1
|
Sebaaly C, Gerges P, Greige H. Chitosan-Camphor Beads as a Novel Starting Biomaterial: Insights Into Methodological Approaches for Preparation. Biopolymers 2025; 116:e23651. [PMID: 39723672 DOI: 10.1002/bip.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Biomaterials with antimicrobial and muco-adhesive properties represent an efficient system for different applications. In this paper, a new biomaterial based on chitosan-camphor beads and their crosslinked form with glutaraldehyde was optimized. Low and high molecular weight chitosan were considered. After an optimization procedure of blank beads preparation, various strategies were used to load camphor into chitosan beads where eight different beads suspensions were characterized for their size and encapsulation efficiency of camphor. Powdered camphor was added to the chitosan solution during the beads preparation or to preformed beads while it was dissolving in water or in 2% acetic acid solution. Results showed that, camphor addition to chitosan solution led to the formation of homogeneous suspensions with reproducible and higher encapsulation efficiencies of camphor compared to the other formulations, irrespective of the chitosan weight. In addition, these beads were stable for 1 month of storage at 4°C. The camphor loaded cross-linked beads with glutaraldehyde (referred to as Cam-beads-GA) were more stable than noncross-linked beads (Cam-beads), which also demonstrated satisfactory stability results. Camphor embedding in chitosan beads was proven to occur through hydrogen bonding and potentially imine bonds by FTIR analysis. The optimized formulations constitute a suitable delivery system for other bioactive agents.
Collapse
Affiliation(s)
- Carine Sebaaly
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Section II, Lebanese University, Lebanon
| | - Petra Gerges
- Faculty of Medicine, American University of Beirut, Lebanon
| | - Hélène Greige
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Section II, Lebanese University, Lebanon
| |
Collapse
|
2
|
da Silva CGF, Petró RR, de Castro JH, Almeida RN, Cassel E, Vargas RMF. Nanoencapsulation of Achyrocline satureioides (Lam) DC-Essential Oil and Controlled Release: Experiments and Modeling. Pharmaceutics 2024; 16:1560. [PMID: 39771539 PMCID: PMC11677655 DOI: 10.3390/pharmaceutics16121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Degradation by physical and chemical agents affects the properties of essential oils; therefore, this study aimed to protect the volatile compounds present in essential oils through biopolymer encapsulation. Methods: The Achyrocline satureioides (Lam) DC. essential oil was obtained by steam distillation at 2.5 bar. The nano-sized physical coating of the active oil core resulted in an optimal polymer/oil ratio of 1:3 and particle diameter of 178 nm. The particle morphology was evaluated using scanning electron microscopy and transmission electron microscopy. The inclusion of the essential oil in the polymer was confirmed using thermogravimetric analysis. Results: The pH of the formulation remained stable for 90 days, and controlled release and encapsulation efficiencies were evaluated. Formulations were evaluated using the perfumery radar technique, which indicated a predominantly woody profile. The diffusion of fragrant compounds in the air was assessed over time and mathematically modeled. Conclusions: The produced nanostructures were efficient for the controlled release of volatile compounds from the essential oil of Achyrocline satureioides.
Collapse
Affiliation(s)
| | | | | | | | | | - Rubem M. F. Vargas
- Unit Operations Lab, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681-Prédio 30, Bloco F, Sala 208, Porto Alegre 90619-900, Brazil; (C.G.F.d.S.); (R.R.P.); (R.N.A.); (E.C.)
| |
Collapse
|
3
|
Mojarab-Mahboubkar M, Afrazeh Z, Azizi R, Sendi JJ. Efficiency of Artemisia annua L. essential oil and its chitosan/tripolyphosphate or zeolite encapsulated form in controlling Sitophilus oryzae L. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105544. [PMID: 37666615 DOI: 10.1016/j.pestbp.2023.105544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
The rice weevil, Sitophilus oryzae L., is one of the most widespread and destructive stored-product pests and resistant to a wide range of chemical insecticides. In this research, Artemisia annua L. essential oil (EO) and its encapsulated form by chitosan/TPP (tripolyphosphate) and zeolite were tested against S. oryzae adults. The order of toxicity was chitosan/TPP (LC30: 30.83, LC50: 39.52, and LC90: 72.50 μL/L air) > pure EO (LC30: 35.75, LC50: 46.25, and LC90: 86.76 μL/L air) > EO loaded in the zeolite (LC30: 43.35, LC50: 55.07, and LC90: 98.80 μL/L air). These encapsulated samples were characterized by dynamic light scattering (DLS) and field emission scanning electron microscope (FE-SEM) which revealed the size and morphology of the droplets measuring 255.2 to 272 nm and 245 to 271.8 nm for EO loaded in chitosan and zeolite respectively. The encapsulation efficiency and loading percentages of A. annua EO in chitosan/TPP and zeolite were 40.16% and 6.01%, and 88% and 85%, respectively. Fumigant persistence was increased from 6 days for pure EO then, 20 and 22 days for encapsulated oil in zeolite and chitosan/TPP, respectively. Our results showed that A. annua EO contains (±)-camphor (29.29%), 1,8-cineole (12.56%), β-caryophyllene (10.29%), α-pinene (8.68%), and artemisia ketone (8.48%) as its major composition. The activity level of glutathione S-transferase increased while general esterase and acetylcholinesterase activity were significantly inhibited in the treated group compared with the control. Antioxidant enzymes, including catalase, peroxidase, and superoxide dismutase were activated in treated adults compared to controls. The current results suggest that encapsulation of A. annua EO by chitosan/TPP and zeolite in addition to safety and environmentally friendly approach could increase its sustainability and therefore enhancing the efficiency in controlling S. oryzae in storage.
Collapse
Affiliation(s)
- Malahat Mojarab-Mahboubkar
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Zahra Afrazeh
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Roya Azizi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran.
| |
Collapse
|
4
|
Lim XY, Li J, Yin HM, He M, Li L, Zhang T. Stabilization of Essential Oil: Polysaccharide-Based Drug Delivery System with Plant-like Structure Based on Biomimetic Concept. Polymers (Basel) 2023; 15:3338. [PMID: 37631395 PMCID: PMC10457915 DOI: 10.3390/polym15163338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oils (EOs) have stability problems, including volatility, oxidation, photosensitivity, heat sensitivity, humidity sensitivity, pH sensitivity, and ion sensitivity. A drug delivery system is an effective way to stabilize EOs, especially due to the protective effect of polymeric drug carriers. Polysaccharides are frequently employed as drug carrier materials because they are highly safe, come in a variety of forms, and have plentiful sources. Interestingly, the EO drug delivery system is based on the biomimetic concept since it corresponds to the structure of plant tissue. In this paper, we associate the biomimetic plant-like structures of the EO drug delivery system with the natural forms of EO in plant tissues, and summarize the characteristics of polysaccharide-based drug carriers for EO protection. Thus, we highlight the research progress on polysaccharides and their modified materials, including gum arabic, starch, cellulose, chitosan, sodium alginate, pectin, and pullulan, and their use as biomimetic drug carriers for EO preparations due to their abilities and potential for EO protection.
