1
|
Zhang M, Xu X, Jiang G, Ying Z, Zhu H, Zuo C. Preparation and formation mechanism study of the long-term stable foamed sodium carboxymethyl cellulose loaded material. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241354. [PMID: 40078923 PMCID: PMC11896695 DOI: 10.1098/rsos.241354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 03/14/2025]
Abstract
A foamed sodium carboxymethyl cellulose (CMC) material was prepared under nitric acid conditions. Unlike traditional CMC materials, this foaming method is straightforward and does not require additional foaming agents. Owing to its high stability and load capacity, the foam can realize long-term quantitative storage and load a variety of metal ions; therefore, it has broad application prospects in the field of loaded materials for metal ions. In this work, infrared spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were used to explore the interaction between CMC and nitric acid in the foam under these conditions. The mechanism of foam formation was reasonably explained. Infrared spectra reveal the hydrolysis of the cellulose framework by nitric acid. Based on experimental observations during preparation and NMR analysis, it is explained that nitric acid activates glucose units' C1 (no. 1 carbon in glucose unit) in CMC, leading to the formation of reducible terminal groups. Additionally, as the concentration of nitric acid increases during solution evaporation, a fraction of these reducible terminal groups undergo oxidation by nitric acid, resulting in gas production and subsequent expansion of the system, ultimately forming a foamed structure upon complete drying.
Collapse
Affiliation(s)
- Mingmin Zhang
- Institute of Radiochemistry, China Institute of Atomic Energy, Beijing102413, People’s Republic of China
| | - Xianzhe Xu
- Institute of Radiochemistry, China Institute of Atomic Energy, Beijing102413, People’s Republic of China
| | - Guangyi Jiang
- Institute of Radiochemistry, China Institute of Atomic Energy, Beijing102413, People’s Republic of China
| | - Zhecong Ying
- Institute of Radiochemistry, China Institute of Atomic Energy, Beijing102413, People’s Republic of China
| | - Haiqiao Zhu
- Institute of Radiochemistry, China Institute of Atomic Energy, Beijing102413, People’s Republic of China
| | - Chen Zuo
- Institute of Radiochemistry, China Institute of Atomic Energy, Beijing102413, People’s Republic of China
| |
Collapse
|
2
|
Zhang B, Hu C, Wang M, Wei H, Li S, Yu H, Wu Y, Wang G, Guo T, Chen H. Facile fabrication of a thermal/pH responsive IPN hydrogel drug carrier based on cellulose and chitosan through simultaneous dual-click strategy. J Colloid Interface Sci 2025; 678:827-841. [PMID: 39217698 DOI: 10.1016/j.jcis.2024.08.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Herein, an interpenetrating network hydrogel (IPN-Gel) based on cellulose and chitosan was synthesized via simultaneous amino-anhydride and azide-alkyne click reaction in water in one pot. The samples were characterized by various analytical methods including FTIR, SEM, XRD, XPS, 1H NMR and so forth. The fabrication conditions were optimized by single factor experiments with water uptake (WU) and gel mass fraction (GMF) as two indexes. The WU and GMF of the IPN-Gel prepared under optimized conditions were 1192.37 % and 74.00 %, respectively. Its WU descended with the ascension in temperature, and first descended and then gradually ascended with the ascension in pH, confirming that the IPN-Gel had thermal/pH dual responsiveness. Using 5-Fu as a model drug, the release behavior of 5-Fu in IPN-Gel was explored. Its release behavior could be regulated by changing temperature and pH values, and it followed the Korsmeyer Peppas model. The viability of 4 T1 cells and HUVEC cells exceeded 80 % after 48 h of incubation at a high concentration of 200 μg/mL IPN-Gel, and hemolytic percentage was below the allowed limit of 5 %. The study provides a new strategy for the preparation of the IPN-Gel with biocompatibility, swelling reversibility and controllable drug release.
Collapse
Affiliation(s)
- Bing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Mengyuan Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| |
Collapse
|
3
|
Tamo AK. Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications. J Mater Chem B 2024; 12:7692-7759. [PMID: 38805188 DOI: 10.1039/d4tb00397g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tissue engineering has emerged as a remarkable field aiming to restore or replace damaged tissues through the use of biomimetic constructs. Among the diverse materials investigated for this purpose, nanocellulose-based hydrogels have garnered attention due to their intriguing biocompatibility, tunable mechanical properties, and sustainability. Over the past few years, numerous research works have been published focusing on the successful use of nanocellulose-based hydrogels as artificial extracellular matrices for regenerating various types of tissues. The review emphasizes the importance of tissue engineering, highlighting hydrogels as biomimetic scaffolds, and specifically focuses on the role of nanocellulose in composites that mimic the structures, properties, and functions of the native extracellular matrix for regenerating damaged tissues. It also summarizes the types of nanocellulose, as well as their structural, mechanical, and biological properties, and their contributions to enhancing the properties and characteristics of functional hydrogels for tissue engineering of skin, bone, cartilage, heart, nerves and blood vessels. Additionally, recent advancements in the application of nanocellulose-based hydrogels for tissue engineering have been evaluated and documented. The review also addresses the challenges encountered in their fabrication while exploring the potential future prospects of these hydrogel matrices for biomedical applications.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
4
|
Mohamed R, Chou SF. Physicomechanical characterizations and in vitro release studies of electrospun ethyl cellulose fibers, solvent cast carboxymethyl cellulose films, and their composites. Int J Biol Macromol 2024; 267:131374. [PMID: 38582474 DOI: 10.1016/j.ijbiomac.2024.131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Frequent change of wound dressings introduces wound inflammation and infections. In this study, we electrospun phenytoin (PHT) loaded ethyl cellulose (EC) microfibers and solvent cast tetracycline hydrochloride (TCH) loaded carboxymethyl cellulose (CMC) films with the aim to demonstrate tailorable in vitro drug release behaviors suitable for long-term use of wound dressings. Results from tensile testing showed a significant decrease in average elastic moduli from 8.8 ± 0.6 to 3.3 ± 0.3 MPa after incorporating PHT into EC fibers. PHT-loaded EC fibers displayed a slow and zero-ordered release up to 80 % of the total drug at 48 h, while TCH-loaded CMC films demonstrated a rapid and complete release within 30 min. Furthermore, drug-loaded EC/CMC composites were fabricated into fiber-in-film and fiber-on-film composites. Fiber-in-film composites showed stage release of TCH and PHT at 8 h, while fiber-on-film composites demonstrated simultaneous release of PHT and TCH with a prolonged release of TCH from CMC films. In general, electrospun PHT-loaded EC microfibers, solvent cast TCH-loaded CMC films, and their composites were studied to provide a fundamental scientific understanding on the novelty of the ability to modulate drug release characteristics based on the composite designs.
