1
|
Nandhini J, Karthikeyan E, Rajeshkumar S. Eco-friendly bio-nanocomposites: pioneering sustainable biomedical advancements in engineering. DISCOVER NANO 2024; 19:86. [PMID: 38724698 PMCID: PMC11082105 DOI: 10.1186/s11671-024-04007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Biomedical nanocomposites, which are an upcoming breed of mischievous materials, have ushered in a new dimension in the healthcare sector. Incorporating these materials tends to boost features this component already possesses and give might to things these components could not withstand alone. The biopolymer, which carries the nanoparticles, can simultaneously improve the composite's stiffness and biological characteristics, and vice versa. This increases the options of the composite and the number of times it can be used. The bio-nanocomposites and nanoparticles enable the ecocompatibility of the medicine in their biodegradability, and they, in this way, have ecological sustainability. The outcome is the improved properties of medicine and its associated positive impact on the environment. They have broad applications in antimicrobial agents, drug carriers, tissue regeneration, wound care, dentistry, bioimaging, and bone filler, among others. The dissertation on the elements of bio-nanocomposites emphasizes production techniques, their diverse applications in medicine, match-up issues, and future-boasting prospects in the bio-nanocomposites field. Through the utilization of such materials, scientists can develop more suitable for the environment and healthy biomedical solutions, and world healthcare in this way improves as well.
Collapse
Affiliation(s)
- J Nandhini
- Department of Pharmaceutics, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - E Karthikeyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamilnadu, India.
| | - S Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
2
|
Zhang Y, Lin JH, Cheng DH, Li X, Wang HY, Lu YH, Lou CW. A Study on Tencel/LMPET-TPU/Triclosan Laminated Membranes: Excellent Water Resistance and Antimicrobial Ability. MEMBRANES 2023; 13:703. [PMID: 37623764 PMCID: PMC10456457 DOI: 10.3390/membranes13080703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Medical product contamination has become a threatening issue against human health, which is the main reason why protective nonwoven fabrics have gained considerable attention. In the present, there is a soaring number of studies on establishing protection systems with nonwoven composites via needle punch. Meanwhile, the disadvantages of composites, such as poor mechanical performance and texture, impose restrictions. Hence, in this study, an eco-friendly method composed of needling, hot pressing, and lamination is applied to produce water-resistant, windproof, and antimicrobial Tencel/low-melting-point polyester-thermoplastic polyurethane/Triclosan (Tencel/LMPET-TPU/TCL) laminated membranes. Field-emission scanning electron microscope (SEM) images and FTIR show needle-punched Tencel/LMPET membranes successfully coated with TPU/TCL laminated membranes, thereby extensively improving nonwoven membranes in terms of water-resistant, windproof, and antimicrobial attributes. Parameters including needle punch depth, content of LMPET fibers, and concentration of TCL are changed during the production. Specifically, Tencel/LMPET-TPU/TCL-0.1 laminated nonwovens acquire good water resistance (100 kPa), outstanding windproof performance (<0.1 cm3/cm2/s), and good antimicrobial ability against Escherichia coli and Staphylococcus aureus. Made with a green production process that is pollution-free, the proposed products are windproof, water resistant, and antimicrobial, which ensures promising uses in the medical and protective textile fields.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering, Liaodong University, Dandong 118003, China; (Y.Z.); (D.-H.C.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China
| | - Jia-Horng Lin