Collapse
Affiliation(s)
- Xue-Yee Lim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| | - Jing Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| | - Hong-Mei Yin
- Jiangsu Kanion Pharmaceuticals Co., Ltd., Lianyungang 222001, China;
| | - Mu He
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| |
Collapse
|
5
|
Wu J, Guo W, Wang Y, Liu J, Wang H, Zheng Z, Wang X, Kaplan DL. Stabilization and Sustained Release of Fragrances Using Silk-PEG Microspheres. ACS Biomater Sci Eng 2023. [PMID: 37144723 DOI: 10.1021/acsbiomaterials.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fragrances, which are commonly used in food, textiles, consumer products, and medical supplies, are volatile compounds that require stabilization and controlled release due to their sensitivity to environmental conditions such as light, oxygen, temperature, and humidity. Encapsulation in various material matrices is a desired technique for these purposes, and there is a growing interest in using sustainable natural materials to reduce environmental impact. In this study, fragrance encapsulation in microspheres made from silk fibroin (SF) was investigated. Fragrance-loaded silk fibroin microspheres (Fr-SFMSs) were prepared by adding fragrance/surfactant emulsions to silk solutions, followed by mixing them with polyethylene glycol under ambient conditions. The study investigated eight different fragrances, where citral, beta-ionone, and eugenol showed higher binding affinities to silk than the other five fragrances, resulting in better microsphere formation with uniform sizes and higher fragrance loading (10-30%). Citral-SFMSs showed characteristic crystalline β-sheet structures of SF, high thermal stability (initial weight loss at 255 °C), long shelf life at 37 °C (>60 days), and sustained release (∼30% of citral remained after incubation at 60 °C for 24 h). When citral-SFMSs with different sizes were used to treat cotton fabrics, about 80% of the fragrance remained on the fabrics after one wash, and the duration of release from the treated fabrics was significantly longer than that of control samples treated with citral alone (no microspheres). This method of preparing Fr-SFMSs has potential applications in textile finishing, cosmetics, and the food industry.
Collapse
Affiliation(s)
- Jianbing Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
- College of Textile, Garment and Design, Changshu Institute of Technology, Suzhou 215500, People's Republic of China
| | - Wenjun Guo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Heng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
6
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Nagler F, Schiller C, Kropf C, Schacher FH. Amphiphilic Graft Copolymers for Time-Delayed Release of Hydrophobic Fragrances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56087-56096. [PMID: 36475582 DOI: 10.1021/acsami.2c16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
When a controlled or retarded release of perfumes is required such as in cosmetics or cleaning products, polymers can be applied as encapsulation agents. With regard to such applications, we investigated two amphiphilic graft copolymers featuring a polydehydroalanine (PDha) backbone and different hydrophobic side chains. Hereby, grafting of aliphatic octyl side chains (PDha-g-EOct) enabled the adsorption of the aliphatic fragrance tetrahydrolinalool with moderate loads, whereas benzyl side chains (PDha-g-BGE) allowed taking up aromatic fragrances, for example, amylsalicylate-n with exceptionally high loads of up to 8 g g-1. The side-chain density was studied as well but had no significant influence on the loading. In addition, the characterization and quantification of the load by NMR and thermogravimetric analysis were compared, and it was also possible to load the aromatic model fragrance into the graft copolymer with aliphatic side chains. After 3 months, the load had decreased by 40-50% and, hence, such systems are of interest for a long-term release of perfumes over months. Although this study is a proof-of-concept, we foresee that such polyampholytic graft copolymers can be tailored for the adsorption of a variety of hydrophobic perfumes simply by altering polarity and chemistry of the side chain.
Collapse
Affiliation(s)
- Frieda Nagler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| | - Christine Schiller
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| | - Christian Kropf
- Henkel AG & Co. KGaA, Henkelstraße 67, D-40589Düsseldorf, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| |
Collapse
|
8
|
Ebadollahi A, Valizadeh B, Panahandeh S, Mirhosseini H, Zolfaghari M, Changbunjong T. Nanoencapsulation of Acetamiprid by Sodium Alginate and Polyethylene Glycol Enhanced Its Insecticidal Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172971. [PMID: 36080008 PMCID: PMC9457968 DOI: 10.3390/nano12172971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/01/2023]
Abstract
Nanoformulation has been considered one of the newly applied methods in integrated pest management strategies. In this research, a conventional neonicotinoid insecticide acetamiprid was nanoencapsulated via AL (Sodium Alginate) and PEG (Polyethylene Glycol) and tested against the elm leaf beetle Xanthogaleruca luteola. The synthesized particles had spherical-like morphology and nanoscale based on TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering). The encapsulation efficiency and loading percentages of acetamiprid in AL and PEG were 92.58% and 90.15%, and 88.46% and 86.79%, respectively. Leaf discs treated with different formulations by the leaf-dipping method were used for oral toxicity assays. The LC50 values (Lethal Concentration to kill 50% of insect population) of acetamiprid and Al- and PEG-nanoencapsulated formulations on third-instar larvae were 0.68, 0.04, and 0.08 ppm, respectively. Based on the highest relative potency, AL-encapsulated acetamiprid had the most toxicity. The content of energy reserve protein, glucose, and triglyceride and the activity of detoxifying enzymes esterase and glutathione S-transferase of the larvae treated by LC50 values of nanoformulations were also decreased. According to the current findings, the nanoencapsulation of acetamiprid by Al and PEG can increase its insecticidal performance in terms of lethal and sublethal toxicity.
Collapse
Affiliation(s)
- Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran
| | - Bita Valizadeh
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| | - Saleh Panahandeh
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| | - Hadiseh Mirhosseini
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran
| | - Maryam Zolfaghari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
9
|
Akhavan-Mahdavi S, Sadeghi R, Faridi Esfanjani A, Hedayati S, Shaddel R, Dima C, Malekjani N, Boostani S, Jafari SM. Nanodelivery systems for d-limonene; techniques and applications. Food Chem 2022; 384:132479. [DOI: 10.1016/j.foodchem.2022.132479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/26/2022]
|
10
|
Ebadollahi A, Jalali Sendi J, Setzer WN, Changbunjong T. Encapsulation of Eucalyptus largiflorens Essential Oil by Mesoporous Silicates for Effective Control of the Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113531. [PMID: 35684469 PMCID: PMC9182336 DOI: 10.3390/molecules27113531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
Although the use of synthetic chemicals is the principal method for insect pest management, their widespread application has led to numerous side effects, including environmental pollution and threats to human and animal health. Plant essential oils have been introduced as promising natural substitutes for synthetic insecticides. However, high volatility and/or low durability are the main limiting factors for essential oil application for control of insect pests. Accordingly, along with an evaluation of the fumigant toxicity of Eucalyptus largiflorens essential oil against the cowpea weevil, Callosobruchus maculatus, essential oil was nanoencapsulated by two mesoporous silicates, MCM-41 and zeolite 3A, to enhance fumigant persistence and toxicity. The chemical profile of essential oil was also analyzed through gas chromatographic-mass spectrometry. E. largiflorens essential oil showed significant concentration-dependent toxicity against insect pests; a concentration of 5.16 μL/L resulted in 100% mortality after 48 h. The toxicity of essential oil could be attributed to the presence of various insecticidal terpenes, such as spathulenol (15.6%), cryptone (7.0%), and 1,8-cineole (5.8%). Fumigant persistence was increased from 6 days to 19 and 17 days for pure and capsulated essential oil with MCM-41 and Zeolite 3A, respectively. The insect mortality also increased from 99 insects in pure essential oil to 178 and 180 insects in MCM-41 and Zeolite 3A encapsulated formulations, respectively. Therefore, the encapsulation of E. largiflorens essential oil by MCM- 41 and Zeolite 3A is a beneficial method for enhancing its persistence and toxicity against C. maculatus.
