1
|
Xie R, Li J, Zhao M, Wu F. Recent advances in the development of poly(ester amide)s-based carriers for drug delivery. Saudi Pharm J 2024; 32:102123. [PMID: 38911279 PMCID: PMC11190562 DOI: 10.1016/j.jsps.2024.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Biodegradable and biocompatible biomaterials have several important applications in drug delivery. The biomaterial family known as poly(ester amide)s (PEAs) has garnered considerable interest because it exhibits the benefits of both polyester and polyamide, as well as production from readily available raw ingredients and sophisticated synthesis techniques. Specifically, α-amino acid-based PEAs (AA-PEAs) are promising carriers because of their structural flexibility, biocompatibility, and biodegradability. Herein, we summarize the latest applications of PEAs in drug delivery systems, including antitumor, gene therapy, and protein drugs, and discuss the prospects of drug delivery based on PEAs, which provides a reference for designing safe and efficient drug delivery carriers.
Collapse
Affiliation(s)
- Rui Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Jiang Li
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Min Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Fan Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| |
Collapse
|
2
|
Dahmash EZ, Attiany LM, Ali D, Assaf SM, Alkrad J, Alyami H. Development and Characterization of Transdermal Patches Using Novel Thymoquinone-L-Arginine-Based Polyamide Nanocapsules for Potential Use in the Management of Psoriasis. AAPS PharmSciTech 2024; 25:69. [PMID: 38538972 DOI: 10.1208/s12249-024-02781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 04/24/2024] Open
Abstract
Thymoquinone (TQ) is a phytochemical compound present in Nigella sativa and has potential benefits for treating dermatological conditions such as psoriasis. However, its clinical use is limited due to its restricted bioavailability, caused mainly by its low solubility and permeability. To overcome this, a new transdermal drug delivery system is required. Nanoparticles are known to enhance material solubility and permeability, and hence, this study aimed to synthesize TQ-loaded L-arginine-based polyamide (TQ/Arg PA) nanocapsules incorporated into transdermal patches for prolonged delivery of TQ. To achieve this, Eudragit E polymer, plasticizers, and aloe vera as penetration enhancer were used to develop the transdermal patch. Furthermore, novel TQ/Arg-PA was synthesized via interfacial polymerization, and the resultant nanocapsules (NCs) were incorporated into the matrix transdermal patch. The Arg-PA NCs' structure was confirmed via NMR and FTIR, and optimal TQ/Arg-PA NCs containing formulation showed high entrapment efficiency of TQ (99.60%). Molecular and thermal profiling of TQ/Arg-PA and the transdermal patch revealed the effective development of spherical NCs with an average particle size of 129.23 ± 18.22 nm. Using Franz diffusion cells and synthetic membrane (STRAT M®), the in vitro permeation profile of the prepared patches demonstrated an extended release of TQ over 24 h, with enhanced permeation by 42.64% when aloe vera was employed. In conclusion, the produced formulation has a potential substitute for corticosteroids and other drugs commonly used to treat psoriasis due to its effectiveness, safety, and lack of the side effects typically associated with other drugs.
Collapse
Affiliation(s)
- Eman Zmaily Dahmash
- Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University, London, KT1 2EE, UK.
| | - Lama Murad Attiany
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, 11622, Jordan
| | - Dalia Ali
- Department of Physiotherapy, Faculty of Allied Medical Sciences, Isra University, Amman, 11622, Jordan
| | - Shereen M Assaf
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan, University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Jamal Alkrad
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, 11622, Jordan
| | - Hamad Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 55461, Saudi Arabia
| |
Collapse
|
3
|
Sarangi M, Padhi S, Rath G. Non-Invasive Delivery of Insulin for Breaching Hindrances against Diabetes. Crit Rev Ther Drug Carrier Syst 2024; 41:1-64. [PMID: 38608132 DOI: 10.1615/critrevtherdrugcarriersyst.2023048197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Insulin is recognized as a crucial weapon in managing diabetes. Subcutaneous (s.c.) injections are the traditional approach for insulin administration, which usually have many limitations. Numerous alternative (non-invasive) slants through different routes have been explored by the researchers for making needle-free delivery of insulin for attaining its augmented absorption as well as bioavailability. The current review delineating numerous pros and cons of several novel approaches of non-invasive insulin delivery by overcoming many of their hurdles. Primary information on the topic was gathered by searching scholarly articles from PubMed added with extraction of data from auxiliary manuscripts. Many approaches (discussed in the article) are meant for the delivery of a safe, effective, stable, and patient friendly administration of insulin via buccal, oral, inhalational, transdermal, intranasal, ocular, vaginal and rectal routes. Few of them have proven their clinical efficacy for maintaining the glycemic levels, whereas others are under the investigational pipe line. The developed products are comprising of many advanced micro/nano composite technologies and few of them might be entering into the market in near future, thereby garnishing the hopes of millions of diabetics who are under the network of s.c. insulin injections.
