1
|
Muhamad H, Ward A, Patel K, Williamson J, Blunt L, Conway B, Østergaard J, Asare-Addo K. Investigation into the swelling and dissolution behaviour of Polymer-Excipient blends of PEO Utilising dissolution imaging. Int J Pharm 2024; 666:124850. [PMID: 39437848 DOI: 10.1016/j.ijpharm.2024.124850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
The use of dissolution imaging in analysing the behaviourof hydrophilic matrices and various types of excipients is examined in this study.The main aim was to investigate how different ratios of excipients with different solubility properties, such as lactose, microcrystalline cellulose, and dicalcium phosphate impact on the swelling properties and propranolol hydrochloride (PPN) release characteristics of polyethylene oxide matrix compacts. The surface properties of the compacts were investigated using a focus variation microscope after which dissolution studies were conducted to determine compact swelling and drug release properties. Smr2, a surface parameter representing the percentage of deeper valley structures on the surface, was used to calculate the proportion of the compact surface available for retaining lubrication (dissolution media in this case). Smr2 values of 83 and 84 were measured for the 1:1 and 1:3 PEO lactose compacts, respectively. This parameter utilised in this experiment gives an indication of the compact surface available for the initial hydration process and suggests a higher rate of hydration for the 1:1 and 1:3 PEO lactose compacts. The swelling studies revealed that a higher PEO ratio (3:1) resulted in more extensive gel layer formation as compared to the 1:3 compacts. All PEO:excipient compacts exhibited faster drug release than the compacts comprising PEO as the sole excipient. The quantity of PEO present was thus crucial in influencing the capacity of the matrix to control the release of PPN. This study underscores the potential for modifying drug release by altering the quantity of the matrix gel-former (PEO in this case) as well as the type or ratio of excipient used. The study also highlights the novelty of using UV dissolution imaging to image and quantify swelling and drug dissolution processes as well as providing qualitative observations such as channel formation which can support formulation optimisation and mechanistic understanding.
Collapse
Affiliation(s)
- Haja Muhamad
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Adam Ward
- Centre for Pharmaceutical Engineering Science, School of Pharmacy, University of Bradford, UK
| | - Krishan Patel
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - James Williamson
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Liam Blunt
- EPSRC Future Metrology Hub, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Barbara Conway
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK.
| |
Collapse
|
2
|
Wood L, Hughes J, Trussell M, Bishop AL, Griffin R. Fasting before Intra-Gastric Dosing with Antigen Improves Intestinal Humoral Responses in Syrian Hamsters. Vaccines (Basel) 2024; 12:572. [PMID: 38932302 PMCID: PMC11209237 DOI: 10.3390/vaccines12060572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Oral vaccines, unlike injected, induce intestinal secretory immunoglobulin A (sIgA) mimicking our natural defense against gut pathogens. We previously observed sIgA responses after administering the Clostridioides difficile colonisation factor CD0873 orally in enteric capsules to hamsters. Enteric-coated capsules are designed to resist dissolution in the stomach and disintegrate only at the higher pH of the small intestine. However, the variable responses between animals led us to speculate suboptimal transit of antigens to the small intestine. The rate of gastric emptying is a controlling factor in the passage of oral drugs for subsequent availability in the small intestine for absorption. Whilst in humans, food delays gastric emptying, in rats, capsules can empty quicker from fed stomachs than from fasted. To test in hamsters if fasting improves the delivery of antigens to the small intestine, as inferred from the immune responses generated, 24 animals were dosed intragastrically with enteric capsules containing recombinant CD0873. Twelve hamsters were fasted for 12 h prior to each dose and the other 12 fed. Significantly higher sIgA titres, with significantly greater bacterial-adherence-blocking activity, were detected in small intestinal lavages in the fasted group. We conclude that fasting in hamsters improves intestinal delivery leading to more robust responses.
Collapse
Affiliation(s)
- Liam Wood
- Vaccines and Therapeutics Group, School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Clostridia Research Group, Synthetic Biology Research Centre (SBRC), The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Jaime Hughes
- School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Mark Trussell
- Bio Support Unit, The University of Nottingham Medical School, Nottingham NG7 2UH, UK
| | - Anne L. Bishop
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ruth Griffin
- Vaccines and Therapeutics Group, School of Life Sciences, The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- Clostridia Research Group, Synthetic Biology Research Centre (SBRC), The University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, The University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
3
|
Kjeldsen RB, Ghavami M, Thamdrup LH, Boisen A. Magnetic and/or Radiopaque Functionalization of Self-Unfolding Foils for Improved Applicability within Oral Drug Delivery. ACS Biomater Sci Eng 2023; 9:6773-6782. [PMID: 37989264 PMCID: PMC10716816 DOI: 10.1021/acsbiomaterials.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Various types of microfabricated devices have been proposed for overcoming the gastrointestinal (GI) challenges associated with oral administration of pharmaceutical compounds. However, unidirectional drug release in very close forced proximity to the intestinal wall still appears to be an unresolved issue for many of these microdevices, which typically show low drug absorption and thereby low bioavailabilities. This work explores how recently developed and promising self-unfolding foils (SUFs) can be magnetically and/or radiopaquely (M/R-) functionalized, by the addition of BaSO4 or Fe3O4 nanoparticles, for improving their applicability within oral drug delivery. Through surface characterization, mechanical testing, and X-ray imaging, the (M/R-)SUFs are generally inspected and their overall properties compared. Furthermore, R-SUFs are being used in an in vivo rat X-ray imaging study, whereas in situ rat testing of MR-SUFs are attempted together with an investigation of their general magnetic properties. Unfolding of the R-SUF, and its very close forced proximity to the small intestine, is very easily observed 2 h post-administration by applying both computed tomography scanning and planar X-ray imaging. In addition, MR-SUFs show a great magnetic response in water, which suggests the possibility for controlled motion and retention in the GI tract. However, the magnetic response does not seem strong enough for in situ rat testing, but most likely a strong magnetization of the MR-SUFs using for example an impulse magnetizer can be made for increasing the magnetic response. All of the results presented herein are highly relevant and applicable for future usage of (M/R-)SUFs, as well as similar devices, in pre-clinical studies and potential clinical trials.
Collapse
Affiliation(s)
- Rolf Bech Kjeldsen
- The Danish National Research
Foundation and Villum Foundation’s Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research
Foundation and Villum Foundation’s Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund
Eklund Thamdrup
- The Danish National Research
Foundation and Villum Foundation’s Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research
Foundation and Villum Foundation’s Center for Intelligent Drug
Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN),
Department of Health Technology, Technical
University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Milián-Guimerá C, McCabe R, Thamdrup LHE, Ghavami M, Boisen A. Smart pills and drug delivery devices enabling next generation oral dosage forms. J Control Release 2023; 364:S0168-3659(23)00702-2. [PMID: 39491170 DOI: 10.1016/j.jconrel.2023.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Oral dosage forms are the preferred solution for systemic treatment and prevention of disease conditions. However, traditional dosage forms face challenges regarding treatment adherence and delivery of biologics. Oral therapies that require frequent administrations face difficulties with patient compliance. In addition, only a few peptide- and protein-based drugs have been commercialized for oral administration so far, presenting a bioavailability that is generally low. Therefore, research and development on novel formulation strategies for oral drug delivery has bloomed massively in the last decade to overcome these challenges. On the one hand, approaches based on lumen-release of drugs such as 3D-printed capsules and prolonged gastric residence dosage forms have been explored to offer personalized medicine to the patient and reduce frequent dosing of small drug compounds that are currently in the market as powdered tablet or capsules. On the other hand, strategies based on mucus interfacing such as gastrointestinal patches, or even epithelium injections have been investigated in order to enhance the permeability of biologic macromolecules, which are mostly commercialized in the form of subcutaneous injections. Despite the fact that these methods are at an early development stage, promising results have been revealed in terms of personalized medicine and improved bioavailability. In this review, we offer a critical overview of novel ingestible millimeter-sized devices and technologies for oral drug delivery that are currently used in the clinic as well as those that could emerge on the market in a not too distant future.
