1
|
Versatile functionalization of pectic conjugate: From design to biomedical applications. Carbohydr Polym 2023; 306:120605. [PMID: 36746571 DOI: 10.1016/j.carbpol.2023.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Pectin exists extensively in nature and has attracted much attention in biological applications for its unique chemical and physical characteristics. Functionalized pectin, especially pectic conjugates, has given many possibilities for pectin to improve its properties and bioactivity as well as to deliver active molecules. To better exploit this strategy of pectic functionalization, this review presents in detail the structural modifications of pectin, different synthetic methods, and design strategies of pectic conjugates involving both traditional chemical and "green" approaches. Here, the research ideas and applications of pectic prodrugs as well as the development of preparation based on pectic conjugates are reviewed, with emphasis on crosslinking systems of functionalized pectin and nanosystems based on self-assembly techniques. We hope this review will provide comprehensive and valuable information for the functionalization and systematization of the pectic conjugate from synthesis to application.
Collapse
|
2
|
Carvalho DN, Lobo FCM, Rodrigues LC, Fernandes EM, Williams DS, Mearns-Spragg A, Sotelo CG, Perez-Martín RI, Reis RL, Gelinsky M, Silva TH. Advanced Polymeric Membranes as Biomaterials Based on Marine Sources Envisaging the Regeneration of Human Tissues. Gels 2023; 9:gels9030247. [PMID: 36975696 PMCID: PMC10048504 DOI: 10.3390/gels9030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Flávia C. M. Lobo
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Luísa C. Rodrigues
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - David S. Williams
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, UK
| | - Andrew Mearns-Spragg
- Jellagen Limited, Unit G6, Capital Business Park, Parkway, St Mellons, Cardiff CF3 2PY, UK
| | - Carmen G. Sotelo
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain
| | - Ricardo I. Perez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Correspondence: ; Tel.: +351253510931
| |
Collapse
|
3
|
Formulation of a Gastroretentive In Situ Oral Gel Containing Metformin HCl Based on DoE. Pharmaceutics 2022; 14:pharmaceutics14091777. [PMID: 36145525 PMCID: PMC9504191 DOI: 10.3390/pharmaceutics14091777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
A gastroretentive in situ oral gel containing metformin hydrochloride (Met HCl) was prepared based on sodium alginate (Sod ALG), calcium carbonate, and hydroxyethylcellulose (HEC). The optimal composition of the formulation was explored based on the design of experiments (DoE). First, a 32 full factorial design was used for formulation E1 to determine proper composition of Sod ALG and calcium carbonate. Second, a circumscribed central composite design was employed to add HEC as a thickening agent (formulation E2). The dissolution rates at 15, 30, 60, 120, and 240 min were used as responses. Partial least squares regression analysis indicated the effect of each component in delaying the release of Met HCl in the oral gel formulation. The optimized formulation E2-08 consisting of 1.88% Sod ALG, 0.63% HEC, and 1.00% calcium carbonate and two more formulations, E2-10 and E2-12 conformed to USP monograph for extended release. Other physicochemical properties, including floating lag time and duration, viscosity, and pH, measured for each batch and FT-IR spectrometry analysis showed no unexpected interaction between Met HCl and excipients. The current study suggests the potential use of a gastroretentive in situ oral gel for Met HCl helping patient compliance. This study highlights that a systematic approach based on DoE allows the formulation optimization.
Collapse
|
4
|
Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface Modification of Lipid-Based Nanoparticles. ACS NANO 2022; 16:7168-7196. [PMID: 35446546 DOI: 10.1021/acsnano.2c02347] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a growing interest in the development of lipid-based nanocarriers for multiple purposes, including the recent increase of these nanocarriers as vaccine components during the COVID-19 pandemic. The number of studies that involve the surface modification of nanocarriers to improve their performance (increase the delivery of a therapeutic to its target site with less off-site accumulation) is enormous. The present review aims to provide an overview of various methods associated with lipid nanoparticle grafting, including techniques used to separate grafted nanoparticles from unbound ligands or to characterize grafted nanoparticles. We also provide a critical perspective on the usefulness and true impact of these modifications on overcoming different biological barriers, with our prediction on what to expect in the near future in this field.