Collapse
Affiliation(s)
| | - Sasmita Padhi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, Pin-201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar-751030, Odisha, India
| |
Collapse
|
4
|
Chapa-Villarreal FA, Miller M, Rodriguez-Cruz JJ, Pérez-Carlos D, Peppas NA. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Biomaterials 2023; 300:122191. [PMID: 37295223 DOI: 10.1016/j.biomaterials.2023.122191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Matthew Miller
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - J Jesus Rodriguez-Cruz
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Diego Pérez-Carlos
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Li B, Li X, Chu X, Lou P, Yuan Y, Zhuge A, Zhu X, Shen Y, Pan J, Zhang L, Li L, Wu Z. Micro-ecology restoration of colonic inflammation by in-Situ oral delivery of antibody-laden hydrogel microcapsules. Bioact Mater 2022; 15:305-315. [PMID: 35356818 PMCID: PMC8935091 DOI: 10.1016/j.bioactmat.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 12/25/2022] Open
Abstract
In-situ oral delivery of therapeutic antibodies, like monoclonal antibody, for chronic inflammation treatment is the most convenient approach compared with other administration routes. Moreover, the abundant links between the gut microbiota and colonic inflammation indicate that the synergistic or antagonistic effect of gut microbiota to colonic inflammation. However, the antibody activity would be significantly affected while transferring through the gastrointestinal tract due to hostile conditions. Moreover, these antibodies have short serum half-lives, thus, require to be frequently administered with high doses to be effective, leading to low patient tolerance. Here, we develop a strategy utilizing thin shell hydrogel microcapsule fabricated by microfluidic technique as the oral delivering carrier. By encapsulating antibodies in these microcapsules, antibodies survive in the hostile gastrointestinal environment and rapidly release into the small intestine through oral administration route, achieving the same therapeutic effect as the intravenous injection evaluated by a colonic inflammation disease model. Moreover, the abundance of some intestinal microorganisms as the indication of the improvement of inflammation has remarkably altered after in-situ antibody-laden microcapsules delivery, implying the restoration of micro-ecology of the intestine. These findings prove our microcapsules are exploited as an efficient oral delivery agent for antibodies with programmable function in clinical application.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xin Li
- Department of Pharmacology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaodong Chu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Pengcheng Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xueling Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yangfan Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Liyuan Zhang
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford St, Cambridge, MA, USA, 02138
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
6
|
Abstract
Biodegradable and biocompatible biomaterials have offered much more opportunities from an engineering standpoint for treating diseases and maintaining health. Poly(ester amide)s (PEAs), as an outstanding family among such biomaterials, have risen overwhelmingly in the past decades. These synthetic polymers have easily and widely available raw materials and a diversity of synthetic approaches, which have attracted considerable attention. More importantly, combining the superiorities of polyamides and polyesters, PEAs have emerged with better functions. They could have improved biodegradability, biocompatibility, and cell-material interactions. The PEAs derived from α-amino acids even allow the introduction of pendant sites for further modification or functionalization. Meanwhile, it is gradually recognized that the chemical structures are closely related to the physiochemical and biological properties of PEAs so that their properties can be precisely controlled. PEAs therefore become significant materials in the biomedical fields. This review will attempt to summarize the recent progress in the development of PEAs with respect to the preparation materials and methods, structure-property relationships along with their latest biomedical accomplishments, especially for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
7
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
8
|
Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biocompatible nanosystems based on polymeric materials are promising drug delivery nanocarrier candidates for antitumor therapy. However, the efficacy is unsatisfying due to nonspecific accumulation and drug release of the nanoparticles in normal tissue. Recently, the nanosystems that can be triggered by tumor-specific stimuli have drawn great interest for drug delivery applications due to their controllable drug release properties. In this review, various polymers and external stimuli that can be employed to develop stimuli-responsive polymeric nanosystems are discussed, and finally, we delineate the challenges in designing this kind of Nanomedicine to improve the therapeutic efficacy.