Collapse
Affiliation(s)
- Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran
- Correspondence: (A.E.); (T.C.)
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Correspondence: (A.E.); (T.C.)
| |
Collapse
|
11
|
Mamusa M, Mastrangelo R, Glen T, Murgia S, Palazzo G, Smets J, Baglioni P. Rational Design of Sustainable Liquid Microcapsules for Spontaneous Fragrance Encapsulation. Angew Chem Int Ed Engl 2021; 60:23849-23857. [PMID: 34357674 PMCID: PMC8596835 DOI: 10.1002/anie.202110446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/17/2022]
Abstract
The high volatility, water-immiscibility, and light/oxygen-sensitivity of most aroma compounds represent a challenge to their incorporation in liquid consumer products. Current encapsulation methods entail the use of petroleum-based materials, initiators, and crosslinkers as well as mixing, heating, and purification steps. Hence, more efficient and eco-friendly approaches to encapsulation must be sought. Herein, we propose a simple method by making use of a pre-formed amphiphilic polymer and employing the Hansen Solubility Parameters approach to determine which fragrances could be encapsulated by spontaneous coacervation in water. The coacervates do not precipitate as solids but they remain suspended as colloidally stable liquid microcapsules, as demonstrated by fluorescence correlation spectroscopy. The effective encapsulation of fragrance is proven through confocal Raman spectroscopy, while the structure of the capsules is investigated by means of cryo FIB/SEM, confocal laser scanning microscopy, and small-angle X-ray scattering.
Collapse
Affiliation(s)
- Marianna Mamusa
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di Firenze & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase)via della Lastruccia 3Sesto Fiorentino (FI)I-50019Italy
| | - Rosangela Mastrangelo
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di Firenze & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase)via della Lastruccia 3Sesto Fiorentino (FI)I-50019Italy
| | - Tom Glen
- School of Physics and AstronomyUniversity of EdinburghEdinburghEH9 3FDUK
| | - Sergio Murgia
- Dipartimento di Scienze della Vita e dell'AmbienteUniversità degli Studi di Cagliari & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase)via Ospedale 72Cagliari09124Italy
| | - Gerardo Palazzo
- Dipartimento di ChimicaUniversità di Bari “Aldo Moro” & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase)Via Orabona 4BariI-70126Italy
| | - Johan Smets
- The Procter & Gamble CompanyTemselaan 1001853Strombeek BeverBelgium
| | - Piero Baglioni
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di Firenze & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase)via della Lastruccia 3Sesto Fiorentino (FI)I-50019Italy
| |
Collapse
|
12
|
Mamusa M, Mastrangelo R, Glen T, Murgia S, Palazzo G, Smets J, Baglioni P. Rational Design of Sustainable Liquid Microcapsules for Spontaneous Fragrance Encapsulation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marianna Mamusa
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase) via della Lastruccia 3 Sesto Fiorentino (FI) I-50019 Italy
| | - Rosangela Mastrangelo
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase) via della Lastruccia 3 Sesto Fiorentino (FI) I-50019 Italy
| | - Tom Glen
- School of Physics and Astronomy University of Edinburgh Edinburgh EH9 3FD UK
| | - Sergio Murgia
- Dipartimento di Scienze della Vita e dell'Ambiente Università degli Studi di Cagliari & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase) via Ospedale 72 Cagliari 09124 Italy
| | - Gerardo Palazzo
- Dipartimento di Chimica Università di Bari “Aldo Moro” & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase) Via Orabona 4 Bari I-70126 Italy
| | - Johan Smets
- The Procter & Gamble Company Temselaan 100 1853 Strombeek Bever Belgium
| | - Piero Baglioni
- Dipartimento di Chimica “Ugo Schiff” Università degli Studi di Firenze & CSGI, (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase) via della Lastruccia 3 Sesto Fiorentino (FI) I-50019 Italy
| |
Collapse
|
13
|
Buljeta I, Pichler A, Ivić I, Šimunović J, Kopjar M. Encapsulation of Fruit Flavor Compounds through Interaction with Polysaccharides. Molecules 2021; 26:molecules26144207. [PMID: 34299482 PMCID: PMC8304777 DOI: 10.3390/molecules26144207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Production and storage, the influence of packaging materials and the presence of other ingredients in fruit products can cause changes in flavor compounds or even their loss. Due to these issues, there is a need to encapsulate flavor compounds, and polysaccharides are often used as efficient carriers. In order to achieve effective encapsulation, satisfactory retention and/or controlled release of flavor compounds, it is necessary to understand the nature of the coated and coating materials. Interactions that occur between these compounds are mostly non-covalent interactions (hydrogen bonds, hydrophobic interactions and van der Waals forces); additionally, the formation of the inclusion complexes of flavor compounds and polysaccharides can also occur. This review provides insight into studies about the encapsulation of flavor compounds, as well as basic characteristics of encapsulation such as the choice of coating material, the effect of various factors on the encapsulation efficiency and an explanation of the nature of binding.
Collapse
Affiliation(s)
- Ivana Buljeta
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Anita Pichler
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Ivana Ivić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Mirela Kopjar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, 31000 Osijek, Croatia; (I.B.); (A.P.); (I.I.)
