1
|
Wang H, Xu T, Han J, Zhang H, Hu S, Wei S, Cao M, Song Y, Yin D. Three-Dimensional Cultured Human Nasal Epithelial Cell Model for Testing Respiratory Toxicity and Neurotoxicity of Air Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6452-6463. [PMID: 40143553 DOI: 10.1021/acs.est.4c13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Accumulating evidence suggests a strong correlation between air pollution and neurological disorders; however, appropriate models and methodologies are currently lacking. In this study, a human nasal RPMI 2650 cell model based on air-liquid interface culture was discovered to possess olfactory epithelial cells. Two short-chain per- and polyfluoroalkyl substances (PFAS), PFBA and PFHxA, were used to validate the performance of the model. RNA sequencing initially revealed the adverse effects of two PFAS at environmentally relevant concentrations. Their effects on key nasal epithelial cell functions, including barrier protection, solute transport, and neuronal activity, were separately investigated. Both PFBA and PFHxA disrupted membrane integrity and increased cellular transport capacity, as indicated by the upregulation of ABC transporters. Additionally, they inhibited tight junction proteins, including ZO-1, claudin-3, and occludin, while increasing mucin expression and mucus secretion. PFHxA exhibited stronger effects in most assays and uniquely induced a significant upregulation of NOTCH1 expression (p < 0.05), highlighting its potential hazards on olfactory neurons. This study proposed a novel in vitro test model with the matched respiratory epithelial and neuronal end points, which was expected to improve toxicological research and risk assessment of air pollutants.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jing Han
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongchang Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yiqun Song
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Shen H, Aggarwal N, Cui B, Foo GW, He Y, Srivastava SK, Li S, Seah MZX, Wun KS, Ling H, Hwang IY, Ho CL, Lee YS, Chang MW. Engineered commensals for targeted nose-to-brain drug delivery. Cell 2025; 188:1545-1562.e16. [PMID: 39914382 DOI: 10.1016/j.cell.2025.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/22/2024] [Accepted: 01/10/2025] [Indexed: 03/23/2025]
Abstract
Intranasal administration through the olfactory epithelium (OE) presents a direct pathway for brain-targeted therapeutic delivery, although its feasibility is hampered by the anatomical and absorptive limitations of the OE. In this study, we identified Lactobacillus plantarum WCFS1 (Lp), a commensal strain with a natural affinity for the OE and engineered it to function as a vector for cerebral drug delivery. Upon intranasal administration, Lp released specific payload molecules within the OE, with subsequent transport and accumulation in the brain. The therapeutic efficacy of Lp was further validated by the recombinant production and secretion of appetite-regulating hormones. When administered intranasally in a murine model of obesity prevention, the engineered Lp significantly alleviated obesity-related symptoms. This was evidenced by decreased appetite, reduced body weight gain, and improved glucose metabolism and fat mass deposition. Our study demonstrates the capability of Lp as an intranasal delivery vehicle, emphasizing its potential for brain-targeted therapeutic applications.
Collapse
Affiliation(s)
- Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Beiming Cui
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Guo Wei Foo
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Yuanzhi He
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Santosh Kumar Srivastava
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Shengjie Li
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Marcus Ze Xian Seah
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kwok Soon Wun
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chun Loong Ho
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore; Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; National Centre for Engineering Biology (NCEB), Singapore, Singapore.
| |
Collapse
|
3
|
Koo J, Shin Y, Jeon H, Cheong J, Cho S, Park C, Song EC, Ramsey JD, Lim C, Oh KT. Enhancing glioblastoma therapy via intranasal administration of highly potent cell-penetrating peptide decorated nanoparticles. J Control Release 2025; 378:997-1012. [PMID: 39724950 DOI: 10.1016/j.jconrel.2024.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a devastating primary tumor of the central nervous system with a significantly poor prognosis. The primary challenge in treating GBM lies in the restrictive nature of the blood-brain barrier (BBB), impeding effective drug delivery to the brain. In this study, intranasal polymeric micelles encapsulating a quercetin-etoposide combination were developed to induce synergistic apoptotic effects and enhance direct drug delivery to the brain. However, the in vivo anticancer efficacy of the unmodified micelle formulation via intranasal administration remains limited. Therefore, this aims to investigate the enhancement of the formulation by conjugating the micelles with a novel and highly potent cell-penetrating peptide (CPP), RMMR1, identified using the intra-dermal delivery technology platform developed by REMEDI Co., Ltd. This modification seeks to enhance the brain-targeting capability of the micelles. The CPP-modified micelles encapsulating the quercetin-etoposide combination (CM(QE)) demonstrated superior in vivo brain-delivery efficiency and enhanced cellular uptake after intranasal administration. Furthermore, animal studies showed significant tumor reduction and increased survival rates, with no significant changes in body weight observed. These findings suggest that intranasal administration of CM(QE) holds promise as a significant advancement in chemotherapy for GBM.