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China;
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Textile Science & Engineering, Tiangong University, Tianjin 300387, China;
| | - De-Hong Cheng
- School of Chemical Engineering, Liaodong University, Dandong 118003, China; (Y.Z.); (D.-H.C.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China
| | - Xing Li
- School of Textile Science & Engineering, Tiangong University, Tianjin 300387, China;
| | - Hong-Yang Wang
- Tianjing Fire Science and Technology Research Institute of MEM, Tianjin 300381, China;
| | - Yan-Hua Lu
- School of Chemical Engineering, Liaodong University, Dandong 118003, China; (Y.Z.); (D.-H.C.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China
| | - Ching-Wen Lou
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China;
- School of Textile Science & Engineering, Tiangong University, Tianjin 300387, China;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| |
Collapse
|
3
|
Antimicrobial and Antiviral Properties of Triclosan-Containing Polymer Composite: Aging Effects of pH, UV, and Sunlight Exposure. Polymers (Basel) 2023; 15:polym15051236. [PMID: 36904477 PMCID: PMC10007459 DOI: 10.3390/polym15051236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
The present study deals with the synthesis and characterization of a polymer composite based on an unsaturated ester loaded with 5 wt.% triclosan, produced by co-mixing on an automated hardware system. The polymer composite's non-porous structure and chemical composition make it an ideal material for surface disinfection and antimicrobial protection. According to the findings, the polymer composite effectively inhibited (100%) the growth of Staphylococcus aureus 6538-P under exposure to physicochemical factors, including pH, UV, and sunlight, over a 2-month period. In addition, the polymer composite demonstrated potent antiviral activity against human influenza virus strain A and the avian coronavirus infectious bronchitis virus (IBV), with infectious activities of 99.99% and 90%, respectively. Thus, the resulting triclosan-loaded polymer composite is revealed to have a high potential as a surface-coating non-porous material with antimicrobial properties.
Collapse
|
4
|
Assis M, Ribeiro LK, Gonçalves MO, Staffa LH, Paiva RS, Lima LR, Coelho D, Almeida LF, Moraes LN, Rosa ILV, Mascaro LH, Grotto RMT, Sousa CP, Andrés J, Longo E, Cruz SA. Polypropylene Modified with Ag-Based Semiconductors as a Potential Material against SARS-CoV-2 and Other Pathogens. ACS APPLIED POLYMER MATERIALS 2022; 4:7102-7114. [PMID: 36873928 PMCID: PMC9972354 DOI: 10.1021/acsapm.2c00744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 06/18/2023]
Abstract
The worldwide outbreak of the coronavirus pandemic (COVID-19) and other emerging infections are difficult and sometimes impossible to treat, making them one of the major public health problems of our time. It is noteworthy that Ag-based semiconductors can help orchestrate several strategies to fight this serious societal issue. In this work, we present the synthesis of α-Ag2WO4, β-Ag2MoO4, and Ag2CrO4 and their immobilization in polypropylene in the amounts of 0.5, 1.0, and 3.0 wt %, respectively. The antimicrobial activity of the composites was investigated against the Gram-negative bacterium Escherichia coli, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. The best antimicrobial efficiency was achieved by the composite with α-Ag2WO4, which completely eliminated the microorganisms in up to 4 h of exposure. The composites were also tested for the inhibition of SARS-CoV-2 virus, showing antiviral efficiency higher than 98% in just 10 min. Additionally, we evaluated the stability of the antimicrobial activity, resulting in constant inhibition, even after material aging. The antimicrobial activity of the compounds was attributed to the production of reactive oxygen species by the semiconductors, which can induce high local oxidative stress, causing the death of these microorganisms.