Collapse
Affiliation(s)
- Reham Mohamed
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| |
Collapse
|
5
|
Leong MY, Kong YL, Harun MY, Looi CY, Wong WF. Current advances of nanocellulose application in biomedical field. Carbohydr Res 2023; 532:108899. [PMID: 37478689 DOI: 10.1016/j.carres.2023.108899] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
Collapse
Affiliation(s)
- M Y Leong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Y L Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - M Y Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - C Y Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - W F Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Isopencu G, Deleanu I, Busuioc C, Oprea O, Surdu VA, Bacalum M, Stoica R, Stoica-Guzun A. Bacterial Cellulose-Carboxymethylcellulose Composite Loaded with Turmeric Extract for Antimicrobial Wound Dressing Applications. Int J Mol Sci 2023; 24:1719. [PMID: 36675235 PMCID: PMC9864671 DOI: 10.3390/ijms24021719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Bacterial cellulose (BC) is a biopolymer whose properties have been intensively studied, especially for biomedical applications. Since BC has no antimicrobial activity, it is necessary to use bioactive substances for developing wound healing applications. Another drawback of BC is the loss if its water retention capacity after dehydration. In order to overcome these problems, carboxymethyl cellulose (CMC) and turmeric extract (TE) were selected for the preparation of BC composites. Citric acid (CA) was used as the crosslinking agent. These composites were tested as potential antimicrobial wound dressing materials. TE-loaded BC-CMC composites were characterized in terms of their morphology, crystallinity, and thermal behavior. Swelling tests and curcumin-release kinetic analysis were also performed. All the composites tested had high swelling degrees, which is an advantage for the exudate adsorption from chronic wounds. The antibacterial potential of such composites was tested against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans). The in vitro cytotoxicity toward L929 fibroblast cells was studied as well. The obtained results allow us to recommend these composites as good candidates for wound dressing applications.
Collapse
Affiliation(s)
- Gabriela Isopencu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Iuliana Deleanu
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Cristina Busuioc
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
| | - Roberta Stoica
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Romania
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania
| | - Anicuţa Stoica-Guzun
- Department of Chemical and Biochemical Engineering, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
7
|
Sánchez-Osorno DM, Caicedo Paz AV, López-Jaramillo MC, Villa AL, Martínez-Galán JP. Protection of Mono and Polyunsaturated Fatty Acids from Grapeseed Oil by Spray Drying Using Green Biopolymers as Wall Material. Foods 2022; 11:3954. [PMID: 36553695 PMCID: PMC9778292 DOI: 10.3390/foods11243954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
One of the most common ways to protect oils is microencapsulation, which includes the use of encapsulating agents. Due to the environmental problems facing humanity, this study seeks to combine green biopolymers (microcrystalline cellulose and whey protein isolate) that function as encapsulating agents for grapeseed oil. Grapeseed oil that is obtained from agro-industrial waste has shown health benefits, including cardioprotective, anticancer, antimicrobial, and anti-inflammatory properties. These health benefits have been mainly associated with monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids. In this sense, it has been observed that grapeseed oil can be easily modified by environmental factors such as oxygen, high temperatures, and light, showing the instability and easy degradation of grapeseed oil. In this study, grapeseed oil was encapsulated using the spray-drying technique to conserve its lipidic profile. Powder recovery of the grapeseed oil microcapsules ranged from 65% to 70%. The encapsulation efficiency of the microcapsules varied between 80% and 85%. The FTIR analysis showed chemical interactions that demonstrate chemisorption between the grapeseed oil and the encapsulating material, while the SEM micrographs showed a correct encapsulation in a spherical shape. Gas chromatography showed that the lipid profile of grapeseed oil is preserved thanks to microencapsulation. Release tests showed 80% desorption within the first three hours at pH 5.8. Overall, whey protein and microcrystalline cellulose could be used as a wall material to protect grapeseed oil with the potential application of controlled delivery of fatty acids microcapsules.