- Correspondence:
| |
Collapse
|
14
|
Lee J, Ngo HV, Jin G, Park C, Park JB, Tran PHL, Tran TTD, Nguyen VH, Lee BJ. Effect of pH adjustment and ratio of oppositely charged polymers on the mechanistic performance and sustained release of volatile perfume in interpolyelectrolyte complex microcapsules. Int J Pharm 2021; 604:120672. [PMID: 33961955 DOI: 10.1016/j.ijpharm.2021.120672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/27/2022]
Abstract
In this study, volatile perfume was encapsulated in microcapsules (MCs) via interpolyelectrolyte complexes (IPECs) of oppositely charged polymers, with high encapsulation efficiency, to be delivered in a sustained manner. Positively charged chitosan (CTS) and negatively charged Eudragit® S100 (ES100) were used as eco-friendly biopolymers. Limonene (LMN) was selected as the model perfume. First, the solution of LMN in ethyl acetate and poloxamer 407 (POX407) in acidic solution was emulsified using ultrasonication. CTS and ES100 were added in that particular order to form o/w emulsion. LMN-loaded microcapsules (LMN-MCs) were prepared by adjusting the pH and freeze-drying for solidification. The electrostatic interactions of CTS and ES100 to form IPECs were highly dependent on pH, changing in the microscopic images of emulsion droplets and zeta potential. The NH3+ group of CTS and the COO- group of ES100 caused the electrostatic interactions at a specific pH. The formation mechanism of LMN-MCs was successfully validated using instrumental analysis, charge density, and energy dispersive X-ray spectrometer (EDS) mapping. Encapsulation efficiency, loading content, and release rates of LMN-MCs varied according to the ratios of CTS and ES100, demonstrating optimal performance at a 1:1 ratio. The current LMN-MCs could provide a simple manufacturing process with high performance in terms of encapsulation efficiency (>94%), drug loading, yield and sustained release of volatile perfume for 120 h.
Collapse
Affiliation(s)
- Juhyun Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hai V Ngo
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Gang Jin
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Chulhun Park
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | | | - Thao T D Tran
- Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam; The Faculty of Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| | - Van H Nguyen
- Pharmaceutical Engineering Laboratory, Biomedical Engineering School, International University, Vietnam National University, Ho Chi Minh City 70000, Viet Nam
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
15
|
Purkait A, Mukherjee A, Hazra DK, Roy K, Biswas PK, Kole RK. Encapsulation, release and insecticidal activity of Pongamia pinnata (L.) seed oil. Heliyon 2021; 7:e06557. [PMID: 33855235 PMCID: PMC8027697 DOI: 10.1016/j.heliyon.2021.e06557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Pongamia pinnata (L.) seed oil is effective for its insecticidal and larvicidal activities. However, its low aqueous solubility, high photosensitivity, and high volatility restrict its application for the control of agricultural pests. Encapsulation can be an effective technique to overcome such hindrances. Therefore, P. pinnata oil (PO) was extracted from its seeds and analyzed for karanjin content (3.18%) by GC-MS/MS as the marker compound. Micro-encapsulation (MC) of PO was prepared by interfacial polymerization between isocyanates and polyamine and tested for insecticidal and larvicidal activities. Bioassay of the developed formulations was tested in-vitro against 2nd instar larvae of Bombyx mori (Bivoltine hybrid) and in-vivo insecticidal bio-efficacy was tested against aubergine aphid (Aphis gossypii G.) and whitefly (Bemisia tabaci G.). Various properties of micro-capsules viz., stability, size, oil content and release kinetics were examined. Average diameter of capsules (1 μm) with Zeta potential (-16 mV) was indicated by the Dynamic Light Scattering (DLS) instrument. Existence of PO in the microcapsules was confirmed by an optical microscopic study. Spectroscopic analysis revealed 87.4% of PO was encapsulated in polyurea shell. The shelf-life (T 10 ), half-life (T 50 ), and expiry-life (T 90 ) of polyurea coated capsules were 11.4, 75.3 and 250.0 h, respectively. Polyurea coated PO capsule formulation showed evidence of in-vitro toxicity against 2nd instar larvae of B. mori (LC 50 = 1.1%; LC 90 = 5.9%). The PO formulation also exhibited 67.0-71.8% and 62.4-74.8% control of aphid and whitefly population in aubergine at 4.0% dose following 7-14 days after application. The study unveiled its significance in developing controlled release herbal formulations of P. pinnata as an alternative to harmful conventional synthetic insecticides for crop protection.
Collapse
Affiliation(s)
- Aloke Purkait
- Department of Soil Science and Agricultural Chemistry, Palli Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, 731 236, Birbhum, West Bengal, India
| | - Ayan Mukherjee
- Department of Soil Science and Agricultural Chemistry, Palli Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, 731 236, Birbhum, West Bengal, India
| | - Dipak Kumar Hazra
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252, Nadia, West Bengal, India
| | - Kusal Roy
- Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252, Nadia, West Bengal, India
| | - Pabitra Kumar Biswas
- Department of Soil Science and Agricultural Chemistry, Palli Siksha Bhavana (Institute of Agriculture), Visva - Bharati, Sriniketan, 731 236, Birbhum, West Bengal, India
| | - Ramen Kumar Kole
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741 252, Nadia, West Bengal, India
| |
Collapse
|
16
|
Tian Q, Zhou W, Cai Q, Ma G, Lian G. Concepts, processing, and recent developments in encapsulating essential oils. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Andriotis EG, Papi RM, Paraskevopoulou A, Achilias DS. Synthesis of D-Limonene Loaded Polymeric Nanoparticles with Enhanced Antimicrobial Properties for Potential Application in Food Packaging. NANOMATERIALS 2021; 11:nano11010191. [PMID: 33451168 PMCID: PMC7828745 DOI: 10.3390/nano11010191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/24/2022]
Abstract
Mini-emulsion polymerization was applied for the synthesis of cross-linked polymeric nanoparticles comprised of methyl methacrylate (MMA) and Triethylene Glycol Dimethacrylate (TEGDMA) copolymers, used as matrix-carriers for hosting D-limonene. D-limonene was selected as a model essential oil, well known for its pleasant odor and its enhanced antimicrobial properties. The synthesized particles were assessed for their morphology and geometric characteristics by Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM), which revealed the formation of particles with mean diameters at the nanoscale (D[3,2] = 0.135 μm), with a spherical shape, while the dried particles formed larger clusters of several microns (D[3,2] = 80.69 μm). The percentage of the loaded D-limonene was quantified by Thermogravimetric Analysis (TGA), complemented by Gas Chromatography-Mass Spectrometry analysis coupled with a pyrolysis unit (Py/GC-MS). The results showed that the volatiles emitted by the nanoparticles were composed mainly of D-limonene (10% w/w of dry particles). Particles subjected to higher temperatures tended to decompose. The mechanism that governs the release of D-limonene from the as-synthesized particles was studied by fitting mathematical models to the release data obtained by isothermal TGA analysis of the dry particles subjected to accelerated conditions. The analysis revealed a two-stage release of the volatiles, one governed by D-limonene release and the other governed by TEGDMA release. Finally, the antimicrobial potency of the D-limonene-loaded particles was demonstrated, indicating the successful synthesis of polymeric nanoparticles loaded with D-limonene, owing to enhanced antimicrobial properties. The overall performance of these nanoparticles renders them a promising candidate material for the formation of self-sterilized surfaces with enhanced antimicrobial activity and potential application in food packaging.
