1
|
İnci A, Ezgü FS, Tümer L. Advances in Immune Tolerance Induction in Enzyme Replacement Therapy. Paediatr Drugs 2024; 26:287-308. [PMID: 38664313 PMCID: PMC11074017 DOI: 10.1007/s40272-024-00627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 05/07/2024]
Abstract
Inborn errors of metabolism (IEMs) are a group of genetic diseases that occur due to the either deficiency of an enzyme involved in a metabolic/biochemical pathway or other disturbances in the metabolic pathway including transport protein or activator protein deficiencies, cofactor deficiencies, organelle biogenesis, maturation or trafficking problems. These disorders are collectively significant due to their substantial impact on both the well-being and survival of affected individuals. In the quest for effective treatments, enzyme replacement therapy (ERT) has emerged as a viable strategy for patients with many of the lysosomal storage disorders (LSD) and enzyme substitution therapy in the rare form of the other inborn errors of metabolism including phenylketonuria and hypophosphatasia. However, a major challenge associated with enzyme infusion in patients with these disorders, mainly LSD, is the development of high antibody titres. Strategies focusing on immunomodulation have shown promise in inducing immune tolerance to ERT, leading to improved overall survival rates. The implementation of immunomodulation concurrent with ERT administration has also resulted in a decreased occurrence of IgG antibody development compared with cases treated solely with ERT. By incorporating the knowledge gained from current approaches and analysing the outcomes of immune tolerance induction (ITI) modalities from clinical and preclinical trials have demonstrated significant improvement in the efficacy of ERT. In this comprehensive review, the progress in ITI modalities is assessed, drawing insights from both clinical and preclinical trials. The focus is on evaluating the advancements in ITI within the context of IEM, specifically addressing LSDs managed through ERT.
Collapse
Affiliation(s)
- Aslı İnci
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey.
| | - Fatih Süheyl Ezgü
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
- Department of Paediatric Genetic, Gazi University School of Medicine, Ankara, Turkey
| | - Leyla Tümer
- Department of Paediatric Metabolism and Nutrition, Gazi University School of Medicine, Emniyet Street, Yenimahalle, Ankara, Turkey
| |
Collapse
|
2
|
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
|
4
|
Abstract
Nano-delivery systems represent one of the most studied fields, thanks to the associated improvement in the treatment of human diseases. The functionality of nanostructures is a crucial point, which the effectiveness of nanodrugs depends on. A hybrid approach strategy using synthetic nanoparticles (NPs) and erythrocytes offers an optimal blend of natural and synthetic materials. This, in turn, allows medical practitioners to exploit the combined advantages of erythrocytes and NPs. Erythrocyte-based drug delivery systems have been investigated for their biocompatibility, as well as the long circulation time allowed by specific surface receptors that inhibit immune clearance. In this review, we will discuss several methods—whole erythrocytes as drug carriers, red blood cell membrane-camouflaged nanoparticles and nano-erythrosomes (NERs)—while paying attention to their application and specific preparation methods. The ability to target cells makes erythrocytes excellent drug delivery systems. They can carry a wide range of therapeutic molecules while also acting as bioreactors; thus, they have many applications in therapy and in the diagnosis of many diseases.
Collapse
|
5
|
Tran JQ, Grover D, Zhang M, Stapels M, Brennan R, Bangari DS, Piepenhagen PA, Roberts E, Oliva P, Zubair F, Vela JL, Richards SM, Joseph AM. Expansion of immature, nucleated red blood cells by transient low-dose methotrexate immune tolerance induction in mice. Clin Exp Immunol 2021; 203:409-423. [PMID: 33205401 PMCID: PMC7874831 DOI: 10.1111/cei.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022] Open
Abstract
Biological treatments such as enzyme-replacement therapies (ERT) can generate anti-drug antibodies (ADA), which may reduce drug efficacy and impact patient safety and consequently led to research to mitigate ADA responses. Transient low-dose methotrexate (TLD-MTX) as a prophylactic ITI regimen, when administered concurrently with ERT, induces long-lived reduction of ADA to recombinant human alglucosidase alfa (rhGAA) in mice. In current clinical practice, a prophylactic ITI protocol that includes TLD-MTX, rituximab and intravenous immunoglobulin (optional), successfully induced lasting control of ADA to rhGAA in high-risk, cross-reactive immunological material (CRIM)-negative infantile-onset Pompe disease (IOPD) patients. More recently, evaluation of TLD-MTX demonstrated benefit in CRIM-positive IOPD patients. To more clearly understand the mechanism for the effectiveness of TLD-MTX, non-targeted transcriptional and proteomic screens were conducted and revealed up-regulation of erythropoiesis signatures. Confirmatory studies showed transiently larger spleens by weight, increased spleen cellularity and that following an initial reduction of mature red blood cells (RBCs) in the bone marrow and blood, a significant expansion of Ter-119+ CD71+ immature RBCs was observed in spleen and blood of mice. Histology sections revealed increased nucleated cells, including hematopoietic precursors, in the splenic red pulp of these mice. This study demonstrated that TLD-MTX induced a transient reduction of mature RBCs in the blood and immature RBCs in the bone marrow followed by significant enrichment of immature, nucleated RBCs in the spleen and blood during the time of immune tolerance induction, which suggested modulation of erythropoiesis may be associated with the induction of immune tolerance to rhGAA.