Collapse
Affiliation(s)
- Yining Xu
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Thibaut Fourniols
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Yasmine Labrak
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 72 B1.72.01, 1200 Brussels, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| |
Collapse
|
5
|
Meng S, Wang S, Piao MG. Prescription optimization of gastroretentive furosemide hollow-bioadhesive microspheres via Box-Behnken design: In vitro characterization and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Huamani-Palomino RG, Córdova BM, Pichilingue L. ER, Venâncio T, Valderrama AC. Functionalization of an Alginate-Based Material by Oxidation and Reductive Amination. Polymers (Basel) 2021; 13:polym13020255. [PMID: 33466684 PMCID: PMC7828833 DOI: 10.3390/polym13020255] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/28/2023] Open
Abstract
This research focused on the synthesis of a functional alginate-based material via chemical modification processes with two steps: oxidation and reductive amination. In previous alginate functionalization with a target molecule such as cysteine, the starting material was purified and characterized by UV-Vis, 1H-NMR and HSQC. Additionally, the application of FT-IR techniques during each step of alginate functionalization was very useful, since new bands and spiked signals around the pyranose ring (1200–1000 cm−1) and anomeric region (1000–750 cm−1) region were identified by a second derivative. Additionally, the presence of C1-H1 of β-D-mannuronic acid residue as well as C1-H1 of α-L-guluronic acid residue was observed in the FT-IR spectra, including a band at 858 cm−1 with characteristics of the N-H moiety from cysteine. The possibility of attaching cysteine molecules to an alginate backbone by oxidation and post-reductive amination processes was confirmed through 13C-NMR in solid state; a new peak at 99.2 ppm was observed, owing to a hemiacetal group formed in oxidation alginate. Further, the peak at 31.2 ppm demonstrates the presence of carbon -CH2-SH in functionalized alginate—clear evidence that cysteine was successfully attached to the alginate backbone, with 185 μmol of thiol groups per gram polymer estimated in alginate-based material by UV-Visible. Finally, it was observed that guluronic acid residue of alginate are preferentially more affected than mannuronic acid residue in the functionalization.
Collapse
Affiliation(s)
- Ronny G. Huamani-Palomino
- Laboratorio de Investigación en Biopolímeros y Metalofármacos, Facultad de Ciencias, Escuela Profesional de Química, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru;
- Correspondence: (R.G.H.-P.); (A.C.V.)
| | - Bryan M. Córdova
- Laboratorio de Investigación en Biopolímeros y Metalofármacos, Facultad de Ciencias, Escuela Profesional de Química, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru;
| | - Elvis Renzo Pichilingue L.
- Facultad de Ciencias, Escuela de Química, Universidad Nacional de Ingeniería. Av. Túpac Amaru 210, Lima 15333, Peru;
| | - Tiago Venâncio
- Laboratório de Ressonância Magnética Nuclear, Departamento de Química, Universidade Federal de Sao Carlos, São Carlos 13565-905, São Paulo, Brazil;
| | - Ana C. Valderrama
- Laboratorio de Investigación en Biopolímeros y Metalofármacos, Facultad de Ciencias, Escuela Profesional de Química, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru;
- Correspondence: (R.G.H.-P.); (A.C.V.)