Collapse
Affiliation(s)
- Carmen Milián-Guimerá
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Reece McCabe
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Ghavami M, Pedersen J, Kjeldsen RB, Alstrup AKO, Zhang Z, Koulianou V, Palmfeldt J, Vorup-Jensen T, Thamdrup LHE, Boisen A. A self-unfolding proximity enabling device for oral delivery of macromolecules. J Control Release 2023; 361:40-52. [PMID: 37506850 DOI: 10.1016/j.jconrel.2023.07.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral delivery of macromolecules remains highly challenging due to their rapid degradation in the gastrointestinal tract and poor absorption across the tight junctions of the epithelium. In the last decade, researchers have investigated several medical devices to overcome these challenges using various approaches, some of which involve piercing through the intestine using micro and macro needles. We have developed a new generation of medical devices called self-unfolding proximity enabling devices, which makes it possible to orally deliver macromolecules without perforating the intestine. These devices protect macromolecules from the harsh conditions in the stomach and release their active pharmaceutical ingredients in the vicinity of the intestinal epithelium. One device version is a self-unfolding foil that we have used to deliver insulin and nisin to rats and pigs respectively. In our study, this device has shown a great potential for delivering peptides, with a significant increase in the absorption of solid dosage of insulin by ∼12 times and nisin by ∼4 times in rats and pigs, respectively. With the ability to load solid dosage forms, our devices can facilitate enhanced absorption of minimally invasive oral macromolecule formulations.
Collapse
Affiliation(s)
- Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Jesper Pedersen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Zhongyang Zhang
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vasiliki Koulianou
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine (MMF), Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Kilian HI, Zhang H, Shiraz Bhurwani MM, Nilam AM, Seong D, Jeon M, Ionita CN, Xia J, Lovell JF. Barium sulfate and pigment admixture for photoacoustic and x-ray contrast imaging of the gut. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082803. [PMID: 36776721 PMCID: PMC9917716 DOI: 10.1117/1.jbo.28.8.082803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Significance X-ray imaging is frequently used for gastrointestinal imaging. Photoacoustic imaging (PAI) of the gastrointestinal tract is an emerging approach that has been demonstrated for preclinical imaging of small animals. A contrast agent active in both modalities could be useful for imaging applications. Aim We aimed to develop a dual-modality contrast agent comprising an admixture of barium sulfate with pigments that absorb light in the second near-infrared region (NIR-II), for preclinical imaging with both x-ray and PAI modalities. Approach Eleven different NIR-II dyes were evaluated after admixture with a 40% w/v barium sulfate mixture. The resulting NIR-II absorption in the soluble fraction and in the total mixture was characterized. Proof-of-principle imaging studies in mice were carried out. Results Pigments that produced more uniform suspensions were assessed further for photoacoustic contrast signal at a wavelength of 1064 nm that corresponds to the output of the Nd:YAG laser used. Phantom imaging studies demonstrated that the pigment-barium sulfate mixture generated imaging contrast in both x-ray and PAI modalities. The optimal pigment selected for further study was a cyanine tetrafluoroborate salt. Ex-vivo and whole-body mouse imaging demonstrated that photoacoustic and x-ray contrast signals co-localized in the intestines for both imaging modalities. Conclusion These data demonstrate that commercially-available NIR-II pigments can simply be admixed with barium sulfate to generate a dual-modality contrast agent appropriate for small animal gastrointestinal imaging.
Collapse
Affiliation(s)
- Hailey I Kilian
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Huijuan Zhang
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Mohammad Mahdi Shiraz Bhurwani
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
| | - Anoop M Nilam
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Daewoon Seong
- Kyungpook National University, College of IT Engineering, School of Electronic and Electrical Engineering, Daegu, Republic of Korea
| | - Mansik Jeon
- Kyungpook National University, College of IT Engineering, School of Electronic and Electrical Engineering, Daegu, Republic of Korea
| | - Ciprian N Ionita
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
| | - Jun Xia
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Jonathan F Lovell
- University at Buffalo, State University of New York, Department of Biomedical Engineering, Buffalo, New York, United States
| |
Collapse
|
7
|
Chang T, Kjeldsen RB, Christfort JF, Vila EM, Alstrøm TS, Zór K, Hwu E, Nielsen LH, Boisen A. 3D-Printed Radiopaque Microdevices with Enhanced Mucoadhesive Geometry for Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2201897. [PMID: 36414017 PMCID: PMC11468800 DOI: 10.1002/adhm.202201897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/13/2022] [Indexed: 11/24/2022]
Abstract
During the past decades, microdevices have been evaluated as a means to overcome challenges within oral drug delivery, thus improving bioavailability. Fabrication of microdevices is often limited to planar or simple 3D designs. Therefore, this work explores how microscale stereolithography 3D printing can be used to fabricate radiopaque microcontainers with enhanced mucoadhesive geometries, which can enhance bioavailability by increasing gastrointestinal retention. Ex vivo force measurements suggest increased mucoadhesion of microcontainers with adhering features, such as pillars and arrows, compared to a neutral design. In vivo studies, utilizing planar X-ray imaging, show the time-dependent gastrointestinal location of microcontainers, whereas computed tomography scanning and cryogenic scanning electron microscopy reveal information about their spatial dynamics and mucosal interactions, respectively. For the first time, the effect of 3D microdevice modifications on gastrointestinal retention is traced in vivo, and the applied methods provide a much-needed approach for investigating the impact of device design on gastrointestinal retention.
Collapse
Affiliation(s)
- Tien‐Jen Chang
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Juliane Fjelrad Christfort
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Eduard Marzo Vila
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Tommy Sonne Alstrøm
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| | - En‐Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of DenmarkKgs. Lyngby2800Denmark
- BioInnovation Institute FoundationCopenhagen2200Denmark
| |
Collapse
|
8
|
Franc A, Vetchý D, Fülöpová N. Commercially Available Enteric Empty Hard Capsules, Production Technology and Application. Pharmaceuticals (Basel) 2022; 15:1398. [PMID: 36422528 PMCID: PMC9696354 DOI: 10.3390/ph15111398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/10/2023] Open
Abstract
Currently, there is a growing need to prepare small batches of enteric capsules for individual therapy or clinical evaluation since many acidic-sensitive substances should be protected from the stomach's acidic environment, including probiotics or fecal material, in the fecal microbiota transplantation (FMT) process. A suitable method seems to be the encapsulation of drugs or lyophilized alternatively frozen biological suspensions in commercial hard enteric capsules prepared by so-called Enteric Capsule Drug Delivery Technology (ECDDT). Manufacturers supply these types of capsules, made from pH-soluble polymers, in products such as AR Caps®, EnTRinsicTM, and Vcaps® Enteric, or capsules made of gelling polymers that release their content as the gel erodes over time when passing through the digestive tract. These include DRcaps®, EMBO CAPS® AP, BioVXR®, or ACGcaps™ HD. Although not all capsules in all formulations meet pharmaceutical requirements for delayed-release dosage forms in disintegration and dissolution tests, they usually find practical application. This literature review presents their composition and properties. Since ECDDT is a new technology, this article is based on a limited number of references.