Collapse
|
9
|
Gong Y, Mohd S, Wu S, Liu S, Pei Y, Luo X. pH-Responsive Cellulose-Based Microspheres Designed as an Effective Oral Delivery System for Insulin. ACS OMEGA 2021; 6:2734-2741. [PMID: 33553891 PMCID: PMC7860066 DOI: 10.1021/acsomega.0c04946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Functional modified cellulose microsphere (CMs) materials exhibit great application potential in drug various fields. Here, we designed pH-responsive carboxylated cellulose microspheres (CCMs) by the citric/hydrochloric acid hydrolysis method to enhance oral bioavailability of insulin by a green route. The CMs were high purity cellulose that dissolved and regenerated from a green solvent by the green sol-gel method. The prepared microspheres were characterized by spectroscopic techniques, such as field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XPS), etc. The spherical porous structure and carboxylation of cellulose were confirmed by FESEM and FT-IR, respectively. Insulin was loaded into the CCMs by electrostatic interactions, and the insulin release was controlled through ionization of carboxyl groups and proton balance. In vitro insulin release profiles demonstrated the suppression of insulin release in artificial gastric fluid (AGF), while a significant increase at artificial intestinal fluid (AIF) was observed. The insulin release profile was fitted in Korsmeyer-Peppas kinetic model, and insulin release was governed by the Fickian diffusion mechanism. The stability of the secondary structure of insulin was studied by dichroism circular. Excellent biocompatibility and no cytotoxicity of designed CCMs cast them as a potential oral insulin carrier.
Collapse
Affiliation(s)
- Yaqi Gong
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Shabbir Mohd
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Simei Wu
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
| | - Shilin Liu
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, 430205 Hubei Province, China
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
| | - Ying Pei
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
- . Tel.: +86-182-39907053
| | - Xiaogang Luo
- School
of Chemical Engineering and Pharmacy, Wuhan
Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu
New & High Technology Development Zone, Wuhan, 430205 Hubei Province, P.R. China
- School
of Materials Science and Engineering, Zhengzhou
University, No.100 Science Avenue, Zhengzhou City, 450001 Henan Province, P.R. China
- ; . Tel.: +86-139-86270668
| |
Collapse
|
10
|
Methods of synthesis, characterization and biomedical applications of biodegradable poly(ester amide)s- A review. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
12
|
Zheng Y, Sheng F, Wang Z, Yang G, Li C, Wang H, Song Z. Shear Speed-Regulated Properties of Long-Acting Docetaxel Control Release Poly (Lactic- Co-Glycolic Acid) Microspheres. Front Pharmacol 2020; 11:1286. [PMID: 32973517 PMCID: PMC7468411 DOI: 10.3389/fphar.2020.01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Advanced drug carriers for the controlled release of chemotherapeutics in the treatment of malignant tumors have drawn significant notice in recent years. In the current study, microspheres (MPs) loaded with docetaxel (DTX) were prepared using polylactic-co-glycolic acid copolymer (PLGA). The double emulsion solvent evaporation method is simple to perform, and results in high encapsulation efficiency. Electron micrographs of the MPs showed that controlling the shear rate can effectively control the size of the MPs. At present, most DTX sustained-release carriers cannot maintain stable and long-term local drug release. The 1.68 μm DTX-loaded microspheres (MP/DTX) with elastase was completely degraded in 14 d. This controlled degradation period is similar to a course of treatment for most cancers. The drug release profile of all kinds of MP/DTX demonstrated an initial rapid release, then slower and stable release to the end. The current study demonstrates that it is possible to create drug-loaded MPs with specific degradation times and drug release curves, which may be useful in achieving optimal treatment times and drug release rates for different diseases, and different drug delivery routes. The initial burst release reaches the effective concentration of the drug at the beginning of release, and then the drug concentration is maintained by stable release to reduce the number of injections and improve patient compliance.