| |
Collapse
|
7
|
Cheng H, Zhang X, Cui Z, Mao S. Grafted polysaccharides as advanced pharmaceutical excipients. ADVANCES AND CHALLENGES IN PHARMACEUTICAL TECHNOLOGY 2021:75-129. [DOI: 10.1016/b978-0-12-820043-8.00010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Prüfert F, Hering U, Zaichik S, Le NMN, Bernkop-Schnürch A. Synthesis and in vitro characterization of a preactivated thiolated acrylic acid/acrylamide-methylpropane sulfonic acid copolymer as a mucoadhesive sprayable polymer. Int J Pharm 2020; 583:119371. [PMID: 32339632 DOI: 10.1016/j.ijpharm.2020.119371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
AIM Development of a preactivated thiomer as sprayable excipient for mucoadhesive formulations. METHODS CG4500 (acrylic acid/acrylamide-methyl propane sulfonic acid copolymer) was thiolated by conjugation with L-cysteine and preactivated by further modification with 2-mercaptonicotinic acid (MNA) in a two-step synthesis and characterized regarding degree of modification and cytotoxicity on Caco-2 cells. The mucoadhesive properties of this novel thiomer were evaluated via rheological synergism, tensile and mucosal residence time studies. Furthermore, the sprayability of the thiomer was evaluated. RESULTS The newly synthesized derivatives CG4500-SH and CG4500-S-S-MNA showed mean coupling rates of 651 µmol thiol groups and 264 µmol MNA per gram polymer, respectively. Even for the unmodified polymer a rheological synergism was observed with isolated porcine intestinal mucus, which was 2.81-fold higher in case of the preactivated thiomer. Mucoadhesion studies on freshly excised porcine intestinal mucosa confirmed these results via a 2.43-fold higher total work of adhesion and a 2.31-fold higher mucosal residence time of the preactivated thiomer. In sprayability tests it was shown that solutions of the preactivated thiomer could be sprayed in concentrations up to 12% (m/V). CONCLUSION The novel polymer CG4500-S-S-MNA is a promising sprayable excipient for mucoadhesive formulations.
Collapse
Affiliation(s)
- Felix Prüfert
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ulrike Hering
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Sergey Zaichik
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nguyet-Minh Nguyen Le
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Industrial Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Li Z, Zeng R, Yang L, Ren X, Maffucci KG, Qu Y. Development and Characterization of PCL Electrospun Membrane-Coated Bletilla striata Polysaccharide-Based Gastroretentive Drug Delivery System. AAPS PharmSciTech 2020; 21:66. [PMID: 31932983 DOI: 10.1208/s12249-019-1607-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to investigate the potential of Bletilla striata polysaccharide (BSP, a natural glucomannan material) for the development of a gastroretentive drug delivery system for the first time. Novel BSP-based porous wafer was prepared for levofloxacin hydrochloride (LFH) delivery by combining floating, swelling, and mucoadhesion mechanisms. The influences of BSP and ethyl cellulose (EC) on drug release and mucoadhesive strength were studied by 32 factorial design. The optimized matrix was coated with polycaprolactone (PCL) electrospun membrane by electrospinning and heat treatment technology. The optimized formula (F6, coated) exhibited Q4 h of 41.20 ± 1.90%, Q8 h of 76.49 ± 1.69%, and mucoadhesive strength of 86.11 ± 1.33 gf, and its drug release profile most closely resembled the Korsmeyer-Peppas model with anomalous diffusion driving mechanism. F6 (coated) also presented excellent buoyancy, preferred swelling characteristic due to the porous structure formed by freeze-drying. Meanwhile, the internal morphology, physical state, drug-excipient compatibility, and thermal behavior were recorded. The negligible cytotoxicity of F6 (coated) was observed in human gastric epithelial cell cultures. In the in vitro antimicrobial experiment, the prepared wafer exhibited obvious bacterial inhibition zone, and due to its longer gastric retention, the wafer also performed a more effective Helicobacter pylori clearance than free LFH in vivo. Graphical abstract.