Collapse
Affiliation(s)
- Jain Koo
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyewon Jeon
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jaehyun Cheong
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seongmin Cho
- Remedi Co., Ltd. Research center, Songdo 21990, Republic of Korea
| | - Chanho Park
- Remedi Co., Ltd. Research center, Songdo 21990, Republic of Korea
| | - Ee Chan Song
- Remedi Co., Ltd. Research center, Songdo 21990, Republic of Korea
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Chaemin Lim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea; CHA Advanced Research Institute, CHA Bundang Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488 Gyeonggi-do, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
4
|
Kleinsasser B, Garreis F, Musialik M, Zahn I, Kral B, Kutlu Z, Sahin A, Paulsen F, Schicht M. Molecular detection of lacrimal apparatus and ocular surface - related ABC transporter genes. Ann Anat 2024; 255:152272. [PMID: 38697581 DOI: 10.1016/j.aanat.2024.152272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
The ocular system is in constant interaction with the environment and with numerous pathogens. The ATP-binding cassette (ABC) transporters represent one of the largest groups among the transmembrane proteins. Their relevance has been demonstrated for their defense function against biotic and abiotic stress factors, for metabolic processes in tumors and for their importance in the development of resistance to drugs. The aim of this study was to analyze which ABC transporters are expressed at the ocular surface and in the human lacrimal apparatus. Using RT-PCR, all ABC transporters known to date in humans were examined in tissue samples from human cornea, conjunctiva, meibomian glands and lacrimal glands. The RT-PCR analyses revealed the presence of all ABC transporters in the samples examined, although the results for some of the 48 transporters known in human and analyzed were different in the various tissues. The present results provide information on the expression of ABC transporters at the mRNA level on the ocular surface and in the lacrimal system. Their detection forms the basis for follow-up studies at the protein level, which will provide more information about their physiological significance at the ocular surface and in the lacrimal system and which may explain pathological effects such as drug resistance.
Collapse
Affiliation(s)
- Benedikt Kleinsasser
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Musialik
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingrid Zahn
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Barbara Kral
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zeynep Kutlu
- Koc University School of Medicine, Rumelifeneri Yolu, Istanbul 34450, Turkey
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Schicht
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
5
|
Barlang LA, Weinbender K, Merkel OM, Popp A. Characterization of critical parameters using an air-liquid interface model with RPMI 2650 cells for permeability studies of small molecules. Drug Deliv Transl Res 2024; 14:1601-1615. [PMID: 37978162 DOI: 10.1007/s13346-023-01474-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The field of nasal drug delivery gained enormously on interest over the past decade. Performing nasal in vivo studies is expensive and time-consuming, but also unfeasible for an initial high-throughput compound and formulation screening. Therefore, the development of fast and high-throughput in vitro models to screen compounds for their permeability through the nasal epithelium and mucosa is constantly expanding. Yet, the protocols used for nasal in vitro permeability studies are varying, which limits the comparability and reproducibility of generated data. This project aimed to elucidate the influence of different culture and assay parameters of RPMI 2650 cells grown under air-liquid interface (ALI) conditions on the transepithelial electrical resistance (TEER) and apparent permeability (Papp) values of five selected reference compounds, covering the range of low to moderate to high permeability. The influence of the passage number, seeding density, and timepoint of airlift was minimal in our approach, while the substrate pore density had a significant influence on the Papp values of carbamazepine, propranolol, and metoprolol, classified as highly permeable compounds, but not on atenolol and aciclovir. Elevation of the experimental concentration of carbamazepine, propranolol, and metoprolol in the donor compartment had an increasing effect on the Papp values, while prolonging the assay time did not have a significant influence. Based on the results reported here, RPMI 2650 cells cultured under ALI conditions offer the possibility of a standardized high-throughput screening model for small molecules and their formulations for in vitro drug permeation studies to predict and select optimal conditions for their nasal delivery.
Collapse
Affiliation(s)
- Lea-Adriana Barlang
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061, Ludwigshafen, Germany.