Collapse
Affiliation(s)
- Yuhao Zheng
- Department of Sports Medicine, First Hospital of Jilin University, Changchun, China
| | - Fan Sheng
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Zihang Wang
- Department of Traumatology, First Hospital of Jilin University, Changchun, China
| | - Guang Yang
- Department of Traumatology, First Hospital of Jilin University, Changchun, China
| | - Chenguang Li
- Department of Colorectal and Anal Surgery, First Hospital of Jilin University, Changchun, China
| | - He Wang
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Zhiming Song
- Department of Sports Medicine, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Han Y, Gao Z, Chen L, Kang L, Huang W, Jin M, Wang Q, Bae YH. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B 2019; 9:902-922. [PMID: 31649842 PMCID: PMC6804447 DOI: 10.1016/j.apsb.2019.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/28/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
In last few years, therapeutic peptides/proteins are rapidly growing in drug market considering their higher efficiency and lower toxicity than chemical drugs. However, the administration of therapeutic peptides/proteins is mainly limited in parenteral approach. Oral therapy which was hampered by harsh gastrointestinal environment and poorly penetrating epithelial barriers often results in low bioavailability (less than 1%-2%). Therefore, delivery systems that are rationally designed to overcome these challenges in gastrointestinal tract and ameliorate the oral bioavailability of therapeutic peptides/proteins are seriously promising. In this review, we summarized various multifunctional delivery systems, including lipid-based particles, polysaccharide-based particles, inorganic particles, and synthetic multifunctional particles that achieved effective oral delivery of therapeutic peptides/proteins.
Collapse
|
14
|
Xie S, Gong YC, Xiong XY, Li ZL, Luo YY, Li YP. Targeted folate-conjugated pluronic P85/poly(lactide-co-glycolide) polymersome for the oral delivery of insulin. Nanomedicine (Lond) 2018; 13:2527-2544. [DOI: 10.2217/nnm-2017-0372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To explore the better efficacy of targeted folic acid (FA)-Pluronic 85-poly(lactide-co-glycolide) (FA–P85–PLGA) polymersome in oral insulin delivery. Materials & methods: The cytotoxicity of the polymers, in vitro qualitative and quantitative cellular uptake and the internalization mechanism of insulin-loaded FA–P85–PLGA and PLGA–P85–PLGA polymersomes were studied with the human colon adenocarcinoma cells (Caco-2 cells). Their pharmacodynamics and pharmacokinetics properties were also studied with diabetic rats. Results & conclusion: Polymersomes have shown good biocompatibility. Polymersomes are mainly localized within the cytoplasm of Caco-2 cells from fluorescence microscopy images. FA–P85–PLGA exhibited higher cellular uptake than PLGA–P85–PLGA polymersomes and free fluorescein isothiocyanate-labeled insulin (FITC–insulin) did. The uptake process of targeted polymersomes included clathrin- and caveolae-mediated endocytosis, macropinocytosis and the folate receptor-mediated endocytosis. Insulin-loaded FA–P85–PLGA showed better hypoglycemic effects than insulin-loaded PLGA–P85–PLGA.
Collapse
Affiliation(s)
- Shuang Xie
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Yan C Gong
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Xiang Y Xiong
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Zi L Li
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Yue Y Luo
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| | - Yu P Li
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China
| |
Collapse
|
15
|
Abstract
Oral delivery is the most common method of drug administration with high safety and good compliance for patients. However, delivering therapeutic proteins to the target site via oral route involves tremendous challenge due to unfavourable conditions like biochemical barrier, mucus barrier and epithelial barriers. According to the functional differences of various protein drug delivery systems, the recent advances in pH responsive polymer-based drug delivery system, mucoadhesive polymer-based drug delivery system, absorption enhancers-based drug delivery system and composite polymer-based delivery system all were briefly summarised in this review, which not only clarified the clinic potential of these novel drug delivery systems, but also described the way for increasing oral bioavailability of therapeutic protein.