Collapse
|
10
|
Younis MA, El-Zahry MR, Tallat MA, Tawfeek HM. Sulpiride gastro-retentive floating microsponges; analytical study, in vitro optimization and in vivo characterization. J Drug Target 2019; 28:386-397. [DOI: 10.1080/1061186x.2019.1663526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mahmoud A. Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Marwa R. El-Zahry
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | | | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Ayub AD, Chiu HI, Mat Yusuf SNA, Abd Kadir E, Ngalim SH, Lim V. Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:353-369. [PMID: 30691309 DOI: 10.1080/21691401.2018.1557672] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The application of layer-by-layer (LbL) approach on nanoparticle surface coating improves the colon-specific drug delivery of insoluble drugs. Here, we aimed to formulate a self-assembled cysteamine-based disulphide cross-linked sodium alginate with LbL self-assembly to improve the delivery of paclitaxel (PCX) to colonic cancer cells. Cysteamine was conjugated to the backbone of oxidized SA to form a core of self-assembled disulphide cross-linked nanospheres. P3DL was selected for PCX loading and fabricated LbL with poly(allylamine hydrochloride) (PAH) and poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSCMA) resulting from characterization and drug release studies. P3DL-fabricated PCX-loaded nanospheres (P3DL/PAH/PSSCMA) exhibited an encapsulation efficiency of 77.1% with cumulative drug release of 45.1%. Dynamic light scattering analysis was reported at 173.6 ± 2.5 nm with polydispersity index of 0.394 ± 0.105 (zeta potential= -58.5 mV). P3DL/PAH/PSSCMA demonstrated a pH-dependent swelling transition; from pH 1 to 7 (102.2% increase). The size increased by 33.0% in reduction response study after incubating with 10 mM glutathione (day 7). HT-29 cells showed high viabilities (86.7%) after treatment with the fabricated nanospheres at 0.8 µg/mL. Cellular internalization was successful with more than 70.0% nanospheres detected in HT-29 cells. Therefore, this fabricated nanospheres may be considered as potential nanocarriers for colon cancer-targeted chemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Asila Dinie Ayub
- a Integrative Medicine Cluster, Advanced Medical and Dental Institute , Universiti Sains Malaysia , Penang , Malaysia
| | - Hock Ing Chiu
- a Integrative Medicine Cluster, Advanced Medical and Dental Institute , Universiti Sains Malaysia , Penang , Malaysia
| | - Siti Nur Aishah Mat Yusuf
- a Integrative Medicine Cluster, Advanced Medical and Dental Institute , Universiti Sains Malaysia , Penang , Malaysia.,b Department of Chemical Engineering Technology, Faculty of Engineering Technology , Universiti Malaysia Perlis , Perlis , Malaysia
| | - Erazuliana Abd Kadir
- a Integrative Medicine Cluster, Advanced Medical and Dental Institute , Universiti Sains Malaysia , Penang , Malaysia
| | - Siti Hawa Ngalim
- c Regenerative Medicine Cluster , Advanced Medical and Dental Institute, Universiti Sains Malaysia , Penang , Malaysia
| | - Vuanghao Lim
- a Integrative Medicine Cluster, Advanced Medical and Dental Institute , Universiti Sains Malaysia , Penang , Malaysia
| |
Collapse
|
12
|
Jalil A, Matuszczak B, Nguyen Le NM, Mahmood A, Laffleur F, Bernkop-Schnürch A. Synthesis and Characterization of Thiolated PVP-Iodine Complexes: Key to Highly Mucoadhesive Antimicrobial Gels. Mol Pharm 2018; 15:3527-3534. [PMID: 30047266 DOI: 10.1021/acs.molpharmaceut.8b00503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study was to synthesize iodine containing polymeric excipients for mucosal treatment of microbial infection exhibiting a prolonged mucosal residence time by forming an adhesive gel on the mucosal surface. In order to achieve this aim, 2-(2 acryloylamino-ethyldisulfanyl)-nicotinic acid (ACENA) was copolymerized with N-vinylpyrrolidone (NVP) to obtain thiolated polyvinylpyrrolidone (PVP) for complexation with iodine. The average molecular mass of different thiolated PVP variants was determined by size exclusion chromatography. The structure of thiolated PVP was confirmed by 1H NMR. Thiolated PVP variants were characterized for thiol content, cytotoxicity, iodine loading capacity, rheological behavior, and adhesion time on mucosa. The highest achieved degree of thiolation was 610 ± 43 μmol/g, and the maximum recorded iodine loading was 949 ± 31 μmol/g of polymer. Thiolated PVP variants (0.5% m/v) showed no toxicity after incubation on Caco-2 cells for the period of 3 and 24 h, respectively. Thiolated PVP and thiolated PVP-iodine complexes exhibited a 5.4- and 4.4-fold increased dynamic viscosity in porcine mucus in comparison to PVP and PVP-iodine complex, respectively. Compared to PVP and PVP-iodine complex thiol-functionalized PVP and PVP-iodine complexes demonstrated significantly prolonged attachment to mucosal surface over a period of 3 h. Thiol functionalized PVP proved to be a promising novel excipient for complexation with iodine and to exhibit strongly improved mucoadhesive properties.