Collapse
Affiliation(s)
- Marcelo Assis
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Lara K. Ribeiro
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Mariana O. Gonçalves
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program
(PPGBiotec), Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| | - Lucas H. Staffa
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos - (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Robert S. Paiva
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| | - Lais R. Lima
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| | - Dyovani Coelho
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Lauana F. Almeida
- School of
Agriculture, São Paulo State University
(Unesp), Botucatu, SP, 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School, São Paulo State University (Unesp), Botucatu, SP, 18618-687, Brazil
| | - Leonardo N. Moraes
- School of
Agriculture, São Paulo State University
(Unesp), Botucatu, SP, 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School, São Paulo State University (Unesp), Botucatu, SP, 18618-687, Brazil
| | - Ieda L. V. Rosa
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Lucia H. Mascaro
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Rejane M. T. Grotto
- School of
Agriculture, São Paulo State University
(Unesp), Botucatu, SP, 18610-034, Brazil
- Molecular
Laboratory of Clinical Hospital of Botucatu, Medical School, São Paulo State University (Unesp), Botucatu, SP, 18618-687, Brazil
| | - Cristina P. Sousa
- Biomolecules
and Microbiology Laboratory (LaMiB), Biotechnology Graduation Program
(PPGBiotec), Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| | - Juan Andrés
- Department
of Physical and Analytical Chemistry, University
Jaume I (UJI), Castelló 12071, Spain
| | - Elson Longo
- CDMF,
LIEC, Federal University of São Carlos
- (UFSCar), São Carlos, SP, 13565-905 Brazil
| | - Sandra A. Cruz
- Chemistry
Department, Federal University of São
Carlos (UFSCar), São
Carlos, SP, 13565-905, Brazil
| |
Collapse
|
5
|
Tauanov Z, Zakiruly O, Baimenova Z, Baimenov A, Akimbekov NS, Berillo D. Antimicrobial Properties of the Triclosan-Loaded Polymeric Composite Based on Unsaturated Polyester Resin: Synthesis, Characterization and Activity. Polymers (Basel) 2022; 14:676. [PMID: 35215588 PMCID: PMC8875966 DOI: 10.3390/polym14040676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
The manufacturing of sanitary and household furniture on a large scale with inherently antimicrobial properties is an essential field of research. This work focuses on the synthesis of polymer composites based on the unsaturated polyester of resin loaded with 5 wt.%-Triclosan produced by a co-mixing approach on automated technological complex with a potential for broad applications. According to findings, the polymer composite has a non-porous structure (surface area < 1.97 m2/g) suitable for sanitary applications to reduce the growth of bacteria. The chemical composition confirmed the presence of major elements, and the inclusion of Triclosan was quantitatively confirmed by the appearance of chlorine on XRF (1.67 wt.%) and EDS (1.62 wt.%) analysis. Thermal analysis showed the difference of 5 wt.% in weight loss, which confirms the loading of Triclosan into the polymer matrix. The polymer composite completely inhibited the strains of S. aureus 6538-P, S. aureus 39, S. epidermidis 12228, and Kl. Pneumoniae 10031 after 5-min contact time. The antimicrobial effects against Kl. pneumoniae 700603, Ps. aeruginosa 9027 and Ps. aeruginosa TA2 strains were 92.7%, 85.8% and 18.4%, respectively. The inhibition activity against C. albicans 10231 and C. albicans 2091 was 1.6% and 82.4%, respectively; while the clinical strain of C. albicans was inhibited by 92.2%. The polymer composite loaded with 5 wt.%-Triclosan displayed a stability over the period that illustrates the possibility of washing the composite surface.
Collapse
Affiliation(s)
- Zhandos Tauanov
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
- Department of Research and Development, LLP “Marmar Kazakhstan”, Taldykorgan 040008, Kazakhstan; (O.Z.); (Z.B.)
| | - Olzhas Zakiruly
- Department of Research and Development, LLP “Marmar Kazakhstan”, Taldykorgan 040008, Kazakhstan; (O.Z.); (Z.B.)
| | - Zhuldyz Baimenova
- Department of Research and Development, LLP “Marmar Kazakhstan”, Taldykorgan 040008, Kazakhstan; (O.Z.); (Z.B.)
| | - Alzhan Baimenov
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
- Laboratory of Green Energy and Environment, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Nuraly S. Akimbekov
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (N.S.A.); (D.B.)
| | - Dmitriy Berillo
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (N.S.A.); (D.B.)