Collapse
Affiliation(s)
- Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - David Vetchý
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| | - Nicole Fülöpová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic
| |
Collapse
|
9
|
Wen Y, Zhu W, Zhang X, Sun SK. Fabrication of gelatin Bi 2S 3 capsules as a highly sensitive X-ray contrast agent for gastrointestinal motility assessment in vivo. RSC Adv 2022; 12:13645-13652. [PMID: 35530383 PMCID: PMC9069310 DOI: 10.1039/d2ra00993e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Tiny BaSO4 rod-based X-ray imaging is the most frequently-used method for clinical diagnosis of gastrointestinal motility disorders. The BaSO4 rods usually have a small size to pass through the gastrointestinal tract smoothly, but suffer from unavoidably low sensitivity. Herein, we developed Bi2S3 capsules as a high-performance X-ray contrast agent for gastrointestinal motility assessment for the first time. The Bi2S3 capsules were synthesized by the encapsulation of commercial Bi2S3 powder into commercial gelatin capsules and subsequent coating of ultraviolet-curable resin. The prepared Bi2S3 capsules showed excellent biocompatibility in vitro and in vivo and superior X-ray attenuation ability due to the large atomic number and high K-edge value of Bi. The developed Bi2S3 capsules can serve as a small but highly sensitive X-ray contrast agent to quantitatively assess gastrointestinal motility in a vincristine-induced gastrointestinal motility disorder model in vivo by X-ray, CT and spectral CT imaging successfully, solving the intrinsic drawbacks of clinically used BaSO4.
Collapse
Affiliation(s)
- Ya Wen
- Department of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Wang Zhu
- Department of Radiographic Center, Wuhan Children's Hospital, Tongji Medical College of Huazhong University of Science and Technology Wuhan 430015 China
| | - Xuejun Zhang
- Department of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| | - Shao-Kai Sun
- Department of Medical Imaging, Tianjin Medical University Tianjin 300203 China
| |
Collapse
|
10
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
11
|
Luo Z, Paunović N, Leroux JC. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 2021; 175:113814. [PMID: 34052229 DOI: 10.1016/j.addr.2021.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Overcoming the gastrointestinal (GI) barriers is a formidable challenge in the oral delivery of active macromolecules such as peptide- and protein- based drugs. In the past four decades, a plethora of formulation strategies ranging from permeation enhancers, nanosized carriers, and chemical modifications of the drug's structure has been investigated to increase the oral absorption of these macromolecular compounds. However, only limited successes have been achieved so far, with the bioavailability of marketed oral peptide drugs remaining generally very low. Recently, a few approaches that are based on physical interactions, such as magnetic, acoustic, and mechanical forces, have been explored in order to control and improve the drug permeability across the GI mucosa. Although in the early stages, some of these methods have shown great potential both in terms of improved bioavailability and spatiotemporal delivery of drugs. Here, we offer a concise, yet critical overview of these rather unconventional technologies with a particular focus on their potential and possible challenges for further clinical translation.
Collapse
|
12
|
Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021; 175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Oral administration is the most commonly used route for drug delivery owing to its cost-effectiveness, ease of administration, and high patient compliance. However, the absorption of orally delivered compounds is a complex process that greatly depends on the interplay between the characteristics of the drug/formulation and the gastrointestinal tract. In this contribution, we review the different preclinical models (in vitro, ex vivo and in vivo) from their development to application for studying the transport of drugs across intestinal barriers. This review also discusses the advantages and disadvantages of each model. Furthermore, the authors have reviewed the selection and validation of these models and how the limitations of the models can be addressed in future investigations. The correlation and predictability of the intestinal transport data from the preclinical models and human data are also explored. With the increasing popularity and prevalence of orally delivered drugs/formulations, sophisticated preclinical models with higher predictive capacity for absorption of oral formulations used in clinical studies will be needed.
Collapse
Affiliation(s)
- Yining Xu
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Neha Shrestha
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Véronique Préat
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Ana Beloqui
- University of Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
13
|
Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev 2021; 174:553-575. [PMID: 33965461 DOI: 10.1016/j.addr.2021.05.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) printing is a revolutionary technology that is disrupting pharmaceutical development by enabling the production of personalised printlets (3D printed drug products) on demand. By creating small batches of dose flexible medicines, this versatile technology offers significant advantages for clinical practice and drug development, namely the ability to personalise medicines to individual patient needs, as well as expedite drug development timelines within preclinical studies through to first-in-human (FIH) and Phase I/II clinical trials. Despite the widely demonstrated benefits of 3D printing pharmaceuticals, the clinical potential of the technology is yet to be realised. In this timely review, we provide an overview of the latest cutting-edge investigations in 3D printing pharmaceuticals in the pre-clinical and clinical arena and offer a forward-looking approach towards strategies to further aid the translation of 3D printing into the clinic.
Collapse
|
14
|
Kjeldsen RB, Kristensen MN, Gundlach C, Thamdrup LHE, Müllertz A, Rades T, Nielsen LH, Zór K, Boisen A. X-ray Imaging for Gastrointestinal Tracking of Microscale Oral Drug Delivery Devices. ACS Biomater Sci Eng 2021; 7:2538-2547. [PMID: 33856194 DOI: 10.1021/acsbiomaterials.1c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microscale devices are promising tools to overcome specific challenges within oral drug delivery. Despite the availability of advanced high-quality imaging techniques, visualization and tracking of microscale devices in the gastrointestinal (GI) tract is still a challenge. This work explores the possibilities of applying planar X-ray imaging and computed tomography (CT) scanning for visualization and tracking of microscale devices in the GI tract of rats. Microcontainers (MCs) are an example of microscale devices that have shown great potential as an oral drug delivery system. Barium sulfate (BaSO4) loaded into the cavity of the MCs increases their overall X-ray contrast, which allows them to be easily tracked. The BaSO4-loaded MCs are quantitatively tracked throughout the entire GI tract of rats by planar X-ray imaging and visualized in 3D by CT scanning. The majority of the BaSO4-loaded MCs are observed to retain in the stomach for 0.5-2 h, enter the cecum after 3-4 h, and leave the cecum and colon 8-10 h post-administration. The imaging approaches can be adopted and used with other types of microscale devices when investigating GI behavior in, for example, preclinical trials and potential clinical studies.
Collapse
Affiliation(s)
- Rolf Bech Kjeldsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maja Nørgaard Kristensen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anette Müllertz
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Rades
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.,Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Loisios-Konstantinidis I, Dressman J. Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling to Support Waivers of In Vivo Clinical Studies: Current Status, Challenges, and Opportunities. Mol Pharm 2020; 18:1-17. [PMID: 33320002 DOI: 10.1021/acs.molpharmaceut.0c00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling has been extensively applied to quantitatively translate in vitro data, predict the in vivo performance, and ultimately support waivers of in vivo clinical studies. In the area of biopharmaceutics and within the context of model-informed drug discovery and development (MID3), there is a rapidly growing interest in applying verified and validated mechanistic PBPK models to waive in vivo clinical studies. However, the regulatory acceptance of PBPK analyses for biopharmaceutics and oral drug absorption applications, which is also referred to variously as "PBPK absorption modeling" [Zhang et al. CPT: Pharmacometrics Syst. Pharmacol. 2017, 6, 492], "physiologically based absorption modeling", or "physiologically based biopharmaceutics modeling" (PBBM), remains rather low [Kesisoglou et al. J. Pharm. Sci. 2016, 105, 2723] [Heimbach et al. AAPS J. 2019, 21, 29]. Despite considerable progress in the understanding of gastrointestinal (GI) physiology, in vitro biopharmaceutic and in silico tools, PBPK models for oral absorption often suffer from an incomplete understanding of the physiology, overparameterization, and insufficient model validation and/or platform verification, all of which can represent limitations to their translatability and predictive performance. The complex interactions of drug substances and (bioenabling) formulations with the highly dynamic and heterogeneous environment of the GI tract in different age, ethnic, and genetic groups as well as disease states have not been yet fully elucidated, and they deserve further research. Along with advancements in the understanding of GI physiology and refinement of current or development of fully mechanistic in silico tools, we strongly believe that harmonization, interdisciplinary interaction, and enhancement of the translational link between in vitro, in silico, and in vivo will determine the future of PBBM. This Perspective provides an overview of the current status of PBBM, reflects on challenges and knowledge gaps, and discusses future opportunities around PBPK/PD models for oral absorption of small and large molecules to waive in vivo clinical studies.