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337, Munich, Germany.
| | - Kristina Weinbender
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061, Ludwigshafen, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337, Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061, Ludwigshafen, Germany
| |
Collapse
|
6
|
Pérez S, Miró MV, Verna A, Altamiranda EG, Barcos O, Lanusse C, Lifschitz A. Ivermectin antiviral activity against Varicellovirus bovinealpha 1: assessment of intracellular drug accumulation in virus-infected cells. Arch Microbiol 2024; 206:78. [PMID: 38277061 DOI: 10.1007/s00203-023-03806-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Varicellovirus bovinealpha 1 (formerly bovine alphaherpesvirus type 1, BoAHV-1) is associated with several syndromes in cattle, including respiratory disease and is one of the main agents involved in the bovine respiratory disease complex (BRDC). Its infectious cycle is characterized by latent infections with sporadic virus reactivation and transmission. Although the acute disease can be prevented by the use of vaccines, specific therapeutic measures are not available. Ivermectin (IVM) is a semi-synthetic avermectin with a broad-spectrum antiparasitic activity, which has previously shown to have potential as an antiviral drug. In this study, IVM antiviral activity against BoAHV-1 was characterized in two cell lines (MDBK [Madin Darby bovine kidney] and BT [bovine turbinate]), including the measurement of intracellular drug accumulation within virus-infected cells. IVM antiviral activity was assessed at three different drug concentrations (1.25, 2.5 and 5 µM) after incubation for 24, 48 and 72 h. Slight cytotoxicity was only observed with 5 µM IVM. Even the lowest IVM dose was able to induce a significant reduction in virus titers in both cell lines. These findings indicate that the antiviral effects of IVM were evident in our experimental model within the range of concentrations achievable through therapeutic in vivo administration. Consequently, additional in vivo trials are necessary to validate the potential utility of these results in effectively managing BoAHV-1 in infected cattle.
Collapse
Affiliation(s)
- Sandra Pérez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina.
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Buenos Aires, Argentina.
| | - María Victoria Miró
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Andrea Verna
- Laboratorio de Virología, Área de Producción Animal, Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA- CONICET), Ruta Nacional 226 km 73,5, Balcarce, Buenos Aires, 7620, Argentina
| | - Erika Gonzalez Altamiranda
- Laboratorio de Virología, Área de Producción Animal, Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA- CONICET), Ruta Nacional 226 km 73,5, Balcarce, Buenos Aires, 7620, Argentina
| | - Oscar Barcos
- Laboratorio Colón, San Martin, Buenos Aires, Argentina
| | - Carlos Lanusse
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Buenos Aires, Argentina
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina
| | - Adrian Lifschitz
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Buenos Aires, Argentina
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Buenos Aires, Argentina
| |
Collapse
|
7
|
Chung TW, Cheng CL, Liu YH, Huang YC, Chen WP, Panda AK, Chen WL. Dopamine-dependent functions of hyaluronic acid/dopamine/silk fibroin hydrogels that highly enhance N-acetyl-L-cysteine (NAC) delivered from nasal cavity to brain tissue through a near-infrared photothermal effect on the NAC-loaded hydrogels. BIOMATERIALS ADVANCES 2023; 154:213615. [PMID: 37716334 DOI: 10.1016/j.bioadv.2023.213615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Hyaluronic acid/silk fibroin (HA/SF or HS) hydrogels with remarkable mechanical characteristics have been reported as tissue engineering biomaterials. Herein, the addition of dopamine/polydopamine (DA/PDA) to HS hydrogels to develop multifunctional HA/PDA/SF (or HDS) hydrogels for the delivery of drugs such as N-acetyl-L-cysteine (NAC) from nasal to brain tissue is examined. Herein, DA-dependent functions of HDS hydrogels with highly adhesive forces, photothermal response (PTR) effects generated by near infrared (NIR) irradiation, and anti-oxidative effects were demonstrated. An in-vitro study shows that the HDS/NAC hydrogels could open tight junctions in the RPMI 2650 cell line, a model cell of the nasal mucosa, as demonstrated by the decreased values of transepithelial electrical resistance (TEER) and more discrete ZO-1 staining than those for the control group. This effect was markedly enhanced by NIR irradiation of the HDS/NAC-NIR hydrogels. Compared to the results obtained using NAC solution, an in-vivo imaging study (IVIS) in rats showed an approximately nine-fold increase in the quantity of NAC delivered from the nasal cavity to the brain tissue in the span of 2 h through the PTR effect generated by the NIR irradiation of the nasal tissue and administration of the HDS/NAC hydrogels. Herein, dopamine-dependent multifunctional HDS hydrogels were studied, and the nasal administration of HDS/NAC-NIR hydrogels with PTR effects generated by NIR irradiation was found to have significantly enhanced NAC delivery to brain tissues.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan.
| | - Ching-Lin Cheng
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yun-Huan Liu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No.2, Beining Rd., Zhongzheng Dist., Keelung City 20224, Taiwan.