Collapse
Affiliation(s)
- Shiming He
- a Institute of Military Cognition and Brain Sciences , Beijing , China.,b College of Pharmaceutical Sciences , Hebei University , Baoding , China.,c Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei university , Baoding , China
| | - Zhongcheng Liu
- b College of Pharmaceutical Sciences , Hebei University , Baoding , China.,c Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences , Hebei university , Baoding , China
| | - Donggang Xu
- a Institute of Military Cognition and Brain Sciences , Beijing , China
| |
Collapse
|
16
|
Tian S, Li J, Tao Q, Zhao Y, Lv Z, Yang F, Duan H, Chen Y, Zhou Q, Hou D. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier. Int J Nanomedicine 2018; 13:415-428. [PMID: 29391798 PMCID: PMC5769559 DOI: 10.2147/ijn.s146346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Glaucoma is a serious eye disease that can lead to loss of vision. Unfortunately, effective treatments are limited by poor bioavailability of antiglaucoma medicine due to short residence time on the preocular surface. Materials and methods To solve this, we successfully prepared novel controlled-release ion-exchange microparticles to deliver betaxolol hydrochloride (BH). Montmorillonite/BH complex (Mt-BH) was prepared by acidification-intercalation, and this complex was encapsulated in microspheres (Mt-BH encapsulated microspheres [BMEMs]) by oil-in-oil emulsion-solvent evaporation method. The BH loaded into ion-exchange Mt was 47.45%±0.54%. After the encapsulation of Mt-BH into Eudragit microspheres, the encapsulation efficiency of BH into Eudragit microspheres was 94.35%±1.01% and BH loaded into Eudragit microspheres was 14.31%±0.47%. Results Both Fourier transform infrared spectra and X-ray diffraction patterns indicated that BH was successfully intercalated into acid-Mt to form Mt-BH and then Mt-BH was encapsulated into Eudragit microspheres to obtain BMEMs. Interestingly, in vitro release duration of the prepared BMEMs was extended to 12 hours, which is longer than both of the BH solution (2.5 hours) and the conventional BH microspheres (5 hours). Moreover, BMEM exhibited lower toxicity than that of BH solution as shown by the results of cytotoxicity tests, chorioallantoic membrane-trypan blue staining, and Draize rabbit eye test. In addition, both in vivo and in vitro preocular retention capacity study of BMEMs showed a prolonged retention time. The pharmacodynamics showed that BMEMs could extend the drug duration of action. Conclusion The developed BMEMs have the potential to be further applied as ocular drug delivery systems for the treatment of glaucoma.
Collapse
Affiliation(s)
- Shuangyan Tian
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University
| | - Juan Li
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University
| | - Qi Tao
- CAS Key Laboratory of Mineralogy and Metallogeny.,Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
| | - Yawen Zhao
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University
| | - Zhufen Lv
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou
| | - Fan Yang
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Dongzhi Hou
- Guangdong Engineering and Technology Research Center of Topical Precise Drug Delivery System, College of Pharmacy, Department of Pharmaceutics, Guangdong Pharmaceutical University
| |
Collapse
|
17
|
Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int J Pharm 2017; 537:223-244. [PMID: 29288095 DOI: 10.1016/j.ijpharm.2017.12.036] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/17/2017] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is a chronic metabolic health disease affecting the homeostasis of blood sugar levels. However, subcutaneous injection of insulin can lead to patient non-compliance, discomfort, pain and local infection. Sub-micron sized drug delivery systems have gained attention in oral delivery of insulin for diabetes treatment. In most of the recent literature, the terms "microparticles" and "nanoparticle" refer to particles where the dimensions of the particle are measured in micrometers and nanometers respectively. For instance, insulin-loaded particles are defined as microparticles with size larger than 1 μm by most of the research groups. The size difference between nanoparticles and microparticles proffers numerous effects on the drug loading efficiency, aggregation, permeability across the biological membranes, cell entry and tissue retention. For instance, microparticulate drug delivery systems have demonstrated a number of advantages including protective effect against enzymatic degradation, enhancement of peptide stability, site-specific and controlled drug release. Compared to nanoparticulate drug delivery systems, microparticulate formulations can facilitate oral absorption of insulin by paracellular, transcellular and lymphatic routes. In this article, we review the current status of microparticles, microcapsules and microspheres for oral administration of insulin. A number of novel techniques including layer-by-layer coating, self-polymerisation of shell, nanocomposite microparticulate drug delivery system seem to be promising for enhancing the oral bioavailability of insulin. This review draws several conclusions for future directions and challenges to be addressed for optimising the properties of microparticulate drug formulations and enhancing their hypoglycaemic effects.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
18
|
Harloff-Helleberg S, Nielsen LH, Nielsen HM. Animal models for evaluation of oral delivery of biopharmaceuticals. J Control Release 2017; 268:57-71. [DOI: 10.1016/j.jconrel.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022]
|
19
|
Liu L, Yao W, Rao Y, Lu X, Gao J. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv 2017; 24:569-581. [PMID: 28195032 PMCID: PMC8241197 DOI: 10.1080/10717544.2017.1279238] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 10/25/2022] Open
Abstract
Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.