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| |
Collapse
|
6
|
Liu R, Wang E, Guo Y, Zhou Q, Zheng Y, Zhai J, Zhang K, Zhang B. Enhanced antibacterial properties and promoted cell proliferation in glass ionomer cement by modified with fluorinated graphene-doped. J Appl Biomater Funct Mater 2021; 19:22808000211037487. [PMID: 34428976 DOI: 10.1177/22808000211037487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, we aimed to improve the properties of conventional glass ionomer cement (GIC), including mechanical properties, wear resistance, antibacterial properties and biological activity, by adding fluorinated graphene (FG). Composites of synthesised FG and GIC were examined after being combined at different mass proportions (0, 0.5, 1.0 and 2.0 wt%). The microstructure and morphology of FG prepared via the hydrothermal method was characterised using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The FG/GIC composite was obtained through the blending method and characterised using SEM. Then, the Vickers microhardness and the wear property of the FG/GIC composite-imitated brushing was measured. The plate count and dilution methods (10-fold) were adopted to investigate the antibacterial properties of FG/GIC by incubating Escherichia coli and Staphylococcus aureus. The biocompatibility of FG/GIC containing the adhesion and cytotoxicity of mouse fibroblast cells (L929) was estimated by the MTT and acridine orange (AO) fluorescent staining. Our results demonstrated that the hardness and abrasive wear resistance of the composites increased, and the microhardness parameter changes exhibited a gradual increase as the concentration continued to increase. A 2.0 wt% FG concentration could effectively improve the bacterial inhibition performance of GIC and was directly proportional to the concentration of FG. The composite materials showed no apparent cytotoxicity on normal L929 cells compared to the control group, and the materials exhibited no cytotoxic effect compared to traditional GIC. Thus, FG/GIC has potential therapeutic value in the field of dental treatment.
Collapse
Affiliation(s)
- Ruimin Liu
- Department of Oral and Maxillofacial Surgery, Gansu Provincial Hospital, Lanzhou, PR China
| | - Errui Wang
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Yumeng Guo
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Qiaozhen Zhou
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Yayuan Zheng
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Junkai Zhai
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Kailiang Zhang
- Department of Stomatology, Lanzhou University, Lanzhou, PR China
| | - Baoping Zhang
- Department of Stomatology, Lanzhou University, Lanzhou, PR China.,Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
7
|
Olmos D, González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers (Basel) 2021; 13:613. [PMID: 33670638 PMCID: PMC7922637 DOI: 10.3390/polym13040613] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Infections caused by bacteria are one of the main causes of mortality in hospitals all over the world. Bacteria can grow on many different surfaces and when this occurs, and bacteria colonize a surface, biofilms are formed. In this context, one of the main concerns is biofilm formation on medical devices such as urinary catheters, cardiac valves, pacemakers or prothesis. The development of bacteria also occurs on materials used for food packaging, wearable electronics or the textile industry. In all these applications polymeric materials are usually present. Research and development of polymer-based antibacterial materials is crucial to avoid the proliferation of bacteria. In this paper, we present a review about polymeric materials with antibacterial materials. The main strategies to produce materials with antibacterial properties are presented, for instance, the incorporation of inorganic particles, micro or nanostructuration of the surfaces and antifouling strategies are considered. The antibacterial mechanism exerted in each case is discussed. Methods of materials preparation are examined, presenting the main advantages or disadvantages of each one based on their potential uses. Finally, a review of the main characterization techniques and methods used to study polymer based antibacterial materials is carried out, including the use of single force cell spectroscopy, contact angle measurements and surface roughness to evaluate the role of the physicochemical properties and the micro or nanostructure in antibacterial behavior of the materials.
Collapse
Affiliation(s)
- Dania Olmos
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| |
Collapse
|
8
|
Melt Electrospinning of Polymers: Blends, Nanocomposites, Additives and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041808] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melt electrospinning has been developed in the last decade as an eco-friendly and solvent-free process to fill the gap between the advantages of solution electrospinning and the need of a cost-effective technique for industrial applications. Although the benefits of using melt electrospinning compared to solution electrospinning are impressive, there are still challenges that should be solved. These mainly concern to the improvement of polymer melt processability with reduction of polymer degradation and enhancement of fiber stability; and the achievement of a good control over the fiber size and especially for the production of large scale ultrafine fibers. This review is focused in the last research works discussing the different melt processing techniques, the most significant melt processing parameters, the incorporation of different additives (e.g., viscosity and conductivity modifiers), the development of polymer blends and nanocomposites, the new potential applications and the use of drug-loaded melt electrospun scaffolds for biomedical applications.