| | - Weng-Pin Chen
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Asit Kumar Panda
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Wei-Ling Chen
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, 112 Taipei, Taiwan
| |
Collapse
|
8
|
Bendas S, Koch EV, Nehlsen K, May T, Dietzel A, Reichl S. The Path from Nasal Tissue to Nasal Mucosa on Chip: Part 1-Establishing a Nasal In Vitro Model for Drug Delivery Testing Based on a Novel Cell Line. Pharmaceutics 2023; 15:2245. [PMID: 37765214 PMCID: PMC10536430 DOI: 10.3390/pharmaceutics15092245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, there has been a significant increase in the registration of drugs for nasal application with systemic effects. Previous preclinical in vitro test systems for transmucosal drug absorption studies have mostly been based on primary cells or on tumor cell lines such as RPMI 2650, but both approaches have disadvantages. Therefore, the aim of this study was to establish and characterize a novel immortalized nasal epithelial cell line as the basis for an improved 3D cell culture model of the nasal mucosa. First, porcine primary cells were isolated and transfected. The P1 cell line obtained from this process was characterized in terms of its expression of tissue-specific properties, namely, mucus expression, cilia formation, and epithelial barrier formation. Using air-liquid interface cultivation, it was possible to achieve both high mucus formation and the development of functional cilia. Epithelial integrity was expressed as both transepithelial electrical resistance and mucosal permeability, which was determined for sodium fluorescein, rhodamine B, and FITC-dextran 4000. We noted a high comparability of the novel cell culture model with native excised nasal mucosa in terms of these measures. Thus, this novel cell line seems to offer a promising approach for developing 3D nasal mucosa tissues that exhibit favorable characteristics to be used as an in vitro system for testing drug delivery systems.
Collapse
Affiliation(s)
- Sebastian Bendas
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany;
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
| | - Eugen Viktor Koch
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - Kristina Nehlsen
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.N.); (T.M.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.N.); (T.M.)
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - Stephan Reichl
- Institute of Pharmaceutical Technology and Biopharmaceutics, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany;
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 a, 38106 Braunschweig, Germany; (E.V.K.); (A.D.)
| |
Collapse
|
9
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
10
|
Khatri DK, Preeti K, Tonape S, Bhattacharjee S, Patel M, Shah S, Singh PK, Srivastava S, Gugulothu D, Vora L, Singh SB. Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy. Curr Neuropharmacol 2023; 21:493-516. [PMID: 35524671 PMCID: PMC10207920 DOI: 10.2174/1570159x20666220507022701] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
Blood-Brain Barrier (BBB) acts as a highly impermeable barrier, presenting an impediment to the crossing of most classical drugs targeted for neurodegenerative diseases including Parkinson's disease (PD). About the nature of drugs and other potential molecules, they impose unavoidable doserestricted limitations eventually leading to the failure of therapy. However, many advancements in formulation technology and modification of delivery approaches have been successful in delivering the drug to the brain in the therapeutic window. The nose to the brain (N2B) drug delivery employing the nanoformulation, is one such emerging delivery approach, overcoming both classical drug formulation and delivery-associated limitations. This latter approach offers increased bioavailability, greater patient acceptance, lesser metabolic degradation of drugs, circumvention of BBB, ample drug loading along with the controlled release of the drugs. In N2B delivery, the intranasal (IN) route carries therapeutics firstly into the nasal cavity followed by the brain through olfactory and trigeminal nerve connections linked with nasal mucosa. The N2B delivery approach is being explored for delivering other biologicals like neuropeptides and mitochondria. Meanwhile, this N2B delivery system is associated with critical challenges consisting of mucociliary clearance, degradation by enzymes, and drug translocations by efflux mechanisms. These challenges finally culminated in the development of suitable surfacemodified nano-carriers and Focused- Ultrasound-Assisted IN as FUS-IN technique which has expanded the horizons of N2B drug delivery. Hence, nanotechnology, in collaboration with advances in the IN route of drug administration, has a diversified approach for treating PD. The present review discusses the physiology and limitation of IN delivery along with current advances in nanocarrier and technical development assisting N2B drug delivery.
