed joints was determined using an in vivo imaging system. The type A stealth nanosteroid, composed of PLA (2.6 kDa) and PEG (5 kDa)-PLA (3 kDa), with a PEG content of 10% and a diameter of 115 nm, exhibited the highest anti-inflammatory activity. In AA rats, a 35% decrease in paw inflammation was obtained in 1 day and maintained for 9 days with a single injection of the type A stealth nanosteroid (40 microg of BP), whereas the same does of nonstealth nanosteroid and 3 times higher free BP showed a significantly weaker response. In AbIA mice, a single injection of the type A stealth nanosteroid (3 microg of BP) resulted in complete remission of the inflammatory response after 1 week. Furthermore, in AbAI mice, the accumulation of type A stealth nanoparticles in inflamed joints was shown to parallel the severity of inflammation. The observed strong therapeutic benefit obtained with the type A stealth nanosteroid in experimental arthritis may have been due to prolonged blood circulation and targeting to the inflamed joint in addition to its sustained release in situ.
Collapse
Affiliation(s)
- Tsutomu Ishihara
- Institute of Drug Delivery System, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
16
|
Ishihara T, Kubota T, Choi T, Takahashi M, Ayano E, Kanazawa H, Higaki M. Polymeric nanoparticles encapsulating betamethasone phosphate with different release profiles and stealthiness. Int J Pharm 2009; 375:148-54. [PMID: 19481700 DOI: 10.1016/j.ijpharm.2009.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/18/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to engineer nanoparticles with various sustained profiles of drug release and prolonged circulation by blending poly(D,L-lactic acid)/poly(D,L-lactic/glycolic acid) (PLA/PLGA) homopolymers and poly(ethylene glycol) (PEG)-block-PLA/PLGA copolymers encapsulating betamethasone disodium 21-phosphate (BP). Nanoparticles of different sizes, drug encapsulation/release profiles, and cellular uptake levels were obtained by mixing homopolymers and block copolymers with different compositions/molecular weights at various blend ratios by an oil-in-water solvent diffusion method. The in vitro release of BP increased with nanoparticles of smaller size or of PLGA homopolymers instead of PLA homopolymers. Furthermore, the uptake of nanoparticles by macrophage-like cells decreased with nanoparticles of higher PEG content, and nanoparticles of PEG-PLGA block copolymers were taken up earlier than those of PEG-PLA block copolymers after incubation with serum. In addition, prolonged blood circulation was observed with nanoparticles of smaller size with higher PEG content, and nanoparticles of PEG-PLA block copolymers remained longer in circulation than those of PEG-PLGA block copolymers. Analysis of BP concentration in organs revealed reduced liver distribution of blended nanoparticles compared with PLA nanoparticles. This is the first study to systematically design and characterize biodegradable PLA/PLGA and PEG-PLA/PLGA-blended nanoparticles encapsulating BP with different release profiles and stealthiness.
Collapse
Affiliation(s)
- Tsutomu Ishihara
- Institute of Drug Delivery Systems, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhao X, Wan J, Xu H, Yang X. An improved HPLC method with fluorescence detection for the determination of pyrene in rat plasma and its pharmacokinetics. J Pharm Biomed Anal 2008; 48:1237-42. [PMID: 18930619 DOI: 10.1016/j.jpba.2008.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/31/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
Abstract
A high-performance liquid chromatographic method with fluorescence detection (HPLC-FLD) for the determination of pyrene in rat plasma was developed and validated. The method used fluorene as internal standard (IS), following a single-step protein precipitation, the analyte and internal standard were separated on a C18 column with a mobile phase containing methanol-water (90:10, v/v) at a flow rate of 1 ml/min. The analytes were detected by using fluorescence detection at an excitation and emission wavelength of 265 and 394 nm, respectively. Two calibration curves were constructed in the range of 2-100 ng/ml and 0.1-5 microg/ml for pyrene with a lower limit of quantitation (LLOQ) of 2 ng/ml. Both intra-day and inter-day precision were less than 6% except at LLOQ, for which the precision was 10.6 and 9.8, respectively. Accuracy ranged from 98.3 to 103.6%, except at LLOQ, for which the accuracy was about 85%. The recovery ranged from 84.7 to 95.0% at the low, medium and high concentrations. The present HPLC-FLD method was rapid, sensitive, and reliable. The method described herein had been successfully applied for the pharmacokinetic studies in female Wistar rats after administration of 10mg equivalent pyrene/kg dose of solution of pyrene and 1mg equivalent pyrene/kg dose of pyrene-loaded nanoparticle.