Collapse
Affiliation(s)
- Diego Mauricio Sánchez-Osorno
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
- Grupo de Investigación e Innovación Ambiental GIIAM, Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - Angie Vanesa Caicedo Paz
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - María Camila López-Jaramillo
- Grupo de Investigación e Innovación Ambiental GIIAM, Institución Universitaria Pascual Bravo, Cl. 73, No 73a-226, Medellín 050034, Colombia
| | - Aída Luz Villa
- Grupo Catálisis Ambiental, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| | - Julián Paul Martínez-Galán
- Grupo de Investigación Alimentación y Nutrición Humana-GIANH, Escuela de Nutrición y Dietética, Universidad de Antioquia, Cl. 67, No 53-108, Medellín 050010, Colombia
| |
Collapse
|
8
|
Osorio Echavarría J, Gómez Vanegas NA, Orozco CPO. Chitosan/carboxymethyl cellulose wound dressings supplemented with biologically synthesized silver nanoparticles from the ligninolytic fungus Anamorphous Bjerkandera sp. R1. Heliyon 2022; 8:e10258. [PMID: 36060464 PMCID: PMC9437809 DOI: 10.1016/j.heliyon.2022.e10258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/08/2021] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Chitosan (CHI) and carboxymethyl cellulose (CMC) are naturally sourced materials with excellent physical, chemical, and biological properties, which make them a promising tool for the development of different medical devices. In this research, CHI-CMC wound dressings were manufactured, by using different colloidal suspensions of silver nanoparticles (AgNPs) synthesized from the ligninolytic fungus Anamorphous Bjerkandera sp. R1, called CS and SN. Transmission electron microscopy (TEM), UV-Vis spectroscopy, and dynamic light scattering (DLS) analysis were used to characterize AgNPs. The wound dressings were characterized, by scanning electron microscopy (SEM), optical microscopy and their mechanical, antimicrobial, and biological properties were evaluated. The results of the different characterizations revealed the formation of spherical AgNPs with a mean size between 10 and 70 nm for the different mixtures worked. The mechanical properties of CHI-CMS-AgNPs doped with CS and SN suspensions showed superior mechanical properties with respect to CHI-CMC wound dressings. Compared to the latter, CHI-CMC-AgNPs wound dressings yielded better antibacterial activity against the pathogen Escherichia coli. In biological assays, it was observed that manufactured CHI-CMC-AgNPs wound dressings were not toxic when in contact with human skin fibroblasts (Detroit). This study, then, suggests that this type of wound dressings with a chitosan matrix and carboxymethyl cellulose doped with biologically synthesized nanoparticles from the fungus Bjerkandera sp., may be an ideal alternative for the manufacture of new wound dressings.
Collapse
Affiliation(s)
- Jerónimo Osorio Echavarría
- Bioprocess Group, Department of Chemical Engineering, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
- Corresponding author.
| | - Natalia Andrea Gómez Vanegas
- Bioprocess Group, Department of Chemical Engineering, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
| | - Claudia Patricia Ossa Orozco
- Biomaterials Research Group, Bioengineering Program, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
| |
Collapse
|
9
|
Tenorová K, Masteiková R, Pavloková S, Kostelanská K, Bernatonienė J, Vetchý D. Formulation and Evaluation of Novel Film Wound Dressing Based on Collagen/Microfibrillated Carboxymethylcellulose Blend. Pharmaceutics 2022; 14:pharmaceutics14040782. [PMID: 35456616 PMCID: PMC9027540 DOI: 10.3390/pharmaceutics14040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen is essential as a physiological material in wound healing, so it is often used in wound management, mainly as a lyophilisate. Collagen also has excellent film-forming properties; unfortunately, however, its utilisation as a film wound dressing is limited because of its weak mechanical properties, especially in its wet state. For this reason, modifications or combinations with different materials are investigated. The combination of collagen with partially modified microfibrillar carboxymethylcellulose (CMC), which has not previously been described, provided a new possibility for strengthening collagen films and was the aim of this work. The collagen–CMC films based on three types of collagens, two plasticizers and two collagen. Plasticiser ratios were prepared using the solvent casting method; partially modified CMC served here as both a film-forming agent and a filler, without compromising the transparency of the films. The presence of microfibrils was confirmed microscopically by SEM. Organoleptic and physicochemical evaluation, especially in terms of practical application on wounds, demonstrated that all the samples had satisfactory properties for this purpose even after wetting. All the films retained acidic pH values even after 24 h, with a maximum of 6.27 ± 0.17, and showed a mild degree of swelling, with a maximum of about 6 after 24 h.
Collapse
Affiliation(s)
- Kateřina Tenorová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
- Correspondence:
| | - Ruta Masteiková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
| | - Sylvie Pavloková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
| | - Klára Kostelanská
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
| | - Jurga Bernatonienė
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - David Vetchý
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, 61200 Brno, Czech Republic; (R.M.); (S.P.); (K.K.); (D.V.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, 61200 Brno, Czech Republic
| |
Collapse
|
10
|
Bacterial Cellulose-A Remarkable Polymer as a Source for Biomaterials Tailoring. MATERIALS 2022; 15:ma15031054. [PMID: 35160997 PMCID: PMC8839122 DOI: 10.3390/ma15031054] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Nowadays, the development of new eco-friendly and biocompatible materials using ‘green’ technologies represents a significant challenge for the biomedical and pharmaceutical fields to reduce the destructive actions of scientific research on the human body and the environment. Thus, bacterial cellulose (BC) has a central place among these novel tailored biomaterials. BC is a non-pathogenic bacteria-produced polysaccharide with a 3D nanofibrous structure, chemically identical to plant cellulose, but exhibiting greater purity and crystallinity. Bacterial cellulose possesses excellent physicochemical and mechanical properties, adequate capacity to absorb a large quantity of water, non-toxicity, chemical inertness, biocompatibility, biodegradability, proper capacity to form films and to stabilize emulsions, high porosity, and a large surface area. Due to its suitable characteristics, this ecological material can combine with multiple polymers and diverse bioactive agents to develop new materials and composites. Bacterial cellulose alone, and with its mixtures, exhibits numerous applications, including in the food and electronic industries and in the biotechnological and biomedical areas (such as in wound dressing, tissue engineering, dental implants, drug delivery systems, and cell culture). This review presents an overview of the main properties and uses of bacterial cellulose and the latest promising future applications, such as in biological diagnosis, biosensors, personalized regenerative medicine, and nerve and ocular tissue engineering.