Collapse
Affiliation(s)
- J. Q. Tran
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - D. Grover
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - M. Zhang
- Sanofi Translational Sciences BioinformaticsCambridgeMAUSA
| | - M. Stapels
- Sanofi Biologics DevelopmentCambridgeMAUSA
| | | | | | | | - E. Roberts
- Sanofi Translational In Vivo ModelsCambridgeMAUSA
| | - P. Oliva
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - F. Zubair
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - J. L. Vela
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - S. M. Richards
- Sanofi Translational Medicine and Early DevelopmentCambridgeMAUSA
| | - A. M. Joseph
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| |
Collapse
|
6
|
Piras G, Montiel-Equihua C, Chan YKA, Wantuch S, Stuckey D, Burke D, Prunty H, Phadke R, Chambers D, Partida-Gaytan A, Leon-Rico D, Panchal N, Whitmore K, Calero M, Benedetti S, Santilli G, Thrasher AJ, Gaspar HB. Lentiviral Hematopoietic Stem Cell Gene Therapy Rescues Clinical Phenotypes in a Murine Model of Pompe Disease. Mol Ther Methods Clin Dev 2020; 18:558-570. [PMID: 32775491 PMCID: PMC7396971 DOI: 10.1016/j.omtm.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
Pompe disease is a lysosomal storage disorder caused by malfunctions of the acid alpha-glucosidase (GAA) enzyme with a consequent toxic accumulation of glycogen in cells. Muscle wasting and hypertrophic cardiomyopathy are the most common clinical signs that can lead to cardiac and respiratory failure within the first year of age in the more severe infantile forms. Currently available treatments have significant limitations and are not curative, highlighting a need for the development of alternative therapies. In this study, we investigated the use of a clinically relevant lentiviral vector to deliver systemically GAA through genetic modification of hematopoietic stem and progenitor cells (HSPCs). The overexpression of GAA in human HSPCs did not exert any toxic effect on this cell population, which conserved its stem cell capacity in xenograft experiments. In a murine model of Pompe disease treated at young age, we observed phenotypic correction of heart and muscle function with a significant reduction of glycogen accumulation in tissues after 6 months of treatment. These findings suggest that lentiviral-mediated HSPC gene therapy can be a safe alternative therapy for Pompe disease.
Collapse
Affiliation(s)
- Giuseppa Piras
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claudia Montiel-Equihua
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Yee-Ka Agnes Chan
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Slawomir Wantuch
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Daniel Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Derek Burke
- Enzyme and Metabolic laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Helen Prunty
- Enzyme and Metabolic laboratory, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Darren Chambers
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Armando Partida-Gaytan
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Diego Leon-Rico
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Neelam Panchal
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Kathryn Whitmore
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Miguel Calero
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sara Benedetti
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Adrian J. Thrasher
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - H. Bobby Gaspar
- Infection, Immunity and Inflammation Program, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Orchard Therapeutics Ltd., London EC4N 6EU, UK
| |
Collapse
|
7
|
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020; 12:E276. [PMID: 32197542 PMCID: PMC7151026 DOI: 10.3390/pharmaceutics12030276] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g. magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.
Collapse
Affiliation(s)
- Larisa Koleva
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Elizaveta Bovt
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Fazoil Ataullakhanov
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Elena Sinauridze
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| |
Collapse
|
8
|
Desai AK, Li C, Rosenberg AS, Kishnani PS. Immunological challenges and approaches to immunomodulation in Pompe disease: a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:285. [PMID: 31392197 PMCID: PMC6642943 DOI: 10.21037/atm.2019.05.27] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 01/30/2023]
Abstract
Pompe disease is an autosomal recessive disorder caused by a deficiency of acid alpha-glucosidase resulting in intralysosomal glycogen accumulation in multiple tissue types, especially cardiac, skeletal, and smooth muscle. Enzyme replacement therapy (ERT) with alglucosidase alfa has led to improved clinical outcomes and prolonged survival in patients with Pompe disease. While ERT has changed the natural course of Pompe disease, with many long-term survivors, several factors affect the response to ERT. Previous studies in Pompe disease have shown that IgG antibodies to ERT can lead to a decline in muscle strength, pulmonary function, and overall and ventilator-free survival. Additionally, antibody responses to ERT can also cause hypersensitivity reactions. Various strategies to prevent or eliminate the IgG antibody response have been attempted in patients with Pompe disease. A detailed literature search was performed to compile data regarding the consequences of IgG antibodies, clinical approaches to prevent or eliminate IgG antibodies in patients with Pompe disease, and to expand our understanding of new modalities being developed in non-clinical settings. All qualifying articles describing the impact of IgG antibodies on the response to ERT, immunomodulation in patients with Pompe disease, and non-clinical settings identified via a PubMed database search were included in the review. Here, we provide a comprehensive review of combination- and single-agent therapies that have been investigated in the context of immune tolerance induction to ERT in Pompe disease to date. Immunomodulation strategies that successfully induce immune tolerance to ERT have improved overall survival, especially reflected in the decreased number of ventilator-dependent or deceased cross-reactive immunologic material (CRIM)-negative infantile Pompe disease (IPD) patients due to development of IgG antibodies when treated with ERT alone. Immunomodulation in CRIM-positive patients at the time they receive ERT also results in a decrease in the development of IgG antibodies compared to cases treated with ERT alone. Lessons learned from current approaches, alongside results from trials of novel immunomodulation strategies, may provide important insights into the development of next-generation therapies.