Collapse
Affiliation(s)
- Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Nguyet-Minh Nguyen Le
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria.,Department of Industrial Pharmacy , University of Medicine and Pharmacy , 70000 Ho Chi Minh City , Vietnam
| | - Arshad Mahmood
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria.,Department of Pharmacy , COMSATS University Islamabad, Abbottabad Campus , 22060 Abbottabad , Pakistan
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| |
Collapse
|
13
|
Naveen NR, Gopinath C, Rao DS. A spotlight on thiolated natural polymers and their relevance in mucoadhesive drug delivery system. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
14
|
Issa MG, Souza NVD, Duque MD, Ferraz HG. Physical characterization of multiparticulate systems. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000400216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Elbahwy IA, Lupo N, Ibrahim HM, Ismael HR, Kasem AA, Caliskan C, Matuszczak B, Bernkop-Schnürch A. Mucoadhesive self-emulsifying delivery systems for ocular administration of econazole. Int J Pharm 2018; 541:72-80. [DOI: 10.1016/j.ijpharm.2018.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/29/2017] [Accepted: 02/15/2018] [Indexed: 12/17/2022]
|
16
|
Perrone M, Lopalco A, Lopedota A, Cutrignelli A, Laquintana V, Douglas J, Franco M, Liberati E, Russo V, Tongiani S, Denora N, Bernkop-Schnürch A. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery. Eur J Pharm Biopharm 2017; 119:161-169. [PMID: 28610879 DOI: 10.1016/j.ejpb.2017.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to synthesize and characterize a novel thiolated glycogen, so-named S-preactivated thiolated glycogen, as a mucosal drug delivery systems and the assessment of its mucoadhesive properties. In this regard, glycogen-cysteine and glycogen-cysteine-2-mercaptonicotinic acid conjugates were synthesized. Glycogen was activated by an oxidative ring opening with sodium periodate resulting in reactive aldehyde groups to which cysteine was bound via reductive amination. The obtained thiolated polymer displayed 2203.09±200μmol thiol groups per gram polymer. In a second step, the thiol moieties of thiolated glycogen were protected by disulfide bond formation with the thiolated aromatic residue 2-mercaptonicotinic acid (2MNA). In vitro screening of mucoadhesive properties was performed on porcine intestinal mucosa using different methods. In particular, in terms of rheology investigations of mucus/polymer mixtures, the S-preactivated thiolated glycogen showed a 4.7-fold increase in dynamic viscosity over a time period of 5h, in comparison to mucus/Simulated Intestinal Fluid control. The S-preactivated polymer remained attached on freshly excised porcine mucosa for 45h. Analogous results were obtained with tensile studies demonstrating a 2.7-fold increase in maximum detachment force and 3.1- fold increase in total work of adhesion for the S-preactivated polymer compared to unmodified glycogen. Moreover, water-uptake studies showed an over 4h continuing weight gain for the S-preactivated polymer, whereas disintegration took place for the unmodified polymer within the first hour. Furthermore, even in the highest tested concentration of 2mg/ml the new conjugates did not show any cytotoxicity on Caco-2 cell monolayer using an MTT assay. According to these results, S-preactivated glycogen represents a promising type of mucoadhesive polymers useful for the development of various mucosal drug delivery systems.
Collapse
Affiliation(s)
- Mara Perrone
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy; Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria
| | - Antonio Lopalco
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Angela Lopedota
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Justin Douglas
- Nuclear Magnetic Resonance Core Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Massimo Franco
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | | | | | - Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
17
|
Thiolated polymers as mucoadhesive drug delivery systems. Eur J Pharm Sci 2017; 100:64-78. [PMID: 28087353 DOI: 10.1016/j.ejps.2017.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 11/22/2022]
Abstract
Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices.