Collapse
Affiliation(s)
- Eleftherios G. Andriotis
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rigini M. Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris S. Achilias
- Laboratory of Polymer and Dyes Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-997822
| |
Collapse
|
18
|
Perinelli DR, Palmieri GF, Cespi M, Bonacucina G. Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules 2020; 25:E5878. [PMID: 33322621 PMCID: PMC7763935 DOI: 10.3390/molecules25245878] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy; (G.F.P.); (M.C.); (G.B.)
| | | | | | | |
Collapse
|
19
|
Oftadeh M, Jalali Sendi J, Ebadollahi A. Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1811345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marziyeh Oftadeh
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Guilan, Rasht, Iran
| | - Jalal Jalali Sendi
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Guilan, Rasht, Iran
- Faculty of Agricultural Sciences, Department of Silk research, University of Guilan, Rasht, Iran
| | - Asgar Ebadollahi
- Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
20
|
Encapsulated Limonene: A Pleasant Lemon-Like Aroma with Promising Application in the Agri-Food Industry. A Review. Molecules 2020; 25:molecules25112598. [PMID: 32503168 PMCID: PMC7321087 DOI: 10.3390/molecules25112598] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/16/2023] Open
Abstract
Limonene, mainly found as a major component in Citrus spp., has been proven to possess a valuable potential as sustainable replacement to synthetic pesticides and food preservatives. This review intends to give a clear overview of the principal emerging applications of limonene in the agri-food industry as antimicrobial, herbicidal and antioxidant agent. To successfully use limonene in a greener agri-food industry, its preservation had become a top concern for manufacturers. In order to elucidate the most efficient and sustainable manner to encapsulate limonene, the different techniques and materials tested up to the present are also reviewed. In general, encapsulation conserves and protects limonene from outside aggressions, but also allows its controlled release as well as enhances its low water solubility, which can be critical for the discussed applications. Other parameters such as scalability, low cost and availability of equipment will need to be taken into account. Further efforts would likely be oriented to the elucidation of encapsulating sustainable systems obtained by cost-efficient elaboration processes, which can deliver effective concentrations of limonene without affecting crops and food products.
Collapse
|
21
|
Pang Y, Qin Z, Wang S, Yi C, Zhou M, Lou H, Qiu X. Preparation and application performance of lignin-polyurea composite microcapsule with controlled release of avermectin. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04664-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Akolade JO, Nasir-Naeem KO, Swanepoel A, Yusuf AA, Balogun M, Labuschagne P. CO2-assisted production of polyethylene glycol / lauric acid microparticles for extended release of Citrus aurantifolia essential oil. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Thermal Triggered Release of Menthol from Different Carriers: A Comparative Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design of appropriate thermally responsive fragrance carrier systems is of significant importance for the application of fragrance in the food and tobacco industries. In this study, we investigate the potential of sorbitan monostearate and guar gum for the stabilization of menthol under ambient conditions and the thermally-induced release of menthol. Our results show that the sorbitan monostearate carrier could well stabilize the menthol for at least up to 15 days with neglectable menthol loss due to the favorable binding of menthol on the sorbitan monostearate carrier. In addition, rapid and controlled release of menthol could take place at a temperature of 80 °C in the sorbitan monostearate carrier system. As a comparison, guar gum could not stabilize menthol as a result of its poor compatibility. Our results suggest that sorbitan monostearate can be an ideal carrier material for the support of fragrance. In addition, our results also provide a useful guide for the tailored design of thermally responsive fragrance carriers.
Collapse
|
24
|
Zhao H, Fei X, Cao L, Zhang B, Liu X. Relation between the particle size and release characteristics of aromatic melamine microcapsules in functional textile applications. RSC Adv 2019; 9:25225-25231. [PMID: 35528675 PMCID: PMC9069868 DOI: 10.1039/c9ra05196a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
The relation between the particle size and release characteristics of aromatic microcapsules with a melamine resin shell in functional textile applications have been investigated. Firstly, the microcapsules are characterized based on their Fourier transform infrared spectra, encapsulation efficiencies, particle size distributions, optical images, and scanning electron microscopy images. The impregnation performances of the microcapsules have been initially evaluated using image analysis. Subsequently, the impregnation efficiency and broken release characteristics are semi-quantitatively analyzed using solid-phase microextraction-gas chromatography-mass spectrometry. The analysis results show that the highest impregnation efficiency and broken release intensity could be observed when the microcapsule size was similar to the fiber diameter (25–30 μm). Eventually, the sustained release of the microcapsules over a period of 2400 h was evaluated using the weighing calculation method, and the trends were studied using the Peppas model. It was found that the microcapsule release rate slowly and continuously decreased with time, and the release rates significantly increased with the decrease in microcapsule particle size. Thus, it could be concluded that the large microcapsules exhibited better leak tightness than the small microcapsules, whereas the small microcapsules exhibited faster sustained release rates. The relation between the particle size and release characteristics of aromatic microcapsules with a melamine resin shell in functional textile applications have been investigated.![]()
Collapse
Affiliation(s)
- Hongbin Zhao
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Xuening Fei
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China .,School of Science, Tianjin Chengjian University Tianjin 300384 China
| | - Lingyun Cao
- School of Science, Tianjin Chengjian University Tianjin 300384 China
| | - Baolian Zhang
- School of Materials Science and Engineering, Tianjin Chengjian University Tianjin 300384 China
| | - Xin Liu
- Tianjin AnYing Bioengineering Technology Co., Ltd. Tianjin 300384 China
| |
Collapse
|
25
|
Dusankova M, Pummerova M, Sedlarik V. Microspheres of essential oil in polylactic acid and poly(methyl methacrylate) matrices and their blends. J Microencapsul 2019; 36:305-316. [PMID: 31159647 DOI: 10.1080/02652048.2019.1623337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study is focussed on micro-encapsulation of essential oils in polylactic acid (PLA) and a poly(methyl methacrylate) (PMMA) matrix as well as blends of the same. Microspheres were prepared by the solvent evaporation technique and characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Fourier transform infra-red spectroscopy (FTIR). The encapsulation efficiencies and release profiles of the essential oils were studied by gas chromatography mass spectrometry (GC-MS) and head-space solid-phase microextraction GC-MS, respectively. Furthermore, the microspheres were tested for antibacterial activity against both Gram-negative and Gram-positive bacterial strains. The results showed that the microspheres compositions (PLA/PMMA ratio) have significant effect on their characteristics. The process adopted for preparing the microspheres promoted formation of spherical particles at the sizes of 1.5-9.5 µm. The highest encapsulation efficiency of the prepared microspheres was observed in systems consisting of linalool (81.10 ± 10.0 wt. % for PLA system and 76.0 ± 3.3 wt. % for PMMA system). Confirmation was also made that the release rate of the microspheres was affected by the size of the same.