Collapse
Affiliation(s)
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main 60438, Germany.,Fraunhofer Institute of Translational Pharmacology and Medicine (ITMP), Carl-von-Noorden Platz 9, Frankfurt am Main 60438, Germany
| |
Collapse
|
16
|
Jørgensen JR, Thamdrup LHE, Kamguyan K, Nielsen LH, Nielsen HM, Boisen A, Rades T, Müllertz A. Design of a self-unfolding delivery concept for oral administration of macromolecules. J Control Release 2020; 329:948-954. [PMID: 33086101 DOI: 10.1016/j.jconrel.2020.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Delivering macromolecular drugs, e.g. peptides, to the systemic circulation by oral administration is challenging due to their degradation in the gastrointestinal tract and low transmucosal permeation. In this study, the concept of an oral delivery device utilizing an elastomeric material is presented with the potential of increasing the absorption of peptides, e.g. insulin. Absorption enhancement in the intestine is proposed as a result of self-unfolding of a polydimethylsiloxane foil upon release from enteric coated capsules. A pH-sensitive polymer coating prevents capsule disintegration until arrival in the small intestine where complete unfolding of the elastomeric foil ensures close contact with the intestinal mucosa. Foils with close-packed hexagonal compartments for optimal drug loading are produced by casting against a deep-etched silicon master. Complete unfolding of the foil upon capsule disintegration is verified in vitro and the insulin release profile of the final delivery device confirms insulin protection at gastric pH. In vivo performance is evaluated with the outcome of quantifiable plasma insulin concentrations in all rats receiving duodenal administration of the novel delivery device. By taking advantage of elastomeric material properties for drug delivery, this approach might serve as inspiration for further development of commercially viable biocompatible devices for oral delivery of macromolecules.
Collapse
Affiliation(s)
- Jacob R Jørgensen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Lasse H E Thamdrup
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark.
| | - Khorshid Kamguyan
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark.
| | - Line H Nielsen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark.
| | - Hanne M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kgs. Lyngby, Denmark.
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
17
|
Fink C, Lecomte M, Badolo L, Wagner K, Mäder K, Peters SA. Identification of solubility-limited absorption of oral anticancer drugs using PBPK modeling based on rat PK and its relevance to human. Eur J Pharm Sci 2020; 152:105431. [PMID: 32562690 DOI: 10.1016/j.ejps.2020.105431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Solubility is one of the key parameters that is optimized during drug discovery to ensure sufficient drug concentration in systemic circulation and to achieve the desired pharmacological response. We recently reported the application of PBPK analysis of early clinical pharmacokinetic data to identify drugs whose absorption are truly limited by solubility. In this work, we selected ten anticancer drugs that exhibit poor in vitro solubility to explore the utility of this approach to identify solubility-limited absorption based on rat pharmacokinetic data and compare the findings to human data. Oral rat pharmacokinetic studies were performed at the body weight-scaled doses of the model drugs' human food effect studies, and analyzed using a top-down PBPK modeling approach. A good correlation of solubility-limited absorption in rat and human was observed. These results allow an early identification of drugs with truly solubility-limited absorption, with the potential to guide decisions and save valuable resources in drug development.
Collapse
Affiliation(s)
- Christina Fink
- Chemical Pharmaceutical Development, Merck KGaA, Darmstadt, Germany; Institute of Pharmacy, Faculty of Biosciences, Martin-Luther University Halle-Wittenberg, Germany
| | - Marc Lecomte
- NCE DMPK, Discovery Technology, Merck KGaA, Darmstadt, Germany
| | - Lassina Badolo
- NCE DMPK, Discovery Technology, Merck KGaA, Darmstadt, Germany
| | - Knut Wagner
- Chemical Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Biosciences, Martin-Luther University Halle-Wittenberg, Germany
| | | |
Collapse
|
18
|
The Use of Capsule Endoscopy to Determine Tablet Disintegration In Vivo. Pharmaceutics 2020; 12:pharmaceutics12060498. [PMID: 32486088 PMCID: PMC7355699 DOI: 10.3390/pharmaceutics12060498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
The preferred delivery route for drugs targeted for systemic effect is by oral administration. Following oral administration, a solid dosage form must disintegrate and the drug dissolve, thereafter permeating the intestinal mucosa. Several different in vitro methods are used to investigate these processes, i.e., disintegration tests, dissolution tests, and permeability models. However, the actual behavior of oral dosage forms in the environment of the gastro-intestinal tract is not very well elucidated using these conventional methods. In this study, the use of capsule endoscopy to determine tablet disintegration in vivo was assessed. Panadol and Panadol Rapid (acetaminophen/paracetamol) were used as the test material. The in vivo tablet disintegration behavior in beagle dogs was assessed by the use of capsule endoscopy. The in vitro tablet disintegration behavior was assessed using the European Pharmacopeia (Ph. Eur.) disintegration test. The study showed that the in vivo disintegration times of Panadol and Panadol Rapid were 24.7 and 16.5 min, respectively, when determined by capsule endoscopy, which corresponded to the pharmacokinetic data. By contrast, the in vitro disintegration times of the same formulations were 5.5 and 4.0 min, respectively, when determined by the Ph. Eur. disintegration test. In conclusion, capsule endoscopy can be used to determine the in vivo tablet disintegration behavior. By contrast, the in vitro methods appear to not be predictive of the disintegration behavior in vivo but may be used to rank the order the formulations with respect to disintegration time.
Collapse
|
19
|
Durán-Lobato M, Niu Z, Alonso MJ. Oral Delivery of Biologics for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901935. [PMID: 31222910 DOI: 10.1002/adma.201901935] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Indexed: 05/23/2023]
Abstract
The emerging field of precision medicine is rapidly growing, fostered by the advances in genome mapping and molecular diagnosis. In general, the translation of these advances into precision treatments relies on the use of biological macromolecules, whose structure offers a high specificity and potency. Unfortunately, due to their complex structure and limited ability to overcome biological barriers, these macromolecules need to be administered via injection. The scientific community has devoted significant effort to making the oral administration of macromolecules plausible thanks to the implementation of drug delivery technologies. Here, an overview of the current situation and future prospects in the field of oral delivery of biologics is provided. Technologies in clinical trials, as well as recent and disruptive delivery systems proposed in the literature for local and systemic delivery of biologics including peptides, antibodies, and nucleic acids, are described. Strategies for the specific targeting of gastrointestinal regions-stomach, small bowel, and colon-cell populations, and internalization pathways, are analyzed. Finally, challenges associated with the clinical translation, future prospects, and identified opportunities for advancement in this field are also discussed.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Zhigao Niu
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
- Food and Bio-based Products Group, AgResearch Ltd, Palmerston North, 4442, New Zealand
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- IDIS Research Institute, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
20
|
Schittny A, Philipp-Bauer S, Detampel P, Huwyler J, Puchkov M. Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions. J Control Release 2020; 320:214-225. [PMID: 31978445 DOI: 10.1016/j.jconrel.2020.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 02/04/2023]
Abstract
Drug delivery of poorly soluble drugs in form amorphous solid dispersions (ASDs) is an appealing method to increase in vivo bioavailability. For rational formulation design, a mechanistic understanding of the impact of surfactants on the performance of ASD-based formulations is therefore of importance. In this study, we used hot-melt extrusion to prepare ASDs composed of the model drug substance efavirenz with hydroxypropyl methylcellulose phthalate (HPMCP) as the base polymer, and surfactants. Molecular dynamics simulations and in vitro dissolution studies were used to investigate formation and drug release from polymer vesicles, and their ability to maintain a supersaturation state as a function of surfactant composition. It was possible to identify main factors regulating particle formation and to modify dissolution profiles with different excipient compositions. Animal studies in the rat, in combination with physiologically based pharmacokinetic modeling, demonstrated enhanced drug absorption from formed vesicles. The surfactant composition in the ASD had a direct influence on the morphology of these vesicles, as well as kinetics of drug release, and, therefore, the oral bioavailability. ASDs, prepared by hot-melt extrusion method, were optimized for dissolution and adsorption rates increase. Our findings contribute to a better understanding of dissolution behavior of ASDs with respect to the function of surfactants, aiming to facilitate a rational formulation development and an accelerated transition from in vitro systems to in vivo applications.