Collapse
|
18
|
Enhancing the efficiency of thiomers: Utilizing a highly mucoadhesive polymer as backbone for thiolation and preactivation. Eur J Pharm Sci 2017; 96:309-315. [DOI: 10.1016/j.ejps.2016.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022]
|
19
|
Mandal UK, Chatterjee B, Senjoti FG. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
20
|
Shah KU, Shah SU, Dilawar N, Khan GM, Gibaud S. Thiomers and their potential applications in drug delivery. Expert Opin Drug Deliv 2016; 14:601-610. [PMID: 27548003 DOI: 10.1080/17425247.2016.1227787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Thiomers are the product of the immobilization of sulfhydryl-bearing ligands onto the polymer backbone of a conventional polymer, which results in a significant improvement in mucoadhesion; in situ gelation and efflux inhibition compare with unchanged polymers. Because of thiol groups, thiomers have more reactivity and enhanced protection against oxidation. Since the late 1990s, extensive work has been conducted on these promising polymeric excipients in the pharmaceutical field. Areas covered: This review covers thiomers, their classification and their different properties. Various techniques for the synthesis, purification and characterization of thiomers are described in detail. This review also encompasses their various properties such as mucoadhesion, permeation enhancement, in situ gelation and efflux inhibition, as well as different formulations based on thiomers. In addition to the use of thiomers as multifunctional excipients, this review also encompasses their use as drugs. Expert opinion: The synthesis is realized by linkage of sulfhydryl-bearing ligands but reported methods give low yields. Higher degrees of modification are not necessary and would probably lead to extreme changes in properties. Nevertheless, an accurate characterization of the final product is important. The scale-up procedure for industrial manufacturing has been adapted to produce GMP materials; Lacrimera® eye drops have already entered the European market.
Collapse
Affiliation(s)
- Kifayat Ullah Shah
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Shefaat Ullah Shah
- b Department of Pharmaceutics, Faculty of Pharmacy , Gomal University , D.I.Khan , Pakistan.,c EA3452/CITHEFOR, Faculté de Pharmacie , Université de Lorraine , Nancy , France
| | - Naz Dilawar
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Gul Majid Khan
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Stéphane Gibaud
- c EA3452/CITHEFOR, Faculté de Pharmacie , Université de Lorraine , Nancy , France
| |
Collapse
|
21
|
Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm 2016; 510:144-58. [PMID: 27173823 DOI: 10.1016/j.ijpharm.2016.05.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Abstract
In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.
Collapse
|
22
|
Abstract
INTRODUCTION With the introduction of mucoadhesion in 1980, pharmaceutical researchers have gained interest in mucoadhesive compositions. This interest has led to the development of mucoadhesive drug delivery systems aiming (I) to target a specific tissue, (II) to overcome barriers to absorption as well as (III) to control drug release of the therapeutic compositions. AREAS COVERED In this review, the term mucoadhesion and a variety of targetable mucosa are described through review of the literature. Mucoadhesive drug delivery systems and mucoadhesive polymers, such as thiomers, which are reported within the patent literature or in related publications are described in detail, including their therapeutic uses. EXPERT OPINION Mucoadhesion is associated with benefits such as controlled, sustained release, prolonged residence time at the site of action, the ability to target specific mucosae and ease of application which leads to higher rates of patient compliance. Although many research groups are investigating in this domain, not many drug delivery systems based on mucoadhesive polymers have got from bench to market. The most promising and advanced applications seen in patent literature within the last five years seems to be for oral application.