Collapse
Affiliation(s)
- Dharmendra K. Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Kumari Preeti
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Shivraj Tonape
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Sheoshree Bhattacharjee
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Monica Patel
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Pankaj K. Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi-110017, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast-BT9 7BL, UK
| | - Shashi B. Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana State, India
| |
Collapse
|
11
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Formulation of Chitosan Microparticles for Enhanced Intranasal Macromolecular Compound Delivery: Factors That Influence Particle Size during Ionic Gelation. Gels 2022; 8:gels8110686. [PMID: 36354594 PMCID: PMC9689727 DOI: 10.3390/gels8110686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022] Open
Abstract
Therapeutic macromolecules (e.g., protein and peptide drugs) present bioavailability challenges via extravascular administration. The nasal route presents an alternative non-invasive route for these drugs, although low bioavailability remains challenging. Co-administration of permeation enhancers is a promising formulation approach to improve the delivery of poorly bioavailable drugs. The aim of this study was to prepare and characterize chitosan microparticulate formulations containing a macromolecular model compound (fluorescein isothiocyanate dextran 4400, FD-4) and a bioenhancer (piperine). Ionic gelation was used to produce chitosan microparticle delivery systems with two distinct microparticle sizes, differing one order of magnitude in size (±20 µm and ±200 µm). These two microparticle delivery systems were formulated into thermosensitive gels and their drug delivery performance was evaluated across ovine nasal epithelial tissues. Dissolution studies revealed a biphasic release pattern. Rheometry results demonstrated a sol-to-gel transition of the thermosensitive gel formulation at a temperature of 34 °C. The microparticles incorporating piperine showed a 1.2-fold increase in FD-4 delivery across the excised ovine nasal epithelial tissues as compared to microparticles without piperine. This study therefore contributed to advancements in ionic gelation methods for the formulation of particulate systems to enhance macromolecular nasal drug delivery.
Collapse
|
13
|
Chung TW, Wu TY, Siah ZY, Liu DZ. Antioxidative NAC-Loaded Silk Nanoparticles with Opening Mucosal Tight Junctions for Nasal Drug Delivery: An In Vitro and In Vivo Study. Pharmaceutics 2022; 14:pharmaceutics14061288. [PMID: 35745861 PMCID: PMC9229699 DOI: 10.3390/pharmaceutics14061288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
Using nasal routes to deliver drugs to the brain using multifunctional nanoparticles (NPs) to bypass the blood–brain barrier (BBB) might enhance the delivery efficacy. Anti-oxidative N-Acetyl-L-cysteine (NAC)-loaded silk fibroin (SF/NAC) NPs are produced, characterized and studied as a potential delivery vehicle for NAC delivered to the brain via nasal for both in vitro and in vivo studies. The NPs are not cytotoxic to RPMI 2650 cells, mucosal model cells, at a concentration of 6000 μg/mL. The anti-oxidative activities of SF/NAC NPs are demonstrated by high H2O2 scavenge capacities of the NPs and shown by mitochondrial superoxide (MitoSOX) immunostaining of human mesenchymal stem cells. Tight junctions in RPMI 2650 cells are opened after 30 min of incubation with SF/NAC NPs, which are demonstrated by measuring the decrease in trans-epithelial electrical resistance (TEER) values and discreteness in ZO-1 stains. The cellular uptake of SF/NAC NPs by RPMI 2650 cells is significantly greater than that for SF NPs and increased with increasing incubation time. In an in vivo imaging study (IVIS) using rats shows that the amount of NAC that is delivered to the brain by SF/NAC NPs increased by 1.40–2.60 times and NAC is retained longer in the nasal cavity than NAC solutions in a 2-h study.
Collapse
Affiliation(s)
- Tze-Wen Chung
- Biomedical Engineering Research and Development Center, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
- Correspondence:
| | - Ting-Ya Wu
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Zheng-Yu Siah
- Department of Biomedical Engineering, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan; (T.-Y.W.); (Z.-Y.S.)
| | - Der-Zen Liu
- Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
| |
Collapse
|
14
|
Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm 2022; 176:1-20. [PMID: 35568256 DOI: 10.1016/j.ejpb.2022.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
Abstract
Powders for nasal delivery have been recognized as advantageous dosage forms over liquids due to increased stability and residence time on nasal mucosa, with improved bioavailability. They can be manufactured by spray-drying, allowing the optimization of the particle properties that are critical to guarantee nasal deposition, as size and shape. It is also a scalable and flexible method already explored extensively in the pharmaceutical industry. However, it is important to understand how process parameters, particle physical properties and formulation considerations affect the product performance. Hence, this review aims to provide an overview of nasal powder formulation and processing through spray drying, with an emphasis on the variables that impact on performance. To this purpose, we describe the physical, biological and pharmacological phenomena prior to drug absorption as well as the most relevant powder properties. Formulation considerations including qualitative and quantitative composition are then reviewed, as well as manufacturing considerations including spray drying relevant parameters.