Collapse
Affiliation(s)
- A Schittny
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Switzerland; Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - S Philipp-Bauer
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - P Detampel
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - J Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | - M Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Switzerland.
| |
Collapse
|
21
|
Gómez-Lado N, Seoane-Viaño I, Matiz S, Madla CM, Yadav V, Aguiar P, Basit AW, Goyanes A. Gastrointestinal Tracking and Gastric Emptying of Coated Capsules in Rats with or without Sedation Using CT imaging. Pharmaceutics 2020; 12:pharmaceutics12010081. [PMID: 31963818 PMCID: PMC7023106 DOI: 10.3390/pharmaceutics12010081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Following oral administration, gastric emptying is often a rate-limiting step in the absorption of drugs and is dependent on both physiological and pharmaceutical factors. To guide translation into humans, small animal imaging during pre-clinical studies has been increasingly used to localise the gastrointestinal transit of solid dosage forms. In contrast to humans, however, anaesthesia is usually required for effective imaging in animals which may have unintended effects on intestinal physiology. This study evaluated the effect of anaesthesia and capsule size on the gastric emptying rate of coated capsules in rats. Computed tomography (CT) imaging was used to track and locate the capsules through the gastrointestinal tract. Two commercial gelatine mini-capsules (size 9 and 9h) were filled with barium sulphate (contrast agent) and coated using Eudragit L. Under the effect of anaesthesia, none of the capsules emptied from the stomach. In non-anaesthetised rats, most of the size 9 capsules did not empty from the stomach, whereas the majority of the smaller size 9h capsules successfully emptied from the stomach and moved into the intestine. This study demonstrates that even with capsules designed to empty from the stomach in rats, the gastric emptying of such solid oral dosage forms is not guaranteed. In addition, the use of anaesthesia was found to abolish gastric emptying of both capsule sizes. The work herein further highlights the utility of CT imaging for the effective visualisation and location of solid dosage forms in the intestinal tract of rats without the use of anaesthesia.
Collapse
Affiliation(s)
- Noemí Gómez-Lado
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), 15706 A Coruña, Spain;
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain;
| | - Silvia Matiz
- Intract Pharma, Royal College St, London NW1 0NH, UK; (S.M.); (V.Y.)
| | - Christine M. Madla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Vipul Yadav
- Intract Pharma, Royal College St, London NW1 0NH, UK; (S.M.); (V.Y.)
| | - Pablo Aguiar
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital (CHUS) and Health Research Institute of Santiago de Compostela (IDIS), 15706 A Coruña, Spain;
- Correspondence: (P.A.); (A.W.B.); (A.G.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FabRx Ltd., 3 Romney Road, Ashford TN24 0RW, UK
- Correspondence: (P.A.); (A.W.B.); (A.G.)
| | - Alvaro Goyanes
- FabRx Ltd., 3 Romney Road, Ashford TN24 0RW, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (P.A.); (A.W.B.); (A.G.)
| |
Collapse
|
22
|
In vivo evaluation of targeted delivery of biological agents using barium sulfate. Int J Pharm 2019; 572:118801. [PMID: 31678529 DOI: 10.1016/j.ijpharm.2019.118801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022]
Abstract
This study was aimed to monitor the transit through the intestine by X-ray imaging using barium sulfate (BS) as tracer. The in vitro features of monolithic tablets were correlated with their in vivo behavior in order to provide a tool for the development of targeted formulations containing macromolecular bioactive agents. The impact of BS on various matrices (neutral, ionic) was studied in simulated fluids using the disintegration time (DT) as main parameter. Dry tablets were characterized by spectroscopic methods (X-ray diffraction and Infra-Red) and scanning electron microscopy (SEM). The selected formulations were followed in a beagle dog model. The in vivo and in vitro DT of tablets formulated with BS were compared. Results: anionic excipients carboxymethylcellulose (CMC) and carboxymethylstarch (CMS) protected the active ingredient from the gastric acidity, ensuring its targeted delivery in the intestine. The SEM analysis, before and after transit in simulated fluids, showed that BS remained in the tablets allowing their good follow-up in vivo. The incorporation of 30% protein in tablets with 40% BS had no impact on their behavior. In conclusion, BS and X-ray imagery could be a good alternative to scintigraphy for development of targeted formulations containing high molecular weight bioactive agents.
Collapse
|
23
|
Jain A, Jain R, Jain S, Khatik R, Veer Kohli D. Minicapsules encapsulating nanoparticles for targeting, apoptosis induction and treatment of colon cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1085-1093. [DOI: 10.1080/21691401.2019.1593848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aakanchha Jain
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
- Bhagyoday Tirth Pharmacy College, Sagar, India
| | - Richa Jain
- CSRD, People’s University, Bhopal, India
| | | | - Renuka Khatik
- Hefei National Laboratory of Physical Sciences at the Microscale (HFNL), University of Science and Technology of China, Hefei, P. R. China
| | - Dharam Veer Kohli
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| |
Collapse
|
24
|
Chylomicron mimicking solid lipid nanoemulsions encapsulated enteric minicapsules targeted to colon for immunization against hepatitis B. Int Immunopharmacol 2018; 66:317-329. [PMID: 30503974 DOI: 10.1016/j.intimp.2018.11.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 02/07/2023]
Abstract
The oral route is one of the most convenient routes for drug and/or vaccine delivery. Yet variable nature of gastrointestinal tract due to transient changes in pH, physiology, and flora throughout the gut together with hostile nature of peptide drugs/vaccines when given by this route results in limited success. Colon targeting is a recent area of interest for most of the research among which hard gelatin coated capsules is one such important and useful contrivance. The present study assesses the mucosal immunization with HBsAg loaded lyophilized nanoparticles delivered in the colonic region using enteric coated minicapsules. Designed minicapsules offers better compliance and oral vaccine antigen delivery to the colonic region which involving mucosal exposure thus mimicking the natural pathogen entry in the body. The present study is an extension of our reported work where nanoparticles were administered to the colon through the rectal route. Lyophilized nanoparticles were characterized for particle size, in-vitro release and antigen integrity along with cell uptake study. Particles had ~241 ± 32 nm sizes, flattened yet spherical in morphology. Enteric coated minicapsules were evaluated for size, coating thickness, and dissolution profile. In-vivo immune response assured its immunogenic potential with profound IgG (485 ± 41 mIU/ml) and IgA (885 ± 126 mIU/ml) antibody production as compared to marketed recombinant hepatitis B antigen formulation (Gene Vac-B®) which induce IgG and IgA titer; 1027 ± 62 mIU/ml and 220 ± 11 mIU/ml respectively following well established immunization protocol. Former induced significant mucosal immunity due to the involvement of Common Mucosal Immune System (CMIS). The study supports the workable novel approach for immune protection against hepatitis B.