Collapse
Affiliation(s)
- Flavia Laffleur
- a Department of Pharmaceutical Technology , Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
23
|
Laffleur F, Leder N, Barthelmes J. In vitroevaluation of thio-poly acrylic acid for intraoral delivery. Drug Deliv 2015; 23:2065-73. [DOI: 10.3109/10717544.2015.1122673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Hauptstein S, Dezorzi S, Prüfert F, Matuszczak B, Bernkop-Schnürch A. Synthesis and in vitro characterization of a novel S-protected thiolated alginate. Carbohydr Polym 2015; 124:1-7. [DOI: 10.1016/j.carbpol.2015.01.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/03/2015] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
|
25
|
Oral films: Current status and future perspectives. J Control Release 2015; 206:1-19. [DOI: 10.1016/j.jconrel.2015.03.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/24/2022]
|
26
|
Kassem AA, Farid RM, Issa DAE, Khalil DS, Abd-El-Razzak MY, Saudi HI, Eltokhey HM, El-Zamarany EA. Development of mucoadhesive microbeads using thiolated sodium alginate for intrapocket delivery of resveratrol. Int J Pharm 2015; 487:305-13. [PMID: 25865569 DOI: 10.1016/j.ijpharm.2015.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 11/28/2022]
Abstract
Resveratrol (Res), a polyphenolic phytoalexin, had shown a promising therapeutic efficacy towards treatment of periodontal disease in vitro. This work aims to develop Res microbeads with strong mucoadhesion using thiolated alginate (TA) for local treatment of periodontal pockets. TA was synthesized by conjugating sodium alginate (A) with thioglycolic acid. Product was evaluated by IR and DSC. Both A and A:TA Res microbeads with different ratios were prepared by ionotropic gelation method. Formulations were evaluated regarding their entrapment efficiency (%EE), swelling index (SI), in vitro drug release and kinetics. Selected formula was examined for its mucoadhesion by ex vivo wash-off method, surface morphology using scanning electron microscope (SEM) and stability against light. Clinical evaluation is running.Formation of TA was confirmed. %EE for all formulations ranged from 83.72 to 104.54%. Results revealed a significant lower SI for TA rich formulation (A/TA 1:1) along with slower release rate and zero-order kinetics, in addition to powerful mucoadhesion; 26% remaining of microbeads after 1h, compared to 2% for A microbeads. SEM micrographs showed a rough surface with drug precipitation. The formula maintained its %EE after 5h exposure to direct sunlight. A/TA 1:1 mucoadhesive Res microbeads could be exploited as a prolonged drug release devices for intrapocket application.
Collapse
Affiliation(s)
- Abeer Ahmed Kassem
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ragwa Mohamed Farid
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Doaa Ahmed Elsayed Issa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon; Department of Pharmaceutical chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Doaa Said Khalil
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona Yehia Abd-El-Razzak
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Hussein Ibrahim Saudi
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | | | | |
Collapse
|
27
|
Abstract
INTRODUCTION Since thiolated polymers - known as thiomers - have entered the pharmaceutical arena in the late 1990 s, more and more academic and industrial research groups have started to work with these promising polymeric excipients. Meanwhile, various thiomers are the subject of clinical trials and the first product based on thiolated chitosan will reach the market in 2015. Due to the formation of disulfide bonds with mercaptopyridine substructures, thiol groups of thiomers are on the one hand more reactive and on the other hand are protected toward oxidation. These so-called preactivated thiomers representing the second generation of thiomers are subject of this review. AREAS COVERED Within this review, preactivated thiomers are classified and their mode of action is described. Furthermore, different synthetic pathways, purification and chemical characterization methods of preactivated thiomers are explained. Their properties including mucoadhesive, permeation-enhancing, efflux pump inhibitory and in situ gelling properties are described. In addition, various formulations based on preactivated thiomers are introduced. EXPERT OPINION The first-generation thiomers have already shown great potential resulting in various product developments. Preactivated thiomers - representing the second generation of thiomers - offer the additional advantage of even comparatively more reactive sulfhydryl ligands and of stability toward oxidation. According to this, they are promising novel polymeric excipients for various applications.