Collapse
Affiliation(s)
- Miroslava Dusankova
- a Centre of Polymer Systems , University Institute, Tomas Bata University in Zlin, tr. T , Czech Republic
| | - Martina Pummerova
- a Centre of Polymer Systems , University Institute, Tomas Bata University in Zlin, tr. T , Czech Republic
| | - Vladimir Sedlarik
- a Centre of Polymer Systems , University Institute, Tomas Bata University in Zlin, tr. T , Czech Republic
| |
Collapse
|
26
|
PLL-alginate and the HPMC-EC hybrid coating over the 3D DNA nanocubes as compact nanoparticles for oral administration. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01075-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
DNA scaffold nanoparticles coated with HPMC/EC for oral delivery. Int J Pharm 2019; 562:321-332. [PMID: 30928213 DOI: 10.1016/j.ijpharm.2019.03.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
|
28
|
Synthesis and characterization of novel biocompatible nanocapsules encapsulated lily fragrance. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
The Fabrication of Fragrance Microcapsules and Their Sustained and Broken Release Behavior. MATERIALS 2019; 12:ma12030393. [PMID: 30691209 PMCID: PMC6384642 DOI: 10.3390/ma12030393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Their controlled release property is the most important feature of functional microcapsules and carriers. In this work, melamine resin shell fragrance microcapsules were fabricated in a non-ionic system, and their chemical structure, particle size, and morphology were analyzed. The sustained release property of the prepared microcapsules over 2400 h was studied with a weighing calculation method, and based on the fitting results, the release rate trend was consistent with the Peppas model (y = 100 - 2.30t0.3213). Furthermore, the sustained and broken release behavior of the microcapsules in impregnated fabric samples were investigated for the first time by our proposed Solid Phase Microextraction-Gas Chromatography-Mass Spectrometer (SPME-GC-MS) method. The qualitative and quantitative analysis results showed that the middle and base note compositions were outstanding in the sustained release state, and the top note showed more advantages in the broken release state. In addition, it was found that the characteristic peak species and intensities of the sample finished with the microcapsules were more similar to pure essence oil than the sample finished by traditional methods, suggesting that the prepared microcapsules showed an excellent odor recovery and strength.
Collapse
|
30
|
Akolade JO, Balogun M, Swanepoel A, Ibrahim RB, Yusuf AA, Labuschagne P. Microencapsulation of eucalyptol in polyethylene glycol and polycaprolactone using particles from gas-saturated solutions. RSC Adv 2019; 9:34039-34049. [PMID: 35528904 PMCID: PMC9074077 DOI: 10.1039/c9ra06419b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022] Open
Abstract
Eucalyptol is the natural cyclic ether which constitutes the bulk of terpenoids found in essential oils of Eucalyptus spp. and is used in aromatherapy for treatment of migraine, sinusitis, asthma and stress. It acts by inhibiting arachidonic acid metabolism and cytokine production. Chemical instability and volatility of eucalyptol restrict its therapeutic application and necessitate the need to develop an appropriate delivery system to achieve extended release and enhance its bioactivity. However, the synthesis method of the delivery system must be suitable to prevent loss or inactivation of the drug during processing. In this study, supercritical carbon dioxide (scCO2) was explored as an alternative solvent for encapsulation and co-precipitation of eucalyptol with polyethylene glycol (PEG) and/or polycaprolactone (PCL) using the particles from gas-saturated solution (PGSS) process. Polymers and eucalyptol were pre-mixed and then processed in a PGSS autoclave at 45 °C and 80 bar for 1 h. The mixture in scCO2 was micronized and characterized. The presence of eucalyptol in the precipitated particles was confirmed by infrared spectroscopy, gas chromatography and mass spectrometry. The weight ratios of PEG–PCL blends significantly influenced loading capacity and encapsulation efficiency with 77% of eucalyptol encapsulated in a 4 : 1 composite blend of PEG–PCL. The particle size distribution of the PGSS-micronized particles ranged from 30 to 260 μm. ScCO2 assisted microencapsulation in PEG and PCL reduced loss of the volatile drug during a two-hour vaporization study and addition of PCL extended the mean release time in simulated physiological fluids. Free radical scavenging and lipoxygenase inhibitory activities of eucalyptol formulated in the PGSS-micronized particles was sustained. Findings from this study showed that the scCO2-assisted micronization can be used for encapsulation of volatile drugs in polymeric microparticles without affecting bioactivity of the drug. Application of supercritical carbon dioxide as an alternative solvent for microformulation of the volatile unstable drug, eucalyptol in polymeric composites.![]()
Collapse
Affiliation(s)
- Jubril Olayinka Akolade
- Polymers and Composites, Chemicals Cluster, CSIR
- South Africa
- Biotechnology Advanced Research Centre
- Sheda Science and Technology Complex
- Nigeria
| | | | - Andri Swanepoel
- Polymers and Composites, Chemicals Cluster, CSIR
- South Africa
| | | | | | | |
Collapse
|
31
|
Kaur R, Kukkar D, Bhardwaj SK, Kim KH, Deep A. Potential use of polymers and their complexes as media for storage and delivery of fragrances. J Control Release 2018; 285:81-95. [DOI: 10.1016/j.jconrel.2018.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 11/15/2022]
|
32
|
Abstract
The preparation methods and applications of flavor and fragrance capsules based on polymeric, inorganic and polymeric–inorganic wall materials are summarized.
Collapse
Affiliation(s)
- Lei He
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Jing Hu
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| | - Weijun Deng
- School of Perfume and Aroma Technology
- Shanghai Institute of Technology
- Shanghai
- China
| |
Collapse
|
33
|
Ebadollahi A, Sendi JJ, Aliakbar A. Efficacy of Nanoencapsulated Thymus eriocalyx and Thymus kotschyanus Essential Oils by a Mesoporous Material MCM-41 Against Tetranychus urticae (Acari: Tetranychidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2413-2420. [PMID: 29029248 DOI: 10.1093/jee/tox234] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Inspite of well-established potentiality of plant essential oils as biopesticides, their environmentally low persistence is considered as a hindering obstacle for its commercialization. In the present study, chemical composition and toxicity of essential oils isolated from leaves of Thymus eriocalyx and Thymus kotschyanus were evaluated against two-spotted spider mite, Tetranychus urticae. The chemicals present in the crude oil were found to be thymol (28.83%), oleic acid (11.51%), palmitic acid (8.60%), borneol (5.72%), ρ-cymene (3.60%), and 1,8-cineole (3.57%) in the essential oil of T. eriocalyx, and camphene (35.59%), linalyl acetate (20.47%), linalool (14.75%), α-terpineol (13.87%), and geranyl acetate (3.07%) in the essential oil of T. kotschyanus. The essential oils had strong fumigant toxicity on the adult females of Te. urticae and their fumigation persistence was prolonged until 6 and 5 d, respectively, for T. eriocalyx and T. kotschyanus. Loading of essential oils in MCM-41 increased their stability and persistence was extended up to 20 and 18 d for T. eriocalyx and T. kotschyanus. Further, mite mortality increased from 80 to 203 mites by T. eriocalyx and from 58 to 186 mites by T. kotschyanus nanoencapsulated essential oils. Based on these results, nanoencapsulation of T. eriocalyx and T. kotschyanus essential oils in MCM-41 may be a useful method for their application in the management of Te. urticae.