Collapse
Affiliation(s)
- Patrícia Henriques
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; R&D, Drug Product Development, Hovione FarmaCiencia SA, Lisbon, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | | |
Collapse
|
15
|
Gholizadeh H, Cheng S, Kourmatzis A, Xing H, Traini D, Young PM, Ong HX. Application of Micro-Engineered Kidney, Liver, and Respiratory System Models to Accelerate Preclinical Drug Testing and Development. Bioengineering (Basel) 2022; 9:150. [PMID: 35447710 PMCID: PMC9025644 DOI: 10.3390/bioengineering9040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel drug formulations and progressing them to the clinical environment relies on preclinical in vitro studies and animal tests to evaluate efficacy and toxicity. However, these current techniques have failed to accurately predict the clinical success of new therapies with a high degree of certainty. The main reason for this failure is that conventional in vitro tissue models lack numerous physiological characteristics of human organs, such as biomechanical forces and biofluid flow. Moreover, animal models often fail to recapitulate the physiology, anatomy, and mechanisms of disease development in human. These shortfalls often lead to failure in drug development, with substantial time and money spent. To tackle this issue, organ-on-chip technology offers realistic in vitro human organ models that mimic the physiology of tissues, including biomechanical forces, stress, strain, cellular heterogeneity, and the interaction between multiple tissues and their simultaneous responses to a therapy. For the latter, complex networks of multiple-organ models are constructed together, known as multiple-organs-on-chip. Numerous studies have demonstrated successful application of organ-on-chips for drug testing, with results comparable to clinical outcomes. This review will summarize and critically evaluate these studies, with a focus on kidney, liver, and respiratory system-on-chip models, and will discuss their progress in their application as a preclinical drug-testing platform to determine in vitro drug toxicology, metabolism, and transport. Further, the advances in the design of these models for improving preclinical drug testing as well as the opportunities for future work will be discussed.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia; hanieh.mohammad-gholizadeh-@hdr.mq.edu.au (H.G.); (D.T.)
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia;
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Ryde, NSW 2113, Australia;
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Ryde, NSW 2113, Australia;
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Hanwen Xing
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Daniela Traini
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia; hanieh.mohammad-gholizadeh-@hdr.mq.edu.au (H.G.); (D.T.)
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia;
| | - Paul M. Young
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia;
- Department of Marketing, Macquarie Business School, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia; hanieh.mohammad-gholizadeh-@hdr.mq.edu.au (H.G.); (D.T.)
- Respiratory Technology, The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia;
| |
Collapse
|
16
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
17
|
Helena Macedo M, Baião A, Pinto S, Barros AS, Almeida H, Almeida A, das Neves J, Sarmento B. Mucus-producing 3D cell culture models. Adv Drug Deliv Rev 2021; 178:113993. [PMID: 34619286 DOI: 10.1016/j.addr.2021.113993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
In vitro cell-based models have been used for a long time since they are normally easily obtained and have an advantageous cost-benefit. Besides, they can serve a variety of ends, from studying drug absorption and metabolism to disease modeling. However, some in vitro models are too simplistic, not accurately representing the living tissues. It has been shown, mainly in the last years, that fully mimicking a tissue composition and architecture can be paramount for cellular behavior and, consequently, for the outcomes of the studies using such models. Because of this, 3D in vitro cell models have been gaining much attention, since they are able to better replicate the in vivo environment. In this review we focus on 3D models that contain mucus-producing cells, as mucus can play a pivotal role in drug absorption. Being frequently overlooked, this viscous fluid can have an impact on drug delivery. Thus, the aim of this review is to understand to which extent can mucus affect mucosal drug delivery and to provide a state-of-the-art report on the existing 3D cell-based mucus models.
Collapse
|
18
|
Gerber W, Svitina H, Steyn D, Peterson B, Kotzé A, Weldon C, Hamman JH. Comparison of RPMI 2650 cell layers and excised sheep nasal epithelial tissues in terms of nasal drug delivery and immunocytochemistry properties. J Pharmacol Toxicol Methods 2021; 113:107131. [PMID: 34699972 DOI: 10.1016/j.vascn.2021.107131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Nasal drug administration has been identified as a potential alternative to oral drug administration, especially for systemic delivery of large molecular weight compounds. Major advantages of nasal drug delivery include high vascularity and permeability of the epithelial membranes as well as circumvention of first-pass metabolism. RPMI 2650 cell layers (in vitro cell model) and excised sheep nasal mucosal tissues (ex vivo sheep model) were evaluated with regard to epithelial thickness, selected tight junction protein expression (i.e. claudin-1, F-actin chains, zonula occludin-1), extent of p-glycoprotein (P-gp) related efflux of a model compound (Rhodamine-123, R123) and paracellular permeation of a large molecular weight model compound (FITC-dextran 4400, FD4). The cell model grown under liquid cover conditions (LCC) was thinner (24 ± 4 μm) than the epithelial layer of the sheep model (53 ± 4 μm), whereas the thickness of cell model grown under air liquid interface (ALI) conditions (53 ± 8 μm) compared well with that of the sheep model. Although the location and distribution of tight junction proteins and F-actin differed to some extent between the cell model grown under ALI conditions and the sheep model, the extent of paracellular permeation of FD4 was similar (Papp = 0.48 × 10-6 cm.s-1 and 0.46 × 10-6 cm.s-1, respectively). Furthermore, the bi-directional permeation of R123 yielded the same efflux ratio (ER = 2.33) in both models. The permeation results from this exploratory study indicated similarity in terms of compound permeation between the RPMI 2650 nasal epithelial cell line and the excised sheep nasal epithelial tissue model.