Collapse
Affiliation(s)
- Muhammad Ijaz
- University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Center for Molecular Bioscience (CMBI), Department of Pharmaceutical Technology , Innrain 80/82, 6020 Innsbruck , Austria +43 512 507 58601 ; +43 512 507 58699 ;
| | | |
Collapse
|
28
|
Hauptstein S, Bonengel S, Rohrer J, Bernkop-Schnürch A. Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): Synthesis and evaluation of mucoadhesive potential. Eur J Pharm Sci 2014; 63:132-9. [DOI: 10.1016/j.ejps.2014.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/04/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
29
|
Bonengel S, Bernkop-Schnürch A. Thiomers--from bench to market. J Control Release 2014; 195:120-9. [PMID: 24993428 DOI: 10.1016/j.jconrel.2014.06.047] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 01/22/2023]
Abstract
Thiolated polymers or designated thiomers are obtained by immobilization of sulhydryl bearing ligands on the polymeric backbone of well-established polymers such as poly(acrylates) or chitosans. This functionalization leads to significantly improved mucoadhesive properties compared to the corresponding unmodified polymers, as disulfide bonds between thiol groups of thiomers and cysteine-rich glycoproteins of the mucus gel layer are formed. Furthermore, enzyme- and efflux-pump inhibiting as well as improved permeation-enhancing properties are advantages of thiolization. By the covalent attachment of mercaptonicotinamide substructures via disulfide bonds to thiolated polymers these properties are even substantially further improved and stability towards oxidation even in aqueous media can be provided. Meanwhile, more than 50 research groups worldwide are working on thiolated polymers. For certain thiomers the scale up process for industrial production has already been done and GMP material is available. Furthermore, safety of thiolated poly(acrylic acid), thiolated chitosan and thiolated hyaluronic acid could be demonstrated via orientating studies in human volunteers and via various clinical trials. The first product (Lacrimera® eye drops, Croma-Pharma) containing a chitosan-N-acetylcysteine conjugate for treatment of dry eye syndrome will enter the European market this year. It is the only product providing a sustained protective effect on the ocular surface due to its comparatively much more prolonged residence time worldwide. Various further products utilizing, for instance, thiolated hyaluronic acid in ocular surgery are in the pipeline.
Collapse
Affiliation(s)
- Sonja Bonengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
30
|
Waldner C, Friedl HE, Dünnhaupt S, Köllner S, Leonaviciute G, Bernkop-Schnürch A. Development of a dosage form for accelerated release. Int J Pharm 2014; 471:189-96. [PMID: 24834878 DOI: 10.1016/j.ijpharm.2014.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE It was the aim of this study to develop an oral capsule delivery system capable of rapidly ejecting the incorporated payload in the small intestine. METHODS The capsule consists of four parts: a reaction mixture comprising of a basic and a corresponding acidic component, a plunger necessary to separate the reaction mixture from the inserted ingredients, capsule cap and body (made out of ethylcellulose (EC)), where at the bottom of the body a semipermeable filter membrane is mounted. As soon as water permeates through the membrane, the reaction mixture dissolves and carbon dioxide (CO2) is released resulting in a high speed liberation of inserted compounds onto the intestinal mucosa. Several filter membranes were investigated regarding water influx, capillary force and water retention capacity. CO2 release of sodium hydrogen carbonate (NaHCO3) was examined in presence of several acidic components in different morphological forms (powder, lyophilisate and granule) and the amount of CO2 liberation out of prepared capsules was determined. Furthermore, release of enteric coated capsules was tested within 0.1M HCl and 100mM phosphate buffer pH 6.8. RESULTS The rank order regarding membrane permeability was determined to be: cellulose acetate with a pore diameter of 12-15 μm>4-12 μm cellulose acetate>8 μm cellulose nitrate>8-12 μm cellulose acetate. NaHCO3 in combination with tartaric acid in form of a granule could be identified as the most promising reaction mixture with the highest amount of released CO2 compared to all other reaction mixture combinations. Stability of enteric coated capsules in HCl and a spontaneous release in phosphate puffer could be demonstrated within in vitro release studies. CONCLUSION In light of these results, the developed releasing system seems to be a promising tool for an accelerated delivery of several incorporated excipients.
Collapse
Affiliation(s)
- C Waldner
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - H E Friedl
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - S Dünnhaupt
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - S Köllner
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, Innsbruck 6020, Austria
| | - G Leonaviciute
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-Universität of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria
| | - A Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-Universität of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria.
| |
Collapse
|