Collapse
|
25
|
Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int J Pharm 2018; 536:158-164. [DOI: 10.1016/j.ijpharm.2017.11.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/28/2023]
|
27
|
Dalziel JE, Young W, McKenzie CM, Haggarty NW, Roy NC. Gastric Emptying and Gastrointestinal Transit Compared among Native and Hydrolyzed Whey and Casein Milk Proteins in an Aged Rat Model. Nutrients 2017; 9:nu9121351. [PMID: 29236034 PMCID: PMC5748801 DOI: 10.3390/nu9121351] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
Little is known about how milk proteins affect gastrointestinal (GI) transit, particularly for the elderly, in whom digestion has been observed to be slowed. We tested the hypothesis that GI transit is faster for whey than for casein and that this effect is accentuated with hydrolysates, similar to soy. Adult male rats (18 months old) were fed native whey or casein, hydrolyzed whey (WPH) or casein (CPH), hydrolyzed blend (HB; 60% whey:40% casein), or hydrolyzed soy for 14 days then treated with loperamide, prucalopride, or vehicle-control for 7 days. X-ray imaging tracked bead-transit for: gastric emptying (GE; 4 h), small intestine (SI) transit (9 h), and large intestine (LI) transit (12 h). GE for whey was 33 ± 12% faster than that for either casein or CPH. SI transit was decreased by 37 ± 9% for casein and 24 ± 6% for whey compared with hydrolyzed soy, and persisted for casein at 12 h. Although CPH and WPH did not alter transit compared with their respective intact counterparts, fecal output was increased by WPH. Slowed transit by casein was reversed by prucalopride (9-h), but not loperamide. However, rapid GE and slower SI transit for the HB compared with intact forms were inhibited by loperamide. The expected slower GI transit for casein relative to soy provided a comparative benchmark, and opioid receptor involvement was corroborated. Our findings provide new evidence that whey slowed SI transit compared with soy, independent of GE. Increased GI transit from stomach to colon for the HB compared with casein suggests that including hydrolyzed milk proteins in foods may benefit those with slowed intestinal transit.
Collapse
Affiliation(s)
- Julie E Dalziel
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
| | - Wayne Young
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High Value Nutrition, National Science Challenge, Liggins Institute, The University of Auckland, Auckland 1142, New Zealand.
| | - Catherine M McKenzie
- Bioinformatics and Statistics, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
| | - Neill W Haggarty
- Fonterra Co-Operative Group, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand.
- High Value Nutrition, National Science Challenge, Liggins Institute, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
28
|
Harloff-Helleberg S, Nielsen LH, Nielsen HM. Animal models for evaluation of oral delivery of biopharmaceuticals. J Control Release 2017; 268:57-71. [DOI: 10.1016/j.jconrel.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
|
29
|
Dalziel JE, Fraser K, Young W, McKenzie CM, Bassett SA, Roy NC. Gastroparesis and lipid metabolism-associated dysbiosis in Wistar-Kyoto rats. Am J Physiol Gastrointest Liver Physiol 2017; 313:G62-G72. [PMID: 28408641 PMCID: PMC5538835 DOI: 10.1152/ajpgi.00008.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/23/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
Altered gastric accommodation and intestinal morphology suggest impaired gastrointestinal (GI) transit may occur in the Wistar-Kyoto (WKY) rat strain, as common in stress-associated functional GI disorders. Because changes in GI transit can alter microbiota composition, we investigated whether these are altered in WKY rats compared with the resilient Sprague-Dawley (SD) rats under basal conditions and characterized plasma lipid and metabolite differences. Bead transit was tracked by X-ray imaging to monitor gastric emptying (4 h), small intestine (SI) transit (9 h), and large intestine transit (12 h). Plasma extracts were analyzed by lipid and hydrophilic interaction liquid chromatography (HILIC) and liquid chromatography-mass spectrometry (LC-MS). Cecal microbial composition was determined by Illumina MiSeq 16S rRNA amplicon sequencing and analysis using the QIIME pipeline. Stomach retention of beads was 77% for WKY compared with 35% for SD rats. GI transit was decreased by 34% (9 h) and 21% (12 h) in WKY compared with SD rats. Excluding stomach retention, transiting beads moved 29% further along the SI over 4-9 h for WKY compared with SD rats. Cecal Ruminococcus, Roseburia, and unclassified Lachnospiraceae genera were less abundant in WKY rats, whereas the minor taxa Dorea, Turicibacter, and Lactobacillus were higher. Diglycerides, triglycerides, phosphatidyl-ethanolamines, and phosphatidylserine were lower in WKY rats, whereas cholesterol esters and taurocholic acids were higher. The unexpected WKY rat phenotype of delayed gastric emptying, yet rapid SI transit, was associated with altered lipid and metabolite profiles. The delayed gastric emptying of the WKY phenotype suggests this rat strain may be useful as a model for gastroparesis.NEW & NOTEWORTHY This study reveals that the stress-prone Wistar-Kyoto rat strain has a baseline physiology of gastroparesis and rapid small intestine transit, together with metabolic changes consistent with lipid metabolism-associated dysbiosis, compared with nonstress-prone rats. This suggests that the Wistar-Kyoto rat strain may be an appropriate animal model for gastroparesis.
Collapse
Affiliation(s)
- J. E. Dalziel
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
| | - Karl Fraser
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
| | - Wayne Young
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
| | - Catherine M. McKenzie
- 2Bioinformatics Mathematics and Statistics, AgResearch, Palmerston North, New Zealand; and
| | - Shalome A. Bassett
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand;
| | - Nicole C. Roy
- 1Food Nutrition and Health Team, Food and Bio-Based Products Group, AgResearch Grasslands Research Centre, Palmerston North, New Zealand; ,3Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
30
|
Dalziel JE, Young W, Bercik P, Spencer NJ, Ryan LJ, Dunstan KE, Lloyd-West CM, Gopal PK, Haggarty NW, Roy NC. Tracking gastrointestinal transit of solids in aged rats as pharmacological models of chronic dysmotility. Neurogastroenterol Motil 2016; 28:1241-51. [PMID: 27028044 DOI: 10.1111/nmo.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dysmotility in the gastrointestinal (GI) tract often leads to impaired transit of luminal contents leading to symptoms of diarrhea or constipation. The aim of this research was to develop a technique using high resolution X-ray imaging to study pharmacologically induced aged rat models of chronic GI dysmotility that mimic accelerated transit (diarrhea) or constipation. The 5-hydroxytryptamine type 4 (5-HT4 ) receptor agonist prucalopride was used to accelerate transit, and the opioid agonist loperamide was used to delay transit. METHODS Male rats (18 months) were given 0, 1, 2, or 4 mg/kg/day prucalopride or loperamide (in dimethyl sulfoxide, DMSO) for 7 days by continuous 7-day dosing. To determine the GI region-specific effect, transit of six metallic beads was tracked over 12 h using high resolution X-ray imaging. An established rating scale was used to classify GI bead location in vivo and the distance beads had propagated from the caecum was confirmed postmortem. KEY RESULTS Loperamide (1 mg/kg) slowed stomach emptying and GI transit at 9 and 12 h. Prucalopride (4 mg/kg) did not significantly alter GI transit scores, but at a dose of 4 mg/kg beads had moved significantly more distal than the caecum in 12 h compared to controls. CONCLUSIONS & INFERENCES We report a novel high-resolution, non-invasive, X-ray imaging technique that provides new insights into GI transit rates in live rats. The results demonstrate that loperamide slowed overall transit in aged rats, while prucalopride increased stomach emptying and accelerates colonic transit.