Collapse
|
11
|
Formulation of Microwave-Assisted Natural-Synthetic Polymer Composite Film and Its Physicochemical Characterization. INT J POLYM SCI 2021. [DOI: 10.1155/2021/9961710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study is aimed at microwave-assisted synthesis of sodium carboxymethylcellulose and Eudragit L100 composite film and its physicochemical characterization. The film was developed with varying quantities of each polymer and treated with microwave at a fixed frequency of 2450 MHz with a power of 350 Watts for 60 and 120 s. All formulations were characterized for thickness/weight uniformity, moisture adsorption, erosion and water uptake, tensile strength, and vibrational, thermal, and surface morphological analysis in comparison with untreated film samples. Results indicated that microwave treatment for 60 s significantly improved the tensile strength, reduced the water adsorption, delayed erosion, and reduced the water uptake in comparison with the untreated and 120 s treated film formulations. The vibrational analysis revealed rigidification of hydrophilic domains at OH/NH moiety and fluidization of hydrophobic domains at asymmetric and symmetric CH moieties, which is envisaged to be due to the formation of new linkages between the two polymers. These were later confirmed by thermal analysis where a significant rise in transition temperature, as well as enthalpy of the system, was recorded. The microwave treatment for 60 s is thus advocated to be the best treatment condition for developing sodium carboxymethylcellulose and Eudragit L100 composite polymeric films.
Collapse
|
12
|
Isopencu GO, Stoica-Guzun A, Busuioc C, Stroescu M, Deleanu IM. Development of antioxidant and antimicrobial edible coatings incorporating bacterial cellulose, pectin, and blackberry pomace. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Jantarat C, Muenraya P, Srivaro S, Nawakitrangsan A, Promsornpason K. Comparison of drug release behavior of bacterial cellulose loaded with ibuprofen and propranolol hydrochloride. RSC Adv 2021; 11:37354-37365. [PMID: 35496416 PMCID: PMC9043831 DOI: 10.1039/d1ra07761a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate the drug release behavior from bacterial cellulose (BC). Ibuprofen and propranolol hydrochloride were used as model drugs to represent low and highly water soluble drugs. The drug was loaded into the BC by immersing the partially swollen BC in a solution of drug concentrations ranging from 0.05 to 0.5 mg mL-1 and then drying by two different methods: air-drying and freeze-drying. The results showed that the type of drug and the drying method influenced the drug loading efficiency and drug release behavior. For ibuprofen, high drug loading efficiency was found when loading the drug into BC at low concentration and vice versa for propranolol hydrochloride. The drug-loaded BC prepared by the freeze-drying method showed a sustained release regardless of drug type and drug-loaded amount. The sustained release followed the Higuchi and Korsmeyer-Peppas models. On the other hand, when using the air-drying method, BC loaded with ibuprofen showed immediate release at every drug-loaded amount. However, BC loaded with propranolol hydrochloride showed immediate release at the high drug-loaded amount but showed sustained release at the low drug-loaded amount. The release of drug from a drug-loaded BC prepared by air-drying method tended to follow first-order kinetics. In conclusion, the drug loading concentration and the drying method in the drug-loaded BC preparation influenced the drug release characteristics of the BC-based drug delivery system.
Collapse
Affiliation(s)
- Chutima Jantarat
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Poowadon Muenraya
- Drug and Cosmetics Excellence Center, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- School of Pharmacy, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Suthon Srivaro
- Center of Excellence in Wood and Biomaterials, School of Engineering and Technology, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University Soi Chula 12, Phayathai Road, Pathumwan Bangkok 10330 Thailand
| | | | | |
Collapse
|
14
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Tirgar M, Hosseini H, Jafari M, Shojaei S, Abdollahi A, Jafari A, Uzun L, Goodarzi V, Su CH. Introducing a flexible drug delivery system based on poly(glycerol sebacate)-urethane and its nanocomposite: potential application in the prevention and treatment of oral diseases. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:443-464. [PMID: 34641773 DOI: 10.1080/09205063.2021.1992588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, a novel biopolymer based on poly(glycerol sebacic)-urethane (PGS-U) and its nanocomposites containing Cloisite@30B were synthesized by facile approach in which the crosslinking was created by aliphatic hexamethylene diisocyanate (HDI) at room temperature and 80 °C. Moreover, metronidazole and tetracycline drugs were selected as target drugs and loaded into PGSU based nanocomposites. A uniform and continuous microstructure with smooth surface is observed in the case of pristine PGS-U sample. The continuity of microstructure is observed in the case of all bionanocomposites. XRD result confirmed an intercalated morphology for PGSU containing 5 wt% of clay nanoparticles with a d-spacing 3.4 nm. The increment of nanoclay content up to 5%, the ultimate tensile stress and elastic modulus were obtained nearly 0.32 and 0.83 MPa, which the latter was more than eight-fold than that of pristine PGS-U. A sustained release for both dugs was observed by 200 h. The slowest and controlled drug release rate was determined in the case of PGSU containing 5 wt% clay and cured at 80 °C. A non-Fickian diffusion can be concluded in the case of tetracycline release via PGS-U/nanoclay bionanocomposites, while a Fickian process was detected in the case of metronidazole release by PGS-U/nanoclay bionanocomposites. As a result, the designed scaffold showed high flexibility, which makes it an appropriate option for utilization in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Mahtab Tirgar
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Hadi Hosseini
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran
| | - Milad Jafari
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Amir Abdollahi
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Lokman Uzun
- Biochemistry Division, Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
16
|
Buldum G, Mantalaris A. Systematic Understanding of Recent Developments in Bacterial Cellulose Biosynthesis at Genetic, Bioprocess and Product Levels. Int J Mol Sci 2021; 22:ijms22137192. [PMID: 34281246 PMCID: PMC8268586 DOI: 10.3390/ijms22137192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Engineering biological processes has become a standard approach to produce various commercially valuable chemicals, therapeutics, and biomaterials. Among these products, bacterial cellulose represents major advances to biomedical and healthcare applications. In comparison to properties of plant cellulose, bacterial cellulose (BC) shows distinctive characteristics such as a high purity, high water retention, and biocompatibility. However, low product yield and extensive cultivation times have been the main challenges in the large-scale production of BC. For decades, studies focused on optimization of cellulose production through modification of culturing strategies and conditions. With an increasing demand for BC, researchers are now exploring to improve BC production and functionality at different categories: genetic, bioprocess, and product levels as well as model driven approaches targeting each of these categories. This comprehensive review discusses the progress in BC platforms categorizing the most recent advancements under different research focuses and provides systematic understanding of the progress in BC biosynthesis. The aim of this review is to present the potential of ‘modern genetic engineering tools’ and ‘model-driven approaches’ on improving the yield of BC, altering the properties, and adding new functionality. We also provide insights for the future perspectives and potential approaches to promote BC use in biomedical applications.