Collapse
Affiliation(s)
- Asgar Ebadollahi
- Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Iran
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Iran
| | - Alireza Aliakbar
- Department of Chemistry, Faculty of Basic Sciences, University of Guilan, Iran
| |
Collapse
|
34
|
Nguon O, Lagugné-Labarthet F, Brandys FA, Li J, Gillies ER. Microencapsulation by in situ Polymerization of Amino Resins. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1364765] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Olivier Nguon
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
- 3M Canada Company, London, Ontario, Canada
| | | | | | - Jian Li
- 3M Canada Company, London, Ontario, Canada
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
35
|
Silva M, Martins I, Barreiro F, Dias M, Rodrigues AE. Preparation and characterization of poly(urethane–urea) microcapsules containing limonene. Kinetic analysis. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2017. [DOI: 10.1080/1023666x.2017.1369253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mónica Silva
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE-LCM, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Isabel Martins
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE-LCM, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE-LCM, Bragança Polytechnic Institute, Bragança, Portugal
| | - Madalena Dias
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE-LCM, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE-LCM, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Amariei G, Boltes K, Letón P, Iriepa I, Moraleda I, Rosal R. Poly(amidoamine) dendrimers grafted on electrospun poly(acrylic acid)/poly(vinyl alcohol) membranes for host-guest encapsulation of antioxidant thymol. J Mater Chem B 2017; 5:6776-6785. [PMID: 32264327 DOI: 10.1039/c7tb01498h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amino-terminated fifth generation poly(amidoamine) (PAMAM G5-NH2) dendrimers were grafted onto the surface of poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) electrospun fibres with the purpose of creating a host-guest architecture for the controlled delivery of a natural antioxidant, thymol. The nanofibers were stabilized by esterification crosslinking to produce a water insoluble non-woven membrane. The functionalization with PAMAM G5-NH2 led to dendrimer loadings in the 7.4 × 10-7-2.25 × 10-6 mol dendrimer per g membrane range. The resulting materials were characterized using SEM, ATR-FTIR and surface ζ-potential measurements. The loading capacity for thymol reached 2.5 × 10-4 mol thymol per g membrane. The membranes were tested for thymol release in different aqueous and non-aqueous food simulants. Computational modelling was used to get a further insight into the host-guest association of thymol and PAMAM G5-NH2 molecules through docking studies. For this purpose, we examined the molecular level details of the dendrimer-guest complex, calculated the number of included or attached molecules, the exact location of thymol in host-guest complexes and the local environment around the thymol molecules. Docking studies showed that PAMAM-G5-NH2 dendrimers can encapsulate thymol molecules through hydrophobic interactions and hydrogen bonding. The maximum amount of thymol molecules theoretically encapsulated was 16, while another 25 could be hosted at the dendrimer surface through interaction with the outer part or the dendritic branches. The experimental value was 37 ± 5, in agreement with theoretical predictions.
Collapse
Affiliation(s)
- Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide. Food Res Int 2016; 87:83-91. [DOI: 10.1016/j.foodres.2016.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 11/22/2022]
|
38
|
Dalpiaz A, Sacchetti F, Baldisserotto A, Pavan B, Maretti E, Iannuccelli V, Leo E. Application of the “in-oil nanoprecipitation” method in the encapsulation of hydrophilic drugs in PLGA nanoparticles. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Lee H, Choi CH, Abbaspourrad A, Wesner C, Caggioni M, Zhu T, Weitz DA. Encapsulation and Enhanced Retention of Fragrance in Polymer Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4007-13. [PMID: 26799189 DOI: 10.1021/acsami.5b11351] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fragrances are amphiphilic and highly volatile, all of which makes them a challenging cargo to efficiently encapsulate and retain in microcapsules using traditional approaches. We address these limitations by introducing a new strategy that combines bulk and microfluidic emulsification: a stable fragrance-in-water (F/W) emulsion that is primarily prepared from bulk emulsification is incorporated within a polymer microcapsule via microfluidic emulsification. On the basis of the in-depth study of physicochemical properties of the microcapsules on fragrance leakage, we demonstrate that enhanced retention of fragrance can be achieved by using a polar polymeric shell and forming a hydrogel network within the microcapsule. We further extend the utility of these microcapsules by demonstrating the enhanced retention of encapsulated fragrance in powder state.
Collapse
Affiliation(s)
- Hyomin Lee
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Chang-Hyung Choi
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University , Ithaca, New York 14853, United States
| | - Chris Wesner
- Corporate Engineering, The Procter & Gamble Company , Cincinnati, Ohio 45069, United States
| | - Marco Caggioni
- Corporate Engineering, The Procter & Gamble Company , Cincinnati, Ohio 45069, United States
| | - Taotao Zhu
- Corporate Engineering, The Procter & Gamble Company , Cincinnati, Ohio 45069, United States
| | - David A Weitz
- School of Engineering and Applied Sciences and Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
40
|
Vishwakarma GS, Gautam N, Babu JN, Mittal S, Jaitak V. Polymeric Encapsulates of Essential Oils and Their Constituents: A Review of Preparation Techniques, Characterization, and Sustainable Release Mechanisms. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1123725] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Zhao D, Jiao X, Zhang M, Ye K, Shi X, Lu X, Qiu G, Shea KJ. Preparation of high encapsulation efficiency fragrance microcapsules and their application in textiles. RSC Adv 2016. [DOI: 10.1039/c6ra16030a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(1,4-butanediol dimethacrylate) (PBDDMA) microcapsules with PBDDMA as the shell and dementholized peppermint oil (DPO) fragrance as the core material have been synthesized through a novel interfacial free-radical polymerization.
Collapse
Affiliation(s)
- Di Zhao
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Xin Jiao
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Miaomiao Zhang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Kai Ye
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Xiaodi Shi
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Xihua Lu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
- China
| | - Gao Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | | |
Collapse
|
42
|
Peters O, Ritter H. Chiral recognition of enantiomeric isobornyl methacrylate-containing hydrogels with α
-cyclodextrin. POLYM INT 2015. [DOI: 10.1002/pi.5053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Oliver Peters
- Institute of Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-University Düsseldorf; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Helmut Ritter
- Institute of Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-University Düsseldorf; Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
43
|
Casanova F, Santos L. Encapsulation of cosmetic active ingredients for topical application--a review. J Microencapsul 2015; 33:1-17. [PMID: 26612271 DOI: 10.3109/02652048.2015.1115900] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microencapsulation is finding increasing applications in cosmetics and personal care markets. This article provides an overall discussion on encapsulation of cosmetically active ingredients and encapsulation techniques for cosmetic and personal care products for topical applications. Some of the challenges are identified and critical aspects and future perspectives are addressed. Many cosmetics and personal care products contain biologically active substances that require encapsulation for increased stability of the active materials. The topical and transdermal delivery of active cosmetic ingredients requires effective, controlled and safe means of reaching the target site within the skin. Preservation of the active ingredients is also essential during formulation, storage and application of the final cosmetic product. Microencapsulation offers an ideal and unique carrier system for cosmetic active ingredients, as it has the potential to respond to all these requirements. The encapsulated agent can be released by several mechanisms, such as mechanical action, heat, diffusion, pH, biodegradation and dissolution. The selection of the encapsulation technique and shell material depends on the final application of the product, considering physical and chemical stability, concentration, required particle size, release mechanism and manufacturing costs.