Collapse
|
9
|
Zhao F, Xu H, Xue W, Li Y, Sun J, Wang F, Jiang G, Li L, Wang L. Iodinated poly( p-dioxanone) as a facile platform for X-ray imaging of resorbable implantable medical devices. J Biomater Appl 2020; 35:39-48. [PMID: 32192387 DOI: 10.1177/0885328220912842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, implantable fibrous medical devices still suffer from invisibility under current clinical imaging techniques. To address this problem, 2, 3, 5-triiodobenzoic acid (TIBA) was recruited as a contrast agent, and then a set of iodinated poly(p-dioxanone) (PPDO) fibers was fabricated via melt-spinning hybrid blends of PPDO with TIBA (PPDO/TIBA). The impact of TIBA content on the rheological behavior of blends was evaluated firstly. The physical, chemical, and thermal properties of PPDO/TIBA fibers were investigated accordingly by SEM, FTIR, DSC, and TGA. Moreover, the radiopaque property of PPDO/TIBA hybrid fibers as a potential radio-opacifying platform for medical devices was verified in vitro and in vivo. Finally, the accumulated release results of the hybrid fibers during in vitro degradation indicate the continual X-ray visibility of the hybrid fibers maintains for 22 days. This intriguing iodinated platform may pave the way for constructing fibrous materials with in-situ X-ray tracking property.
Collapse
Affiliation(s)
- Fan Zhao
- College of Textiles, Donghua University, Shanghai, China.,Key laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Songjiang, Shanghai, China
| | - Haiyan Xu
- College of Textiles, Donghua University, Shanghai, China.,Key laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Songjiang, Shanghai, China
| | - Wen Xue
- College of Textiles, Donghua University, Shanghai, China.,Key laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Songjiang, Shanghai, China
| | - Yan Li
- College of Textiles, Donghua University, Shanghai, China.,Key laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Songjiang, Shanghai, China
| | - Jing Sun
- Department of Pediatric Cardiology of Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fujun Wang
- College of Textiles, Donghua University, Shanghai, China.,Key laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Songjiang, Shanghai, China
| | - Guansen Jiang
- Hangzhou Rejoin Mastin Medical Device Co., Ltd, Hangzhou, China
| | - Lingchen Li
- Hangzhou Rejoin Mastin Medical Device Co., Ltd, Hangzhou, China
| | - Lu Wang
- College of Textiles, Donghua University, Shanghai, China.,Key laboratory of Textile Science and Technology, Ministry of Education, Donghua University, Songjiang, Shanghai, China
| |
Collapse
|
10
|
Morphology and Properties of Electrospun PCL and Its Composites for Medical Applications: A Mini Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112205] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polycaprolactone (PCL) is one of the most used synthetic polymers for medical applications due to its biocompatibility and slow biodegradation character. Combining the inherent properties of the PCL matrix with the characteristic of nanofibrous particles, result into promising materials that can be suitable for different applications, including the biomedical applications. The advantages of nanofibrous structures include large surface area, a small diameter of pores and a high porosity, which make them of great interest in different applications. Electrospinning, as technique, has been heavily used for the preparation of nano- and micro-sized fibers. This review discusses the different methods for the electrospinning of PCL and its composites for advanced applications. Furthermore, the steady state conditions as well as the effect of the electrospinning parameters on the resultant morphology of the electrospun fiber are also reported.