Collapse
Affiliation(s)
- Gizem Buldum
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence:
| |
Collapse
|
17
|
Optimization of Moist and Oven-Dried Bacterial Cellulose Production for Functional Properties. Polymers (Basel) 2021; 13:polym13132088. [PMID: 34202870 PMCID: PMC8272063 DOI: 10.3390/polym13132088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer with properties suitable for tissue engineering and possible applications in scaffold production. However, current procedures have limitations in obtaining BC pellicles with the desired structural, physical, and mechanical properties. Thus, this study analyzed the optimal culture conditions of BC membranes and two types of processing: draining and oven-drying. The aim was to obtain BC membranes with properties suitable for a wound dressing material. Two studies were carried out. In the preliminary study, the medium (100 mL) was inoculated with varying volumes (1, 2, 3, 4, and 5 mL) and incubated statically for different periods (3, 6, 9, 12, and 18 days), using a full factorial experimental design. Thickness, uniformity, weight, and yield were evaluated. In the optimization study, a Box–Behnken design was used. Two independent variables were used: inoculum volume (X1: 1, 3, and 5 mL) and fermentation period (X2: 6, 12, and 18 d) to determine the target response variables: thickness, swelling ratio, drug release, fiber diameter, tensile strength, and Young’s modulus for both dry and moist BC membranes. The mathematical modelling of the effect of the two independent variables was performed by response surface methodology (RSM). The obtained models were validated with new experimental values and confirmed for all tested properties, except Young’s modulus of oven-dried BC. Thus, the optimal properties in terms of a scaffold material of the moist BC were obtained with an inoculum volume of 5% (v/v) and 16 d of fermentation. While, for the oven-dried membranes, optimal properties were obtained with a 4% (v/v) and 14 d of fermentation.
Collapse
|
18
|
Emre Oz Y, Keskin-Erdogan Z, Safa N, Esin Hames Tuna E. A review of functionalised bacterial cellulose for targeted biomedical fields. J Biomater Appl 2021; 36:648-681. [PMID: 33673762 DOI: 10.1177/0885328221998033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacterial cellulose (BC), which can be produced by microorganisms, is an ideal biomaterial especially for tissue engineering and drug delivery systems thanks to its properties of high purity, biocompatibility, high mechanical strength, high crystallinity, 3 D nanofiber structure, porosity and high-water holding capacity. Therefore, wide ranges of researches have been done on the BC production process and its structural and physical modifications to make it more suitable for certain targeted biomedical applications thoroughly. BC's properties such as mechanical strength, pore diameter and porosity can be tuned in situ or ex situ processes by using various polymer and compounds. Besides, different organic or inorganic compounds that support cell attachment, proliferation and differentiation or provide functions such as antimicrobial effectiveness can be gained to its structure for targeted application. These processes not only increase the usage options of BC but also provide success for mimicking the natural tissue microenvironment, especially in tissue engineering applications. In this review article, the studies on optimisation of BC production in the last decade and the BC modification and functionalisation studies conducted for the three main perspectives as tissue engineering, drug delivery and wound dressing with diverse approaches are summarized.
Collapse
Affiliation(s)
- Yunus Emre Oz
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey
| | - Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Neriman Safa
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey
| | - E Esin Hames Tuna
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey.,Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
19
|
Interfacial structure and property of eco-friendly carboxymethyl cellulose/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites. Int J Biol Macromol 2021; 179:550-556. [PMID: 33675832 DOI: 10.1016/j.ijbiomac.2021.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
This paper investigates the interface bonding of the novel carboxymethyl cellulose (CMC)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites, and the influence of coupling agents on the structure and properties of the biocomposites. The chemical structure, crystallisation behaviour and microstructure of the untreated and coupling agent treated biocomposites were examined by using FTIR, XRD and SEM respectively. The results suggested that maleic anhydride (MA) and vinyltrimethoxysilane (VTMS) covalently bonded to both CMC and PHBV macromolecules owing to their intrinsic multifunctionality, and promoted the distribution and embedment of the CMC in PHBV matrix, leading to a superior interfacial bonding of the resulted biocomposites. The enhanced interfacial bonding between the CMC and PHBV gave rise to a significant increase of tensile and flexural properties (i.e. tensile and flexural stress increased by up to 71% and 117% respectively, Young's and flexural modulus increased by up to 17% and 18% respectively) as well as thermal stability of the biocomposites.
Collapse
|
20
|
Modified Bacterial Cellulose Dressings to Treat Inflammatory Wounds. NANOMATERIALS 2020; 10:nano10122508. [PMID: 33327519 PMCID: PMC7764978 DOI: 10.3390/nano10122508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Natural products suited for prophylaxis and therapy of inflammatory diseases have gained increasing importance. These compounds could be beneficially integrated into bacterial cellulose (BC), which is a natural hydropolymer applicable as a wound dressing and drug delivery system alike. This study presents experimental outcomes for a natural anti-inflammatory product concept of boswellic acids from frankincense formulated in BC. Using esterification respectively (resp.) oxidation and subsequent coupling with phenylalanine and tryptophan, post-modification of BC was tested to facilitate lipophilic active pharmaceutical ingredient (API) incorporation. Diclofenac sodium and indomethacin were used as anti-inflammatory model drugs before the findings were transferred to boswellic acids. By acetylation of BC fibers, the loading efficiency for the more lipophilic API indomethacin and the release was increased by up to 65.6% and 25%, respectively, while no significant differences in loading could be found for the API diclofenac sodium. Post-modifications could be made while preserving biocompatibility, essential wound dressing properties and anti-inflammatory efficacy. Eventually, in vitro wound closure experiments and evaluations of the effect of secondary dressings completed the study.