Collapse
Affiliation(s)
- J E Dalziel
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - W Young
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - P Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - N J Spencer
- School of Medicine, Flinders University, Adelaide, SA, Australia
| | - L J Ryan
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - K E Dunstan
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - C M Lloyd-West
- Bioinformatics Mathematics and Statistics, AgResearch, Palmerston North, New Zealand
| | - P K Gopal
- Fonterra Co-operative Group, Palmerston North, New Zealand
| | - N W Haggarty
- Fonterra Co-operative Group, Palmerston North, New Zealand
| | - N C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Gravida: National Centre for Growth and Development, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Aguirre TAS, Aversa V, Rosa M, Guterres SS, Pohlmann AR, Coulter I, Brayden DJ. Coated minispheres of salmon calcitonin target rat intestinal regions to achieve systemic bioavailability: Comparison between intestinal instillation and oral gavage. J Control Release 2016; 238:242-252. [PMID: 27480451 DOI: 10.1016/j.jconrel.2016.07.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
Achieving oral peptide delivery is an elusive challenge. Emulsion-based minispheres of salmon calcitonin (sCT) were synthesized using single multiple pill (SmPill®) technology incorporating the permeation enhancers (PEs): sodium taurodeoxycholate (NaTDC), sodium caprate (C10), or coco-glucoside (CG), or the pH acidifier, citric acid (CA). Minispheres were coated with an outer layer of Eudragit® L30 D-55 (designed for jejunal release) or Surelease®/Pectin (designed for colonic release). The process was mild and in vitro biological activity of sCT was retained upon release from minispheres stored up to 4months. In vitro release profiles suggested that sCT was released from minispheres by diffusion through coatings due to swelling of gelatin and the polymeric matrix upon contact with PBS at pH6.8. X-ray analysis confirmed that coated minispheres dissolved at the intended intestinal region of rats following oral gavage. Uncoated minispheres at a dose of ~2000I.U.sCT/kg were administered to rats by intra-jejunal (i.j.) or intra-colonic (i.c.) instillation and caused hypocalcaemia. Notable sCT absolute bioavailability (F) values were: 5.5% from minispheres containing NaTDC (i.j), 17.3% with CG (i.c.) and 18.2% with C10 (i.c.). Coated minispheres administered by oral gavage at threefold higher doses also induced hypocalcaemia. A highly competitive F value of 2.7% was obtained for orally-administered sCT-minispheres containing CG (45μmol/kg) and coated with Eudragit®. In conclusion, the SmPill® technology is a potential dosage form for several peptides when formulated with PEs and coated for regional delivery. PK data from instillations over-estimates oral bioavailability and poorly predicts rank ordering of formulations.
Collapse
Affiliation(s)
- Tanira A S Aguirre
- UCD School of Veterinary Science and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; Sigmoid Pharma, Dublin City University, Invent Centre, Dublin 9, Ireland
| | - Vincenzo Aversa
- Sigmoid Pharma, Dublin City University, Invent Centre, Dublin 9, Ireland
| | - Mónica Rosa
- Sigmoid Pharma, Dublin City University, Invent Centre, Dublin 9, Ireland
| | - Sílvia S Guterres
- Programa de pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana R Pohlmann
- Programa de pós Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ivan Coulter
- Sigmoid Pharma, Dublin City University, Invent Centre, Dublin 9, Ireland
| | - David J Brayden
- UCD School of Veterinary Science and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
32
|
Mansuri S, Kesharwani P, Tekade RK, Jain NK. Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole. Eur J Pharm Biopharm 2016; 102:202-13. [DOI: 10.1016/j.ejpb.2015.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
|
33
|
Braithwaite MC, Choonara YE, Kumar P, Tomar LK, Du Toit LC, Pillay V. A novel bile salts-lipase polymeric film-infused minitablet system for enhanced oral delivery of cholecalciferol. Pharm Dev Technol 2015; 21:832-846. [PMID: 26333524 DOI: 10.3109/10837450.2015.1069329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Few researchers have investigated the use of multiple physiological enhancers combined with synthetic carriers to augment delivery of nutraceuticals. The current work describes the development of an oral delivery system termed a bioactive association platform (BAP) capable of delivering nutraceutical actives from a formulation framework specifically for enhancing the in vitro and in vivo performance of model vitamin, cholecalciferol (Vitamin D3). Synthesis of a novel triple vitamin minitablet and an optimized bile salt/lipase alginate-glycerin film provided unique oral components for inclusion in a BAP capsule. Component validation and physicochemical characterizations included comparative ex vivo permeability, chemical structure mapping, thermodynamic analysis and magnetic resonance imaging. In vitro dissolution studies of the BAP produced an area under the dissolution curve (AUC) for cholecalciferol release that was 28% greater than a conventional comparator product. A total of 84.01% of cholecalciferol was released from the BAP within 3 h versus only 59% from a comparator. Ex vivo permeation studies revealed superior cholecalciferol membrane diffusion from the triple vitamin minitablet BAP component. In vivo performance showed a greater mean change from baseline cholecalciferol to peak plasma levels (Cmax) from the BAP compared to the comparator (55.66 versus 46.05 ng/mL). Cholecalciferol bioavailability was improved in vivo with an AUC0-inf from the BAP that was 3.2× greater than the conventional product. The BAP was also superior at improving and maintaining serum levels of the main metabolite, 25-hydroxyvitamin D3, compared to the conventional system. In vitro and in vivo results thus confirmed improvements in cholecalciferol dissolution, membrane permeability and plasma drug levels. The study results position the BAP as an ideal oral vehicle for enhanced delivery of cholecalciferol.
Collapse
Affiliation(s)
- Miles C Braithwaite
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Yahya E Choonara
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Pradeep Kumar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Lomas K Tomar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Lisa C Du Toit
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| | - Viness Pillay
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, School of Therapeutic Sciences, University of the Witwatersrand , Johannesburg , Parktown , South Africa
| |
Collapse
|
34
|
Hatton GB, Yadav V, Basit AW, Merchant HA. Animal Farm: Considerations in Animal Gastrointestinal Physiology and Relevance to Drug Delivery in Humans. J Pharm Sci 2015; 104:2747-76. [DOI: 10.1002/jps.24365] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 12/30/2022]
|
35
|
Kharia AA, Singhai AK. Development and optimisation of mucoadhesive nanoparticles of acyclovir using design of experiments approach. J Microencapsul 2015; 32:521-32. [PMID: 26333938 DOI: 10.3109/02652048.2015.1010457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of our study was to improve the bioavailability of acyclovir (ACV) by delivery of mucoadhesive nanoparticles (NPs) and controlled delivery of drug at its absorption window. Central composite design was used by which the effects of independent variables (gelatin and Pluronic F-68) on various responses such as particle size, polydispersity index, entrapment efficiency, loading efficiency, drug release and mucoadhesive strength were studied. The optimised formulation was evaluated for morphology, stability, pharmacokinetic and gastrointestinal tracking. The optimised NPs were found to be nearly spherical. Changes in characteristics of NPs were not significant after six months of accelerated stability studies. In vivo mucoadhesion study showed significant retention of mucoadhesive NPs in upper gastro-intestinal tract for more than 12 h. Pharmacokinetic study in rats revealed that mucoadhesive NPs could maintain relatively steady plasma concentration of ACV for more than 10 h. The AUC0-∞ and mean residence time of optimised formulation (7527.9 ng h/mL and 12.09 h) were significantly high than tablet dispersion (3841.13 ng h/mL and 7.97 h).