Collapse
|
11
|
Balali S, Davachi SM, Sahraeian R, Shiroud Heidari B, Seyfi J, Hejazi I. Preparation and Characterization of Composite Blends Based on Polylactic Acid/Polycaprolactone and Silk. Biomacromolecules 2018; 19:4358-4369. [DOI: 10.1021/acs.biomac.8b01254] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shiva Balali
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mohammad Davachi
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Razi Sahraeian
- Composites Department, Faculty of Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14975/112, Tehran, Iran
| | - Behzad Shiroud Heidari
- Applied Science Nano Research Group, ASNARKA, Tehran, Iran
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Javad Seyfi
- Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood, Iran
| | - Iman Hejazi
- Applied Science Nano Research Group, ASNARKA, Tehran, Iran
| |
Collapse
|
12
|
Sabharwal PK, Chattopadhyay S, Singh H. Preparation and characterization of antimicrobial, biodegradable, triclosan-incorporated polyhydroxybutyrate-co-valerate films for packaging applications. J Appl Polym Sci 2018. [DOI: 10.1002/app.46862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prabhjot Kaur Sabharwal
- Center for Biomedical Engineering, Indian Institute of Technology; New Delhi 110016 India
- All Indian Institute of Medical Sciences; New Delhi 110029 India
| | - Sruti Chattopadhyay
- Center for Biomedical Engineering, Indian Institute of Technology; New Delhi 110016 India
- All Indian Institute of Medical Sciences; New Delhi 110029 India
| | - Harpal Singh
- Center for Biomedical Engineering, Indian Institute of Technology; New Delhi 110016 India
- All Indian Institute of Medical Sciences; New Delhi 110029 India
| |
Collapse
|
13
|
Cunha DA, Rodrigues NS, Souza LC, Lomonaco D, Rodrigues FP, Degrazia FW, Collares FM, Sauro S, Saboia VPA. Physicochemical and Microbiological Assessment of an Experimental Composite Doped with Triclosan-Loaded Halloysite Nanotubes. MATERIALS 2018; 11:ma11071080. [PMID: 29941832 PMCID: PMC6073989 DOI: 10.3390/ma11071080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/10/2018] [Accepted: 06/22/2018] [Indexed: 11/18/2022]
Abstract
This study is aimed at evaluating the effects of triclosan-encapsulated halloysite nanotubes (HNT/TCN) on the physicochemical and microbiological properties of an experimental dental composite. A resin composite doped with HNT/TCN (8% w/w), a control resin composite without nanotubes (HNT/TCN-0%) and a commercial nanofilled resin (CN) were assessed for degree of conversion (DC), flexural strength (FS), flexural modulus (FM), polymerization stress (PS), dynamic thermomechanical (DMA) and thermogravimetric analysis (TGA). The antibacterial properties (M) were also evaluated using a 5-day biofilm assay (CFU/mL). Data was submitted to one-way ANOVA and Tukey tests. There was no significant statistical difference in DC, FM and RU between the tested composites (p > 0.05). The FS and CN values attained with the HNT/TCN composite were higher (p < 0.05) than those obtained with the HNT/TCN-0%. The DMA analysis showed significant differences in the TAN δ (p = 0.006) and Tg (p = 0) between the groups. TGA curves showed significant differences between the groups in terms of degradation (p = 0.046) and weight loss (p = 0.317). The addition of HNT/TCN induced higher PS, although no significant antimicrobial effect was observed (p = 0.977) between the groups for CFUs and (p = 0.557) dry weight. The incorporation of HNT/TCN showed improvements in physicochemical and mechanical properties of resin composites. Such material may represent an alternative choice for therapeutic restorative treatments, although no significance was found in terms of antibacterial properties. However, it is possible that current antibacterial tests, as the one used in this laboratory study, may not be totally appropriate for the evaluation of resin composites, unless accompanied with aging protocols (e.g., thermocycling and load cycling) that allow the release of therapeutic agents incorporated in such materials.