Collapse
Affiliation(s)
- Ankit K. Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Cindy Li
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Amy S. Rosenberg
- Division of Biologics Review and Research 3, Office of Biotechnology Products, Center for Drug Evaluation and Research, US FDA, Bethesda, MD, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| |
Collapse
|
9
|
Burnouf T, Burnouf PA, Wu YW, Chuang EY, Lu LS, Goubran H. Circulatory-cell-mediated nanotherapeutic approaches in disease targeting. Drug Discov Today 2018; 23:934-943. [DOI: 10.1016/j.drudis.2017.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
|
10
|
Lim HH, Yi H, Kishimoto TK, Gao F, Sun B, Kishnani PS. A pilot study on using rapamycin-carrying synthetic vaccine particles (SVP) in conjunction with enzyme replacement therapy to induce immune tolerance in Pompe disease. Mol Genet Metab Rep 2017; 13:18-22. [PMID: 28761815 PMCID: PMC5524423 DOI: 10.1016/j.ymgmr.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
A major obstacle to enzyme replacement therapy (ERT) with recombinant human acid-α-glucosidase (rhGAA) for Pompe disease is the development of high titers of anti-rhGAA antibodies in a subset of patients, which often leads to a loss of treatment efficacy. In an effort to induce sustained immune tolerance to rhGAA, we supplemented the rhGAA therapy with a weekly intravenous injection of synthetic vaccine particles carrying rapamycin (SVP-Rapa) during the first 3 weeks of a 12-week course of ERT in GAA-KO mice, and compared this with three intraperitoneal injections of methotrexate (MTX) per week for the first 3 weeks. Empty nanoparticles (NP) were used as negative control for SVP-Rapa. Co-administration of SVP-Rapa with rhGAA resulted in more durable inhibition of anti-rhGAA antibody responses, higher efficacy in glycogen clearance in skeletal muscles, and greater improvement of motor function than mice treated with empty NP or MTX. Body weight loss was observed during the MTX-treatment but not SVP-Rapa-treatment. Our data suggest that co-administration of SVP-Rapa may be an innovative and safe strategy to induce durable immune tolerance to rhGAA during the ERT in patients with Pompe disease, leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Han-Hyuk Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Haiqing Yi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | | | - Fengqin Gao
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
11
|
Pierigè F, Bigini N, Rossi L, Magnani M. Reengineering red blood cells for cellular therapeutics and diagnostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Francesca Pierigè
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Noemi Bigini
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| |
Collapse
|
12
|
Wu YW, Goubran H, Seghatchian J, Burnouf T. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfus Apher Sci 2016; 54:309-18. [PMID: 27179926 DOI: 10.1016/j.transci.2016.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field.
Collapse
Affiliation(s)
- Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ. Targeted approaches to induce immune tolerance for Pompe disease therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15053. [PMID: 26858964 PMCID: PMC4729315 DOI: 10.1038/mtm.2015.53] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/04/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
Enzyme and gene replacement strategies have developed into viable therapeutic approaches for the treatment of Pompe disease (acid α-glucosidase (GAA) deficiency). Unfortunately, the introduction of GAA and viral vectors encoding the enzyme can lead to detrimental immune responses that attenuate treatment benefits and can impact patient safety. Preclinical and clinical experience in addressing humoral responses toward enzyme and gene therapy for Pompe disease have provided greater understanding of the immunological consequences of the provided therapy. B- and T-cell modulation has been shown to be effective in preventing infusion-associated reactions during enzyme replacement therapy in patients and has shown similar success in the context of gene therapy. Additional techniques to induce humoral tolerance for Pompe disease have been the targeted expression or delivery of GAA to discrete cell types or tissues such as the gut-associated lymphoid tissues, red blood cells, hematopoietic stem cells, and the liver. Research into overcoming preexisting immunity through immunomodulation and gene transfer are becoming increasingly important to achieve long-term efficacy. This review highlights the advances in therapies as well as the improved understanding of the molecular mechanisms involved in the humoral immune response with emphasis on methods employed to overcome responses associated with enzyme and gene therapies for Pompe disease.
Collapse
Affiliation(s)
- Phillip A Doerfler
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Sushrusha Nayak
- Department of Medicine, Karolinska Institute , Stockholm, Sweden
| | - Manuela Corti
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|