Collapse
Affiliation(s)
- Xiaozhi Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | | | | | | |
Collapse
|
18
|
Ende AEVD, Kravitz EJ, Harth E. Approach to Formation of Multifunctional Polyester Particles in Controlled Nanoscopic Dimensions. J Am Chem Soc 2008; 130:8706-13. [DOI: 10.1021/ja711417h] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alice E. van der Ende
- Department of Chemistry and Pharmacology, Vanderbilt University, 7619 Stevenson Center, Nashville, Tennessee 37235
| | - Evan J. Kravitz
- Department of Chemistry and Pharmacology, Vanderbilt University, 7619 Stevenson Center, Nashville, Tennessee 37235
| | - Eva Harth
- Department of Chemistry and Pharmacology, Vanderbilt University, 7619 Stevenson Center, Nashville, Tennessee 37235
| |
Collapse
|
19
|
Sasatsu M, Onishi H, Machida Y. Preparation and biodisposition of methoxypolyethylene glycol amine–poly(dl-lactic acid) copolymer nanoparticles loaded with pyrene-ended poly(dl-lactic acid). Int J Pharm 2008; 358:271-7. [DOI: 10.1016/j.ijpharm.2008.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/28/2008] [Accepted: 03/03/2008] [Indexed: 11/24/2022]
|
20
|
Ljubimova JY, Fujita M, Khazenzon NM, Lee BS, Wachsmann-Hogiu S, Farkas DL, Black KL, Holler E. Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 2008; 171:195-203. [PMID: 17376417 PMCID: PMC2329596 DOI: 10.1016/j.cbi.2007.01.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/04/2006] [Accepted: 01/31/2007] [Indexed: 11/29/2022]
Abstract
A new prototype of polymer-derived drug delivery system, the nanoconjugate Polycefin, was tested for its ability to accumulate in tumors based on enhanced permeability and retention (EPR) effect and receptor mediated endocytosis. Polycefin was synthesized for targeted delivery of Morpholino antisense oligonucleotides into certain tumors. It consists of units that are covalently conjugated with poly(beta-l-malic acid) (M(w) 50,000, M(w)/M(n) 1.3) highly purified from cultures of myxomycete Physarum polycephalum. The units are active in endosomal uptake, disruption of endosomal membranes, oligonucleotide release in the cytoplasm, and protection against enzymatic degradation in the vascular system. The polymer is biodegradable, non-immunogenic and non-toxic. Polycefin was also coupled with AlexaFluor 680 C2-maleimide dye for in vivo detection. Nude mice received subcutaneous injections of MDA-MB 468 human breast cancer cells into the left posterior mid-dorsum or intracranial injections of human glioma cell line U87MG. Polycefin at concentration of 2.5mg/kg was injected via the tail vein. In vivo fluorescence tumor imaging was performed at different time points, 0-180 min up to 24h after the drug injection. The custom-made macro-illumination imaging MISTI system was used to examine the in vivo drug accumulation in animals bearing human breast and brain tumors. In breast tumors the fluorescence signal in large blood vessels and in the tumor increased rapidly until 60 min and remained in the tumor at a level 6 times higher than in non-tumor tissue (180 min) (p<0.003). In brain tumors drug accumulated selectively in 24h without any detectable signal in non-tumor areas. The results of live imaging were corroborated histologically by fluorescence microscopic examination of various organs. In addition to tumors, only kidney and liver showed some fluorescent signal.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: Release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy. Eur J Pharm Sci 2008; 33:42-51. [DOI: 10.1016/j.ejps.2007.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 08/15/2007] [Accepted: 09/18/2007] [Indexed: 11/17/2022]
|
22
|
Wood MA. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J R Soc Interface 2007; 4:1-17. [PMID: 17015295 PMCID: PMC2358954 DOI: 10.1098/rsif.2006.0149] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Substrate topography plays a vital role in cell and tissue structure and function in situ, where nanometric features, for example, the detail on single collagen fibrils, influence cell behaviour and resultant tissue formation. In vitro investigations demonstrate that nanotopography can be used to control cell reactions to a material surface, indicating its potential application in tissue engineering and implant fabrication. Developments in the catalyst, optical, medical and electronics industries have resulted in the production of nanopatterned surfaces using a variety of methods. The general protocols for nanomanufacturing require high resolution and low cost for fabricating devices. With respect to biological investigations, nanotopographies should occur across a large surface area (ensuring repeatability of experiments and patterning of implant surfaces), be reproducible (allowing for consistency in experiments), and preferably, accessible (limiting the requirement for specialist equipment). Colloidal lithography techniques fit these criteria, where nanoparticles can be utilized in combination with a functionalized substrate to produce in-plane nanotopographies. Subsequent lithographic processing of colloidal substrates utilizing, for example, reactive ion etching allows the production of modified colloidal-derived nanotopographies. In addition to two-dimensional in-plane nanofabrication, functionalized structures can be dip coated in colloidal sols, imparting nanotopographical cues to cells within a three-dimensional environment.
Collapse
Affiliation(s)
- M A Wood
- Centre for Cell Engineering, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|