Collapse
Affiliation(s)
- Diana A Cunha
- Post-Graduation Program in Dentistry, Federal University of Ceará, Rua Monsenhor Furtado S/N, Rodolfo Teófilo, Fortaleza 60430-355, Ceará, Brazil.
| | - Nara S Rodrigues
- Post-Graduation Program in Dentistry, Federal University of Ceará, Rua Monsenhor Furtado S/N, Rodolfo Teófilo, Fortaleza 60430-355, Ceará, Brazil.
| | - Lidiane C Souza
- Post-Graduation Program in Dentistry, Federal University of Ceará, Rua Monsenhor Furtado S/N, Rodolfo Teófilo, Fortaleza 60430-355, Ceará, Brazil.
| | - Diego Lomonaco
- Post-Graduation Program in Dentistry, Federal University of Ceará, Rua Monsenhor Furtado S/N, Rodolfo Teófilo, Fortaleza 60430-355, Ceará, Brazil.
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza 60440-900, Ceará, Brazil.
| | - Flávia P Rodrigues
- Post-Graduation Program in Dentistry, Federal University of Ceará, Rua Monsenhor Furtado S/N, Rodolfo Teófilo, Fortaleza 60430-355, Ceará, Brazil.
- School of Dentistry, Paulista University-UNIP, R. Dr. Bacelar 1212, Vila Clementino, São Paulo 04026-002, SP, Brazil.
| | - Felipe W Degrazia
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, Porto Alegre 90035-003, Rio Grande do Sul, Brazil.
| | - Fabrício M Collares
- Laboratório de Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, Porto Alegre 90035-003, Rio Grande do Sul, Brazil.
| | - Salvatore Sauro
- Departamento de Odontología, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, C/Del Pozos/n, Alfara del Patriarca, 46115 Valencia, Spain.
- Tissue Engineering and Biophotonics Research Division King's College London Dental Institute (KCLDI), London SE1 9RT, UK.
| | - Vicente P A Saboia
- Post-Graduation Program in Dentistry, Federal University of Ceará, Rua Monsenhor Furtado S/N, Rodolfo Teófilo, Fortaleza 60430-355, Ceará, Brazil.
- Department of Restorative Dentistry, School of Dentistry, of Ceará, Fortaleza 60430-355, Ceará, Brazil.
| |
Collapse
|
14
|
Hanafy AF, Ali HSM, El Achy SN, Habib ELSE. Dual effect biodegradable ciprofloxacin loaded implantable matrices for osteomyelitis: controlled release and osteointegration. Drug Dev Ind Pharm 2018; 44:1023-1033. [DOI: 10.1080/03639045.2018.1430820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ahmed F. Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Research and Development Department, European Egyptian Pharmaceutical Industries, Alexandria, Egypt
| | - Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Samar N. El Achy
- Department of Surgical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - EL-Sayed E. Habib
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
15
|
Liu R, Chen Y, Liu L, Gong Y, Wang M, Li S, Chen C, Yu B. Long-term delivery of rhIGF-1 from biodegradable poly(lactic acid)/hydroxyapatite@Eudragit double-layer microspheres for prevention of bone loss and articular degeneration in C57BL/6 mice. J Mater Chem B 2018; 6:3085-3095. [PMID: 32254343 DOI: 10.1039/c8tb00324f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin-like growth factor (IGF-1) has encouraged researchers to investigate its various potential therapeutic uses such as in the treatment of osteoporosis and repair of articular cartilage.