Collapse
|
21
|
Jantarat C, Attakitmongkol K, Nichsapa S, Sirathanarun P, Srivaro S. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1961-1976. [PMID: 32586219 DOI: 10.1080/09205063.2020.1787602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial cellulose (BC) has been used in the combination with molecularly imprinted polymer (MIP) for controlled-release drug delivery. In the present study, the molecular imprinting was directly performed on BC to avoid the use of synthetic materials for sustained-release of quercetin, which was used as the template molecule. The phase inversion method was successfully used to prepare molecularly imprinted BC (MI-BC). The molecular recognition ability and controlled drug release behavior of MI-BC were then evaluated. MI-BC was found to have approximately 1.6 times higher ability to bind quercetin than the non-imprinted BC (NI-BC) did. The composite membrane containing MI-BC and quercetin (MI-BC-com) delayed and sustained drug release more effectively than the composite membrane containing NI-BC and quercetin (NI-BC-com). MI-BC-com released quercetin approximately two times more slowly than NI-BC-com did at the final hour of the drug release study. The mechanism of quercetin release followed the Higuchi model. Due to the relatively simple method of preparing the drug delivery system without using synthetic MIP, the application of MI-BC may be of great interest in medicine and pharmaceutics.
Collapse
Affiliation(s)
- Chutima Jantarat
- Drug and Cosmetics Excellence Center, Walailak University, Nakhon Si Thammarat 80160, Thailand.,School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Supirada Nichsapa
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Suthon Srivaro
- Petrochemical and Polymer Program, School of Engineering and Technology, Walailak University, Nakhon Si Thammarat 80160, Thailand.,Materials Science and Innovation Program, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
22
|
Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8050624] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The unique pool of features found in intracellular and extracellular bacterial biopolymers attracts a lot of research, with bacterial cellulose (BC) being one of the most versatile and common. BC is an exopolysaccharide consisting solely of cellulose, and the variation in the production process can vary its shape or even its composition when compounding is applied in situ. Together with ex situ modification pathways, including specialised polymers, particles or exclusively functional groups, BC provides a robust platform that yields complex multifunctional compounds that go far beyond ultra-high purity, intrinsic hydrophilicity, mechanical strength and biocompatibility to introduce bioactive, (pH, thermal, electro) responsive, conductive and ‘smart’ properties. This review summarises the research outcomes in BC-medical applications, focusing mainly on data from the past decade (i.e., 2010–2020), with special emphasis on BC nanocomposites as materials and devices applicable in medicine. The high purity and unique structural/mechanical features, in addition to its capacity to closely adhere to irregular skin surfaces, skin tolerance, and demonstrated efficacy in wound healing, all stand as valuable attributes advantageous in topical drug delivery. Numerous studies prove BC compatibility with various human cells, with modifications even improving cell affinity and viability. Even BC represents a physical barrier that can reduce the penetration of bacteria into the tissue, but in its native form does not exhibit antimicrobial properties, therefore carious modifications have been made or specific compounds added to confer antimicrobial or anti-inflammatory properties. Progress in the use of BC-compounds as wound dressings, vascular grafts, and scaffolds for the treatment of cartilage, bone and osteochondral defects, the role as a basement membrane in blood-brain barrier models and many more are discussed to particular extent, emphasising the need for BC compounding to meet specific requirements.
Collapse
|
23
|
Maver U, Xhanari K, Žižek M, Gradišnik L, Repnik K, Potočnik U, Finšgar M. Carboxymethyl cellulose/diclofenac bioactive coatings on AISI 316LVM for controlled drug delivery, and improved osteogenic potential. Carbohydr Polym 2020; 230:115612. [DOI: 10.1016/j.carbpol.2019.115612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
|
24
|
Santos GDSD, Santos NRRD, Pereira ICS, Andrade Júnior AJD, Lima EMB, Minguita AP, Rosado LHG, Moreira APD, Middea A, Prudencio ER, Luchese RH, Oliveira RN. Layered cryogels laden with Brazilian honey intended for wound care. POLIMEROS 2020. [DOI: 10.1590/0104-1428.06820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Carboxymethyl cellulose is a superior polyanion to dextran sulfate in stabilizing and enhancing the solubility of amorphous drug-polyelectrolyte nanoparticle complex. Int J Biol Macromol 2019; 139:500-508. [DOI: 10.1016/j.ijbiomac.2019.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
|
26
|
Carvalho T, Guedes G, Sousa FL, Freire CSR, Santos HA. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnol J 2019; 14:e1900059. [PMID: 31468684 DOI: 10.1002/biot.201900059] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/18/2019] [Indexed: 01/10/2023]
Abstract
Bacterial cellulose (BC) is a nanocellulose form produced by some nonpathogenic bacteria. BC presents unique physical, chemical, and biological properties that make it a very versatile material and has found application in several fields, namely in food industry, cosmetics, and biomedicine. This review overviews the latest state-of-the-art usage of BC on three important areas of the biomedical field, namely delivery systems, wound dressing and healing materials, and tissue engineering for regenerative medicine. BC will be reviewed as a promising biopolymer for the design and development of innovative materials for the mentioned applications. Overall, BC is shown to be an effective and versatile carrier for delivery systems, a safe and multicustomizable patch or graft for wound dressing and healing applications, and a material that can be further tuned to better adjust for each tissue engineering application, by using different methods.