Collapse
Affiliation(s)
- Francisca Casanova
- a LEPABE, Departamento De Engenharia Química , Faculdade De Engenharia Da Universidade Do Porto , Rua Dr. Roberto Frias , Porto , Portugal
| | - Lúcia Santos
- a LEPABE, Departamento De Engenharia Química , Faculdade De Engenharia Da Universidade Do Porto , Rua Dr. Roberto Frias , Porto , Portugal
| |
Collapse
|
44
|
Wang C, Tian A, Wang C, Fu S. Preparation of camphor oil/latex dispersion for the control of camphor oil release. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1547-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release. Carbohydr Polym 2015; 131:23-33. [DOI: 10.1016/j.carbpol.2015.05.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 11/21/2022]
|
46
|
Elia R, Guo J, Budijono S, Normand V, Benczédi D, Omenetto F, Kaplan DL. Encapsulation of Volatile Compounds in Silk Microparticles. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH 2015; 12:793-799. [PMID: 26568787 PMCID: PMC4640459 DOI: 10.1007/s11998-015-9668-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol-silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk-oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility.
Collapse
Affiliation(s)
- Roberto Elia
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | | | | | - Daniel Benczédi
- Firmenich SA, 1, Route des Jeunes, 1211 Geneva 8, Switzerland
| | - Fiorenzo Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
47
|
Mokkaphan J, Banlunara W, Palaga T, Sombuntham P, Wanichwecharungruang S. Silicone surface with drug nanodepots for medical devices. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20188-20196. [PMID: 25314005 DOI: 10.1021/am505566m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An ideal surface of poly(dimethylsiloxane) (PDMS) medical devices requires sustained drug release to combat various tissue responses and infection. At present, a noncovalent surface coating with drug molecules using binders possesses a detachment problem, while covalently linking drug molecules to the surface provides no releasable drug. Here, a platform that allows the deposition of diverse drugs onto the PDMS surface in an adequate quantity with reliable attachment and a sustained-release character is demonstrated. First, a PDMS surface with carboxyl functionality (PDMS-COOH) is generated by subjecting a PDMS piece to an oxygen plasma treatment to obtain silanol moieties on its surface, then condensing the silanols with (3-aminopropyl)triethoxysilane molecules to generate amino groups, and finally reacting the amino groups with succinic anhydride. The drug-loaded carriers with hydroxyl groups on their surface can then be esterified to PDMS-COOH, resulting in a PDMS surface covalently grafted with drug-filled nanocarriers so that the drugs inside the securely grafted carriers can be released. Demonstrated here is the covalent linking of the surface of a PDMS endotracheal tube with budesonide-loaded ethylcellulose nanoparticles. A secure and high drug accumulation at the surface of the tubes (0.025 mg/cm2) can be achieved without changes in its bulk property such as hardness (Shore-A), and sustained release of budesonide with a high release flux during the first week followed by a reduced release flux over the subsequent 3 weeks can be obtained. In addition, the grafted tube possesses more hydrophilic surface and thus is more tissue-compatible. The grafted PDMS pieces show a reduced in vitro inflammation in cell culture and a lower level of in vivo tissue responses, including a reduced level of inflammation, compared to the unmodified PDMS pieces, when implanted in rats. Although demonstrated with budesonide and a PDMS endotracheal tube, this platform of grafting a PDMS surface with drug-loaded particles can be applied to other drugs and other devices.
Collapse
Affiliation(s)
- Jiratchaya Mokkaphan
- Program of Petrochemical and Polymer Science, Faculty of Science, ‡Department of Pathology, Faculty of Veterinary Science, §Department of Microbiology, Faculty of Science, ∥Department of Otolaryngology Head and Neck Surgery, Faculty of Medicine, ⊥Department of Chemistry, Faculty of Science, and #Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University , Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
48
|
Sagiri SS, Pal K, Basak P, Rana UA, Shakir I, Anis A. Encapsulation of sorbitan ester-based organogels in alginate microparticles. AAPS PharmSciTech 2014; 15:1197-208. [PMID: 24889733 DOI: 10.1208/s12249-014-0147-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/07/2014] [Indexed: 11/30/2022] Open
Abstract
Leaching of the internal apolar phase from the biopolymeric microparticles during storage is a great concern as it undoes the beneficial effects of encapsulation. In this paper, a novel formulation was prepared by encapsulating the sunflower oil-based organogels in alginate microparticles. Salicylic acid and metronidazole were used as the model drugs. The microparticles were prepared by double emulsion methodology. Physico-chemical characterization of the microparticles was done by microscopy, FTIR, XRD, and DSC studies. Oil leaching studies, biocompatibility, mucoadhesivity, in vitro drug release, and the antimicrobial efficiency of the microparticles were also performed. The microparticles were found to be spherical in shape. Gelation of the sunflower oil prevented leaching of the internal phase from the microparticles. Release of drugs from the microparticles followed Fickian kinetics and non-Fickian kinetics in gastric and intestinal environments, respectively. Microparticles showed good antimicrobial activity against both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. The results suggested that the developed formulations hold promise to carry oils without leakage of the internal phase. Encapsulation of organogels within the microparticles has improved the drug entrapment efficiency and improved characteristics for controlled delivery applications.
Collapse
|
49
|
Liu C, Hayashi K. Visualization of controlled fragrance release from cyclodextrin inclusion complexes by fluorescence imaging. FLAVOUR FRAG J 2014. [DOI: 10.1002/ffj.3213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chuanjun Liu
- Department of Electronics, Graduate School of Information Science and Electrical Engineering; Kyushu University; 744, Motooka Nishiku Fukuoka 819-0395 Japan
| | - Kenshi Hayashi
- Department of Electronics, Graduate School of Information Science and Electrical Engineering; Kyushu University; 744, Motooka Nishiku Fukuoka 819-0395 Japan
| |
Collapse
|
50
|
Hofmeister I, Landfester K, Taden A. pH-Sensitive Nanocapsules with Barrier Properties: Fragrance Encapsulation and Controlled Release. Macromolecules 2014. [DOI: 10.1021/ma501388w] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ines Hofmeister
- Max Planck Institute
for Polymer Research, 55128 Mainz, Germany
- Henkel AG & Co. KGaA, Adhesive Research, 40191 Düsseldorf, Germany
| | | | - Andreas Taden
- Max Planck Institute
for Polymer Research, 55128 Mainz, Germany
- Henkel AG & Co. KGaA, Adhesive Research, 40191 Düsseldorf, Germany
| |
Collapse
|