Collapse
Affiliation(s)
- Werner Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
| | - Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Bianca Peterson
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Awie Kotzé
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| | - Ché Weldon
- School of Environmental Sciences and Development, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, North-West, South Africa.
| |
Collapse
|
19
|
Costa CP, Barreiro S, Moreira JN, Silva R, Almeida H, Sousa Lobo JM, Silva AC. In Vitro Studies on Nasal Formulations of Nanostructured Lipid Carriers (NLC) and Solid Lipid Nanoparticles (SLN). Pharmaceuticals (Basel) 2021; 14:711. [PMID: 34451808 PMCID: PMC8400558 DOI: 10.3390/ph14080711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
The nasal route has been used for many years for the local treatment of nasal diseases. More recently, this route has been gaining momentum, due to the possibility of targeting the central nervous system (CNS) from the nasal cavity, avoiding the blood-brain barrier (BBB). In this area, the use of lipid nanoparticles, such as nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN), in nasal formulations has shown promising outcomes on a wide array of indications such as brain diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, Parkinson's disease and gliomas. Herein, the state of the art of the most recent literature available on in vitro studies with nasal formulations of lipid nanoparticles is discussed. Specific in vitro cell culture models are needed to assess the cytotoxicity of nasal formulations and to explore the underlying mechanism(s) of drug transport and absorption across the nasal mucosa. In addition, different studies with 3D nasal casts are reported, showing their ability to predict the drug deposition in the nasal cavity and evaluating the factors that interfere in this process, such as nasal cavity area, type of administration device and angle of application, inspiratory flow, presence of mucoadhesive agents, among others. Notwithstanding, they do not preclude the use of confirmatory in vivo studies, a significant impact on the 3R (replacement, reduction and refinement) principle within the scope of animal experiments is expected. The use of 3D nasal casts to test nasal formulations of lipid nanoparticles is still totally unexplored, to the authors best knowledge, thus constituting a wide open field of research.
Collapse
Affiliation(s)
- Cláudia Pina Costa
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.C.); (H.A.); (J.M.S.L.)
| | - Sandra Barreiro
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.B.); (R.S.)
| | - João Nuno Moreira
- CNC—Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Pólo I), University of Coimbra, 3004-504 Coimbra, Portugal;
- UC—University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.B.); (R.S.)
| | - Hugo Almeida
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.C.); (H.A.); (J.M.S.L.)
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.C.); (H.A.); (J.M.S.L.)
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.P.C.); (H.A.); (J.M.S.L.)
- FP-ENAS (UFP Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|
20
|
Gholizadeh H, Ong HX, Bradbury P, Kourmatzis A, Traini D, Young P, Li M, Cheng S. Real-time quantitative monitoring of in vitro nasal drug delivery by a nasal epithelial mucosa-on-a-chip model. Expert Opin Drug Deliv 2021; 18:803-818. [PMID: 33410717 DOI: 10.1080/17425247.2021.1873274] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES A human nasal epithelial mucosa (NEM) on-a-chip is developed integrated with a novel carbon nanofibers-modified carbon electrode for real-time quantitative monitoring of in vitro nasal drug delivery. The integration of platinum electrodes in the chip also enables real-time measurement of transepithelial electrical resistance (TEER). METHODS The air-liquid interface culture of nasal epithelial RPMI 2650 cells in the NEM-on-a-chip was optimized to mimic the key functional characteristics of the human nasal mucosa. The epithelial transport of ibuprofen in the NEM-on-a-chip was electrochemically monitored in real-time under static and physiologically realistic dynamic flow conditions. RESULTS The NEM-on-a-chip mimics the mucus production and nasal epithelial barrier function of the human nasal mucosa. The real-time drug quantification by the NEM-on-a-chip was validated versus the high-performance liquid chromatography method. The drug transport rate monitored in the NEM-on-a-chip was influenced by the flow in the bottom compartment of the chip, highlighting the importance of emulating the dynamic in vivo condition for nasal drug transport studies. CONCLUSION This novel NEM-on-a-chip can be a low-cost and time-efficient alternative to the costly laborious conventional techniques for in vitro nasal drug transport assays. Importantly, its dynamic microenvironment enables conducting nasal drug transport tests under physiologically relevant dynamic conditions.