Collapse
Affiliation(s)
- Tiago Carvalho
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.,Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Gabriela Guedes
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.,Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Filipa L Sousa
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carmen S R Freire
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
27
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Dydak K, Junka A, Szymczyk P, Chodaczek G, Toporkiewicz M, Fijałkowski K, Dudek B, Bartoszewicz M. Development and biological evaluation of Ti6Al7Nb scaffold implants coated with gentamycin-saturated bacterial cellulose biomaterial. PLoS One 2018; 13:e0205205. [PMID: 30356274 PMCID: PMC6200220 DOI: 10.1371/journal.pone.0205205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/20/2018] [Indexed: 11/18/2022] Open
Abstract
Herein we present an innovative method of coating the surface of Titanium-Aluminium-Niobium bone scaffold implants with bacterial cellulose (BC) polymer saturated with antibiotic. Customized Ti6Al7Nb scaffolds manufactured using Selective Laser Melting were immersed in a suspension of Komagataeibacter xylinus bacteria which displays an ability to produce a 3-dimensional structure of bio-cellulose polymer. The process of complete implant coating with BC took on average 7 days. Subsequently, the BC matrix was cleansed by means of alkaline lysis and saturated with gentamycin. Scanning electron microscopy revealed that BC adheres and penetrates into the implant scaffold structure. The viability and development of the cellular layer on BC micro-structure were visualized by means of confocal microscopy. The BC-coated implants displayed a significantly lower cytotoxicity against osteoblast and fibroblast cell cultures in vitro in comparison to non-coated implants. It was also noted that gentamycin released from BC-coated implants inhibited the growth of Staphylococcus aureus cultures in vitro, confirming the suitability of such implant modification for preventing hostile microbial colonization. As demonstrated using digital microscopy, the procedure used for implant coating and BC chemical cleansing did not flaw the biomaterial structure. The results presented herein are of high translational value with regard to future use of customized, BC-coated and antibiotic-saturated implants designed for use in orthopedic applications to speed up recovery and to reduce the risk of musculoskeletal infections.
Collapse
Affiliation(s)
- Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wrocław, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wrocław, Poland
| | - Patrycja Szymczyk
- Center for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Grzegorz Chodaczek
- Laboratory of Confocal Microscopy, Polish Center for Technology Development PORT, Wrocław, Wrocław, Poland
| | - Monika Toporkiewicz
- Laboratory of Confocal Microscopy, Polish Center for Technology Development PORT, Wrocław, Wrocław, Poland
| | - Karol Fijałkowski
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Szczecin, Poland
| | - Bartłomiej Dudek
- Laboratory of Microbiology, Polish Center for Technology Development PORT, Wrocław, Wrocław, Poland
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
29
|
Allou NB, Yadav A, Pal M, Goswamee RL. Biocompatible nanocomposite of carboxymethyl cellulose and functionalized carbon–norfloxacin intercalated layered double hydroxides. Carbohydr Polym 2018; 186:282-289. [DOI: 10.1016/j.carbpol.2018.01.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/11/2018] [Accepted: 01/20/2018] [Indexed: 01/14/2023]
|
30
|
Andrade ÂL, Militani IA, de Almeida KJ, Belchior JC, dos Reis SC, Costa e Silva RMF, Domingues RZ. Theoretical and Experimental Studies of the Controlled Release of Tetracycline Incorporated into Bioactive Glasses. AAPS PharmSciTech 2018; 19:1287-1296. [PMID: 29318467 DOI: 10.1208/s12249-017-0931-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022] Open
Abstract
Several authors have studied the release profile of drugs incorporated in different devices. However, to the best of our knowledge, although many studies have been done on the release of tetracycline, in these release devices, no study has investigated if the released compound is actually the tetracycline, or, instead, a degraded product. This approach is exploited here. In this work, we analyse the influence of two drying methods on the tetracycline delivery behaviour of synthesised glasses using the sol-gel process. We compare the drying methods results using both theoretical models and practical essays, and analyse the chemical characteristic of the released product in order to verify if it remains tetracycline. Samples were freeze-dried or dried in an oven at 37°C and characterised by several methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential thermogravimetric analysis (DTG), differential thermal analyses (DTA) and gas adsorption analysis (BET). The released concentration of tetracycline hydrochloride was studied as a function of time, and it was measured by ultraviolet spectrophotometry in the tetracycline wavelength. The drug delivery profiles were reasonably consistent with a diffusion model analysis. In addition, we observed higher release rates for the freeze-dried compared to those dried in an oven at 37°C. This higher release can be attributed to larger pore size for the freeze-dried sample systems with tetracycline, which promoted more water penetration, improving the drug diffusion. The analysis of the solution obtained in the release tests using high-performance liquid chromatography- mass spectrometry (HPLC-MS) confirmed that tetracycline was being released.
Collapse
|
31
|
Shi C, Tao F, Cui Y. Cellulose-based film modified by succinic anhydride for the controlled release of domperidone. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1233-1249. [PMID: 29560817 DOI: 10.1080/09205063.2018.1456024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Succinic anhydride (SAD) modified microcrystalline cellulose (MCC) films was prepared and used for the controlled release of the drug domperidone (dom). The morphology and chemical structure of the modified materials were characterized by SEM, FTIR, XRD and TG/DSC techniques. The physical properties, such as water uptake and swelling, light barrier properties, mechanical testing, in vitro degradation behavior, have been investigated. Results showed that the modified cellulose membranes exhibited good anti-UV properties, higher water uptake values, improved mechanical capacity and anti-biodegradability. In addition, the modified MCC films (MS) as the drug carrier indicated the controlled release of domperidone and the release mechanism was proposed using Korsmeyer-Peppas equation at pH 7.4. The developed drug delivery system possessed the profound significance in improving pharmacodynamics and bioavailability of drugs.