Collapse
Affiliation(s)
- Lin Liu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China, and
| | - WenDong Yao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - YueFeng Rao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - XiaoYang Lu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - JianQing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China, and
| |
Collapse
|
20
|
Xie J, Li A, Li J. Advances in pH-Sensitive Polymers for Smart Insulin Delivery. Macromol Rapid Commun 2017; 38. [PMID: 28976043 DOI: 10.1002/marc.201700413] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/08/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Xie
- College of Polymer Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Anqi Li
- College of Polymer Science and Engineering; Sichuan University; Chengdu 610065 China
| | - Jianshu Li
- College of Polymer Science and Engineering; Sichuan University; Chengdu 610065 China
- State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
21
|
Nabid MR, Omrani I. Facile preparation of pH-responsive polyurethane nanocarrier for oral delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:532-7. [DOI: 10.1016/j.msec.2016.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022]
|
22
|
Ahmad N, Mohd Amin MCI, Ismail I, Buang F. Enhancement of oral insulin bioavailability: in vitro and in vivo assessment of nanoporous stimuli-responsive hydrogel microparticles. Expert Opin Drug Deliv 2016; 13:621-32. [DOI: 10.1517/17425247.2016.1160889] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naveed Ahmad
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Fhataheya Buang
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
He H, Wang P, Cai C, Yang R, Tang X. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption. Int J Pharm 2015; 493:451-9. [PMID: 26253378 DOI: 10.1016/j.ijpharm.2015.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/08/2015] [Accepted: 08/02/2015] [Indexed: 12/21/2022]
Abstract
To improve the oral absorption of insulin, a novel carrier of Vitamin B12 (VB12) gel core solid lipid nanopaticles (Gel-Core-SLN, GCSLN) was designed with a gel core, lipid matrix and VB12-coated surface. VB12-stearate was synthesized and characterized by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). Sol-gel conversion following ultrasonic heating and double emulsion technology were combined to implant the insulin-containing gel into solid lipid nanoparticles (SLN). The influence of the mode of administration, food, the amount of VB12-stearate and the particle size on the oral absorption of insulin incorporated in the VB12-GCSLN was investigated. The determined partition coefficient (LogP) of VB12-stearate in a dichloromethane (DCM)-water system was 3.4. This new structure of VB12-GCSLN had higher insulin encapsulation efficiency (EE) of 55.9%, a lower burst release of less than 10% in the first 2h. In vivo studies demonstrated that stronger absorption of insulin with a relative pharmacological availability (PA) of 9.31% compared with the normal insulin-loaded SLN and GCSLN and fairly stable blood glucose levels up to 12h were maintained without any sharp fluctuations. This study suggests that VB12-GCSLN containing insulin appears to be a promising nano carrier for oral delivery of biomacromolecules with relatively high pharmacological availability.
Collapse
Affiliation(s)
- Haibing He
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Puxiu Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Cuifang Cai
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Rui Yang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, PR China
| |
Collapse
|
24
|
Echeverría MG, Pardini OR, Debandi MV, François NJ, Daraio ME, Amalvy JI. Polyurethane/Poly(2-(Diethyl Amino)Ethyl Methacrylate) blend for drug delivery applications. POLIMEROS 2015. [DOI: 10.1590/0104-1428.1716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Oscar Ricardo Pardini
- Universidad Nacional de La Plata, Argentina; Comisión de investigaciones Científicas de la Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | | | | | | | - Javier Ignacio Amalvy
- Universidad Nacional de La Plata, Argentina; Comisión de investigaciones Científicas de la Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; Universidad Nacional de La Plata, Argentina; Universidad Tecnológica Nacional, Argentina
| |
Collapse
|
25
|
Luo YY, Xiong XY, Tian Y, Li ZL, Gong YC, Li YP. A review of biodegradable polymeric systems for oral insulin delivery. Drug Deliv 2015; 23:1882-91. [PMID: 26066036 DOI: 10.3109/10717544.2015.1052863] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Currently, repeated routine subcutaneous injections of insulin are the standard treatment for insulin-dependent diabetic patients. However, patients' poor compliance for injections often fails to achieve the stable concentration of blood glucose. As a protein drug, the oral bioavailability of insulin is low due to many physiological reasons. Several carriers, such as macromolecules and liposomes have been used to deliver drugs in vivo. In this review article, the gastrointestinal barriers of oral insulin administration are described. Strategies for increasing the bioavailability of oral insulin, such absorption enhancers, enzyme inhibitors, enteric coatings are also introduced. The potential absorption mechanisms of insulin-loaded nanoparticles across the intestinal epithelium, including intestinal lymphatic route, transcellular route and paracellular route are discussed in this review. Natural polymers, such as chitosan and its derivates, alginate derivatives, γ-PGA-based materials and starch-based nanoparticles have been exploited for oral insulin delivery; synthetic polymers, such as PLGA, PLA, PCL and PEA have also been developed for oral administration of insulin. This review focuses on recent advances in using biodegradable natural and synthetic polymers for oral insulin delivery along with their future prospects.