Collapse
Affiliation(s)
- Ankit Anand Kharia
- a Department of Pharmaceutics , Oriental College of Pharmacy , Bhopal , Madhya Pradesh , India
| | | |
Collapse
|
36
|
Staelens D, Liang S, Appeltans B, Van de Wouwer M, Van den Mooter G, Van Assche G, Himmelreich U, Vande Velde G. Visualization of delayed release of compounds from pH-sensitive capsules in vitro and in vivo in a hamster model. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 11:24-31. [PMID: 26190202 DOI: 10.1002/cmmi.1654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 12/23/2022]
Abstract
Delayed controlled release is an innovative strategy to locally administer therapeutic compounds (e.g. chemotherapeutics, antibodies etc.). This would improve efficiency and reduce side effects compared with systemic administration. To enable the evaluation of the efficacy of controlled release strategies both in vitro and in vivo, we investigated the release of contrast agents ((19)F-FDG and BaSO4) to the intestinal tract from capsules coated with pH-sensitive polymers (EUDRAGIT L-100) by using two complementary techniques, i.e. (19)F magnetic resonance imaging (MRI) and computed tomography (CT). Using in vitro (19)F-MRI, we were able to non-destructively and dynamically establish a time window of 2 h during which the capsules are resistant to low pH. With (19)F-MRI, we could establish the exact time point when the capsules became water permeable, before physical degradation of the capsule. This was complemented by CT imaging, which provided longitudinal information on physical degradation of the capsule at low pH that was only seen after 230 min. After oral administration to hamsters, (19)F-MRI visualized the early event whereby the capsule becomes water permeable after 2 h. Additionally, using CT, the integrity and location (stomach and small intestines) of the capsule after administration could be monitored. In conclusion, we propose combined (19)F-MRI and CT to non-invasively visualize the different temporal and spatial events regarding the release of compounds, both in an in vitro setting and in the gastrointestinal tract of small animal models. This multimodal imaging approach will enable the in vitro and in vivo evaluation of further technical improvements to controlled release strategies.
Collapse
Affiliation(s)
- Dominiek Staelens
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Sayuan Liang
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Bernard Appeltans
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Marlies Van de Wouwer
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,PharmAbs, KU Leuven, Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Efficacy of gastro-retentive forms of ecabet sodium in the treatment of gastric ulcer in rats. Arch Pharm Res 2013; 37:1053-62. [PMID: 24254934 DOI: 10.1007/s12272-013-0278-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/22/2013] [Indexed: 12/28/2022]
Abstract
The purpose of the present study is to investigate the influence of gastric retention of ecabet sodium (ECS) on its mucoprotective effect in rat ulcer models. Mini-tablets containing 9 mg ECS were prepared using the direct compression method. The release rates of ECS mini-tablets were controlled by the amount and viscosity grade of hydroxypropylmethyl cellulose incorporated. Gastric retention of ECS mini-tablets after oral administration to rats was visually confirmed using a fluorescence imaging system. Because ECS mini-tablets exhibited size-dependent gastric retention, their gastric retention time was prolonged as the release rate decreased. In the in vivo efficacy study, gastro-retentive dosage forms of ECS did not influence the mucoprotective effect in the immediate irritation model but enhanced the effect in the delayed irritation model compared with ECS suspension. This finding indicates that the duration of the mucoprotective effect of ECS can be extended by the employment of gastro-retentive dosage formulations and provides a rationale for development of ECS gastro-retentive dosage forms.
Collapse
|
38
|
A new point-of-care portable immunosensor for non-invasive assessment of oro-ileal transit time by oral fluid tauroursodeoxycholate measurement after its oral load. J Pharm Biomed Anal 2013; 81-82:1-7. [PMID: 23587552 DOI: 10.1016/j.jpba.2013.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 12/31/2022]
Abstract
A non-invasive test for oro-ileal transit time (OITT) evaluation was developed, based on the measurement of tauroursodeoxycholic acid (TUDCA) oral fluid concentration profile after its oral administration. Exploiting the fact that TUDCA is actively absorbed only in the ileum, OITT is measured as the time corresponding to TUDCA maximum oral fluid concentration (tmax). To measure oral fluid TUDCA concentration in a point-of-care setting, an ultrasensitive portable immunosensor was developed, based on a competitive chemiluminescent enzyme immunoassay (CL-EIA), using immobilized anti-TUDCA antibody and an ursodeoxycholic acid (UDCA)-peroxidase conjugate as tracer, detected by enhanced chemiluminescence employing a portable charge-coupled device (CCD)-based device. The test was validated in 24 healthy subjects before and after treatment with Loperamide, a drug that increases OITT. The developed CL-EIA was accurate and precise, with a LLOQ of 50 pmol L(-1). The measured OITT for healthy subjects (291 ± 50 min) was fairly well correlated with OITT values obtained by measuring TUDCA in serum (r=0.89). An increased OITT was observed in all the studied subjects after Loperamide treatment. The CL immunosensor can be employed directly in gastroenterology and paediatric units and it can thus represent a new non-invasive simple test for OITT evaluation in a point-of-care setting, with improved diagnostic utility.
Collapse
|
39
|
Saisivam S, Rahamath Ulla M, Shakeel F. Development of Floating Matrix Tablets of Losartan Potassium: In Vitro and in Vivo Evaluation. J Drug Deliv Sci Technol 2013; 23:611-617. [DOI: 10.1016/s1773-2247(13)50093-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Myagmarjalbuu B, Moon MJ, Heo SH, Jeong SI, Park JS, Jun JY, Jeong YY, Kang HK. Establishment of a protocol for determining gastrointestinal transit time in mice using barium and radiopaque markers. Korean J Radiol 2012; 14:45-50. [PMID: 23323030 PMCID: PMC3542302 DOI: 10.3348/kjr.2013.14.1.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/05/2012] [Indexed: 01/26/2023] Open
Abstract
Objective The purpose of this study was to establish a minimally invasive and reproducible protocol for estimating the gastrointestinal (GI) transit time in mice using barium and radiopaque markers. Materials and Methods Twenty 5- to 6-week-old Balb/C female mice weighing 19-21 g were used. The animals were divided into three groups: two groups that received loperamide and a control group. The control group (n = 10) animals were administered physiological saline (1.5 mL/kg) orally. The loperamide group I (n = 10) and group II (n = 10) animals were administered 5 mg/kg and 10 mg/kg loperamide orally, respectively. Thirty minutes after receiving the saline or loperamide, the mice was administered 80 µL of barium solution and six iron balls (0.5 mm) via the mouth and the upper esophagus by gavage, respectively. Afterwards, the mice were continuously monitored with fluoroscopic imaging in order to evaluate the swallowing of the barium solution and markers. Serial fluoroscopic images were obtained at 5- or 10-min intervals until all markers had been excreted from the anal canal. For analysis, the GI transit times were subdivided into intestinal transit times (ITTs) and colon transit times (CTTs). Results The mean ITT was significantly longer in the loperamide groups than in the control group (p < 0.05). The mean ITT in loperamide group II (174.5 ± 32.3) was significantly longer than in loperamide group I (133.2 ± 24.2 minute) (p < 0.05). The mean CTT was significantly longer in loperamide group II than in the control group (p < 0.05). Also, no animal succumbed to death after the experimental procedure. Conclusion The protocol for our study using radiopaque markers and barium is reproducible and minimally invasive in determining the GI transit time of the mouse model.
Collapse
Affiliation(s)
- Bolormaa Myagmarjalbuu
- Department of Radiology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun 519-763, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Foster KA, Morgen M, Murri B, Yates I, Fancher RM, Ehrmann J, Gudmundsson OS, Hageman MJ. Utility of in situ sodium alginate/karaya gum gels to facilitate gastric retention in rodents. Int J Pharm 2012; 434:406-12. [DOI: 10.1016/j.ijpharm.2012.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/24/2012] [Accepted: 06/03/2012] [Indexed: 10/28/2022]
|
42
|
Duodenum-specific drug delivery: In vivo assessment of a pharmaceutically developed enteric-coated capsule for a broad applicability in rat studies. Int J Pharm 2012; 422:338-40. [DOI: 10.1016/j.ijpharm.2011.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/25/2023]
|