Collapse
Affiliation(s)
- Chengmei Shi
- a Shandong Provincial Key Laboratory of Fine Chemicals , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , China
| | - Furong Tao
- a Shandong Provincial Key Laboratory of Fine Chemicals , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , China
| | | |
Collapse
|
32
|
A new mathematical approach to predict the actual drug release from hydrogels. Eur J Pharm Sci 2018; 111:303-310. [DOI: 10.1016/j.ejps.2017.09.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022]
|
33
|
Vinklárková L, Masteiková R, Foltýnová G, Muselík J, Pavloková S, Bernatonienė J, Vetchý D. Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Voicu G, Jinga SI, Drosu BG, Busuioc C. Improvement of silicate cement properties with bacterial cellulose powder addition for applications in dentistry. Carbohydr Polym 2017; 174:160-170. [DOI: 10.1016/j.carbpol.2017.06.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023]
|
35
|
de Lima Fontes M, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, Dos Santos AM, Ribeiro SJL, Barud HS. Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 2017; 179:126-134. [PMID: 29111035 DOI: 10.1016/j.carbpol.2017.09.061] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022]
Abstract
Bacterial cellulose/carboxymethylcelullose (BC/CMC) biocomposites with different DS-CMC (DS from 0.7 to 1.2) were developed in order to evaluate their impact as a drug delivery system. Biocomposites were loaded with methotrexate (MTX) as an alternative for the topical treatment of psoriasis. Scanning electron microscopy and atomic force microscopy showed that the CMC coated the cellulose nanofibers, leading to the decrease of the elastic modulus as the DS of CMC increased. BC/CMC0.9 exhibited the lower liquid uptake (up to 11 times lower), suggesting that the more linear structure of the intermediate substitute CMC grade (0.9) was able to interact more strongly with BC, resulting in a denser structure. All samples showed a typical burst release effect in the first 15min of test, however the BC/CMC0.9 biocomposite promoted a slight lowering of MTX release rates, suggesting that the DS of CMC can be considered the key factor to modulate the BC properties.
Collapse
Affiliation(s)
| | - Andréia Bagliotti Meneguin
- University of Araraquara - UNIARA, 14801-320, Araraquara, SP, Brazil; Interdisciplinary Laboratory of Advanced Materials, Centro de Ciências da Natureza- CNN, Federal University of Piaui - UFPI, 64049-550, Teresina, PI, Brazil
| | - Agnieszka Tercjak
- Group 'Materials + Technologies' (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Junkal Gutierrez
- Group 'Materials + Technologies' (GMT), Department of Chemical and Environmental Engineering, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Beatriz Stringhetti Ferreira Cury
- Department of Drugs and Pharmaceuticals, School of Pharmaceutical Sciences, SãoPaulo State University - UNESP, 14800-903, Araraquara, Sao Paulo, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceuticals, School of Pharmaceutical Sciences, SãoPaulo State University - UNESP, 14800-903, Araraquara, Sao Paulo, Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University - UNESP, 14801-970, Araraquara, SP, Brazil
| | - Hernane S Barud
- University of Araraquara - UNIARA, 14801-320, Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University - UNESP, 14801-970, Araraquara, SP, Brazil.
| |
Collapse
|
36
|
Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA. Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol 2017; 104:97-106. [PMID: 28587970 DOI: 10.1016/j.ijbiomac.2017.05.171] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) derived materials represents major advances to the current regenerative and diagnostic medicine. BC is a highly pure, biocompatible and versatile material that can be utilized in several applications - individually or in the combination with different components (e.g. biopolymers and nanoparticles) - to provide structural organization and flexible matrixes to distinct finalities. The wide application and importance of BC is described by its common utilization as skin repair treatments in cases of burns, wounds and ulcers. BC membranes accelerate the process of epithelialization and avoid infections. Furthermore, BC biocomposites exhibit the potential to regulate cell adhesion, an important characteristic to scaffolds and grafts; ultra-thin films of BC might be also utilized in the development of diagnostic sensors for its capability in immobilizing several antigens. Therefore, the growing interest in BC derived materials establishes it as a great promise to enhance the quality and functionalities of the current generation of biomedical materials.
Collapse
Affiliation(s)
| | - Cleverton Luiz Pirich
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Maria Rita Sierakowski
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Marco Aurélio Woehl
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | | | - Clayton Fernandes de Souza
- Chemistry Undergraduate Program, School of Education and Humanities, Pontifícia Universidade Católica do Paraná-PUCPR, Curitiba, PR 80215-901, Brazil
| | - Andressa Amado Martin
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | - Renata da Silva
- Biopol, Chemistry Department, Federal University of Paraná, Curitiba, PR 81531-980, Brazil
| | | |
Collapse
|
37
|
Mansur AA, de Carvalho FG, Mansur RL, Carvalho SM, de Oliveira LC, Mansur HS. Carboxymethylcellulose/ZnCdS fluorescent quantum dot nanoconjugates for cancer cell bioimaging. Int J Biol Macromol 2017; 96:675-686. [DOI: 10.1016/j.ijbiomac.2016.12.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 11/30/2016] [Accepted: 12/30/2016] [Indexed: 01/27/2023]
|
38
|
Liu YX, Liu KF, Li CX, Wang LY, Liu J, He J, Lei J, Liu X. Self-assembled nanoparticles based on a carboxymethylcellulose–ursolic acid conjugate for anticancer combination therapy. RSC Adv 2017. [DOI: 10.1039/c7ra05913b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new self-assembled nanoparticle platform based on a carboxymethylcellulose (CMC)–ursolic acid (UA) conjugate is presented for the first time.
Collapse
Affiliation(s)
- Yan-xue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Ke-feng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Chun-xiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Lu-ying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- PR China
- College of Chemistry and Environmental Engineering
| | - Xingyong Liu
- College of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong 643000
- PR China
| |
Collapse
|