Collapse
Affiliation(s)
- Rui Liu
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Yan Chen
- Department of Ultrasonic Diagnosis
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Lanlan Liu
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Yong Gong
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Mingbo Wang
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Songjian Li
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| | - Changsheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices
- Research Institute of Tsinghua University in Shenzhen
- Shenzhen 518057
- P. R. China
| | - Bo Yu
- Department of Orthopedics
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510282
- China
| |
Collapse
|
16
|
Traore YL, Fumakia M, Gu J, Ho EA. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery. J Biomater Appl 2017; 32:1119-1126. [PMID: 29105543 DOI: 10.1177/0885328217739451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the viscoelastic and mechanical behaviour of polyvinyl alcohol films formulated along with carrageenan, plasticizing agents (polyethylene glycol and glycerol), and when loaded with nanoparticles as a model for potential applications as microbicides. The storage modulus, loss modulus and glass transition temperature were determined using a dynamic mechanical analyzer. Films fabricated from 2% to 5% polyvinyl alcohol containing 3 mg or 5 mg of fluorescently labeled nanoparticles were evaluated. The storage modulus and loss modulus values of blank films were shown to be higher than the nanoparticle-loaded films. Glass transition temperature determined using the storage modulus, and loss modulus was between 40-50℃ and 35-40℃, respectively. The tensile properties evaluated showed that 2% polyvinyl alcohol films were more elastic but less resistant to breaking compared to 5% polyvinyl alcohol films (2% films break around 1 N load and 5% films break around 7 N load). To our knowledge, this is the first study to evaluate the influence of nanoparticle and film composition on the physico-mechanical properties of polymeric films for vaginal drug delivery.
Collapse
Affiliation(s)
- Yannick L Traore
- 1 70382 School of Pharmacy, University of Waterloo , Waterloo, Ontario, Canada
| | - Miral Fumakia
- 2 College of Pharmacy, Rady Faculty of Health Sciences, 8664 University of Manitoba , Winnipeg, Manitoba, Canada
| | - Jijin Gu
- 2 College of Pharmacy, Rady Faculty of Health Sciences, 8664 University of Manitoba , Winnipeg, Manitoba, Canada
| | - Emmanuel A Ho
- 1 70382 School of Pharmacy, University of Waterloo , Waterloo, Ontario, Canada
| |
Collapse
|
17
|
Raee E, Kaffashi B. Biodegradable polypropylene/thermoplastic starch nanocomposites incorporating halloysite nanotubes. J Appl Polym Sci 2017. [DOI: 10.1002/app.45740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ehsan Raee
- Department of Polymer Engineering, School of Chemical Engineering, Faculty of Engineering; University of Tehran, P.O. Box 11155-4563; Tehran Iran
| | - Babak Kaffashi
- Department of Polymer Engineering, School of Chemical Engineering, Faculty of Engineering; University of Tehran, P.O. Box 11155-4563; Tehran Iran
| |
Collapse
|
18
|
Karaszewska A, Kamińska I, Kiwała M, Gadzinowski M, Gosecki M, Slomkowski S. Preparation and properties of textile materials modified with triclosan-loaded polylactide microparticles. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Irena Kamińska
- Textile Research Institute; Brzezinska 5/15 Lodz 92-103 Poland
| | | | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 Lodz 90-363 Poland
| | - Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 Lodz 90-363 Poland
| | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies; Polish Academy of Sciences; Sienkiewicza 112 Lodz 90-363 Poland
| |
Collapse
|
19
|
Li J, Ding J, Liu T, Liu JF, Yan L, Chen X. Poly(lactic acid) Controlled Drug Delivery. INDUSTRIAL APPLICATIONS OF POLY(LACTIC ACID) 2017. [DOI: 10.1007/12_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Abstract
Novel modified pharmaceutical materials with desired functionalities are required for the development of drug delivery systems. Excipients are no more inert ingredients but these are playing crucial roles in modifying physicochemical properties of drugs and for imparting desired functionalities in the delivery system. In this review article, modified materials such as grafted, composite and coprocessed have been discussed along with the updated reported literature on the same. Applications of grafted materials as drug release retardant, mucoadhesive polymer and tablet superdisintegrant have been elaborated. Use of composite materials in the development of transdermal films, hydrogels, microspheres, beads and nanoparticles have been discussed. Methods for the preparation of coprocessed materials along with commercial products of different coprocessed excipients have also been enlisted.
Collapse
|
21
|
Investigation on the properties of poly(l-lactide)/thermoplastic poly(ester urethane)/halloysite nanotube composites prepared based on prediction of halloysite nanotube location by measuring free surface energies. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.09.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|