Collapse
Affiliation(s)
- Yue Yuan Luo
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| | - Xiang Yuan Xiong
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| | - Yuan Tian
- b China National Pharmaceutical Industry Co., Ltd ., Beijing , China
| | - Zi Ling Li
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| | - Yan Chun Gong
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| | - Yu Ping Li
- a School of Life Science, Jiangxi Science & Technology Normal University , Nanchang , China and
| |
Collapse
|
26
|
Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. J Control Release 2014; 196:168-83. [DOI: 10.1016/j.jconrel.2014.09.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
|
27
|
Zhang H, Huang S, Yang X, Zhai G. Current research on hyaluronic acid-drug bioconjugates. Eur J Med Chem 2014; 86:310-7. [PMID: 25173850 DOI: 10.1016/j.ejmech.2014.08.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 08/04/2014] [Accepted: 08/25/2014] [Indexed: 02/04/2023]
Abstract
Hyaluronic acid (HA) is a mucopolysaccharide acid composed of repeating disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine. Based on numerous characteristics such as viscoelastic properties, water-binding ability, biocompatibility and non-immunogenicity, HA has been approved by FDA for biological and medical applications. In addition, multifarious receptors of HA like CD44, RHAMM and TSG6 are over-expressed on the surface of malignant cells, which play important roles in targeting ability. Bioconjugates linking drugs to HA could improve solubility, prolong half-life, provide active targeting capability and then increase the bioavailability of these coupled drugs by pro-drug strategy. Therefore, a large number of HA-drug bioconjugates have been studied. The purpose of this review was to summarize these HA-drug bioconjugates and further discuss synthetic methods and the relevant application in pharmaceuticals.
Collapse
Affiliation(s)
- Haiqun Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
| | - Siling Huang
- Bloomage Freda Biopharm Co., Ltd., Jinan 250101, China
| | - Xiaoye Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
| |
Collapse
|
28
|
Agrawal U, Sharma R, Gupta M, Vyas SP. Is nanotechnology a boon for oral drug delivery? Drug Discov Today 2014; 19:1530-46. [PMID: 24786464 DOI: 10.1016/j.drudis.2014.04.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/12/2014] [Accepted: 04/22/2014] [Indexed: 12/14/2022]
Abstract
The oral route for drug delivery is regarded as the optimal route for achieving therapeutic benefits owing to increased patient compliance. Despite phenomenal advances in injectable, transdermal, nasal and other routes of administration, the reality is that oral drug delivery remains well ahead of the pack as the preferred delivery route. Nanocarriers can overcome the major challenges associated with this route of administration: mainly poor solubility, stability and biocompatibility of drugs. This review focuses on the potential of various polymeric drug delivery systems in oral administration, their pharmacokinetics, in vitro and in vivo models, toxicity and regulatory aspects.
Collapse
Affiliation(s)
- Udita Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Madhu Gupta
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Suresh P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr H.S. Gour Vishwavidyalaya, Sagar, MP 470003, India.
| |
Collapse
|
29
|
Garg T, Goyal AK. Biomaterial-based scaffolds – current status and future directions. Expert Opin Drug Deliv 2014; 11:767-89. [DOI: 10.1517/17425247.2014.891014] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Du AW, Stenzel MH. Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules 2014; 15:1097-114. [PMID: 24661025 DOI: 10.1021/bm500169p] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alice W. Du
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|