Collapse
Affiliation(s)
- Hanieh Gholizadeh
- School of Engineering, Macquarie University, Sydney, NSW, Australia.,Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia.,Discipline of Pharmacology, Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia.,Discipline of Pharmacology, Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Paul Young
- Respiratory Technology, Woolcock Institute of Medical Research, Glebe, NSW, Australia.,Discipline of Pharmacology, Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Shaokoon Cheng
- School of Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Kreft ME, Tratnjek L, Lasič E, Hevir N, Rižner TL, Kristan K. Different Culture Conditions Affect Drug Transporter Gene Expression, Ultrastructure, and Permeability of Primary Human Nasal Epithelial Cells. Pharm Res 2020; 37:170. [PMID: 32820417 DOI: 10.1007/s11095-020-02905-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to characterize a commercially available primary human nasal epithelial cell culture and its gene expression of a wide range of drug transporters under different culture conditions. METHODS Human nasal cells were cultured in three different types of culture media at the air-liquid (A-L) or liquid-liquid (L-L) interfaces for 1 or 3 wks. The effects of the different cell culture conditions were evaluated using light and electron microscopy, transepithelial electrical resistance (TEER) measurements, permeation studies with dextran, and gene expression profiling of 84 drug transporters. RESULTS The type of culture medium affected cell ultrastructure, TEER, and dextran permeation across epithelia. The expression of 20 drug transporter genes depended on the culture interface and/or time in culture; the A-L interface and longer time in culture favored higher expression levels of five ABC and seven SLC transporters. CONCLUSIONS Culture conditions influence the morphology, barrier formation, permeation properties, and drug transporter expression of human nasal epithelial cells, and this must be taken into consideration during the establishment and validation of in vitro models. A thorough characterization of a nasal epithelial model and its permeability properties is necessary to obtain an appropriate standardized model for the design of aerosol therapeutics and drug transport studies.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Lasič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neli Hevir
- Lek Pharmaceuticals d.d, Biopharma Process & Product Development, Mengeš, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. .,Lek Pharmaceuticals, d.d, Sandoz Development Center Slovenia, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Bors LA, Bajza Á, Mándoki M, Tasi BJ, Cserey G, Imre T, Szabó P, Erdő F. Modulation of nose-to-brain delivery of a P-glycoprotein (MDR1) substrate model drug (quinidine) in rats. Brain Res Bull 2020; 160:65-73. [PMID: 32344126 DOI: 10.1016/j.brainresbull.2020.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
During the last decades several new drug formulations were developed to target the central nervous system (CNS) from the nasal cavity. However, in these studies less attention was paid to the possible drug-drug interactions in case of multi-drug therapy. In our pilot study first we compared a nasal solution and a nasal gel to demonstrate their distribution in the nasal cavity (3D printed rat skull model and histology). Due to the aspiration induced high mortality at administration of nasal solution the study was continued only with the gel formulation of quinidine. The aim of our experiments was to identify the possible functional role of P-glycoprotein (P-gp) in the drug absorption in nasal cavity and to test drug-drug interactions at nose-to-brain delivery. Therefore, a P-gp substrate model drug, quinidine was tested by intranasal (IN) administration in presence of PSC-833 (specific P-gp inhibitor) given intravenously (IV) or IN and adrenaline (IN) at low (50 ng) or high (20 μg) dose. In control animals the brain penetration of quinidine was at the level of detection limit, but in combination therapy with IV PSC-833 the brain levels increased dramatically, similarly to high dose IN adrenalin, where due to vasoconstriction peripheral distribution was blocked. These results indicate that P-gp has an important role in drug absorption and efflux at nasal cavity, while adrenaline is also able to modify the penetration profile of the P-gp substrate model drug at nasal application as it decreases nose-to-blood absorption, letting more quinidine to reach the brain along with the nasal nerves.
Collapse
Affiliation(s)
- Luca Anna Bors
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| | - Ágnes Bajza
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| | - Míra Mándoki
- University of Veterinary Medicine, Department of Pathology, Budapest, Hungary.
| | - Benedek József Tasi
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| | - György Cserey
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| | - Tímea Imre
- Research Centre for Natural Sciences, Instrumentation Centre, Budapest, Hungary.
| | - Pál Szabó
- Research Centre for Natural Sciences, Instrumentation Centre, Budapest, Hungary.
| | - Franciska Erdő
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary.
| |
Collapse
|
23
|
Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. MOLECULAR BIOMEDICINE 2020; 1:15. [PMID: 34765998 PMCID: PMC7725542 DOI: 10.1186/s43556-020-00019-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
NeuroAIDS (Neuro Acquired Immunodeficiency Syndrome) or HIV (Human Immunodeficiency Virus) associated neuronal abnormality is continuing to be a significant health issue among AIDS patients even under the treatment of combined antiretroviral therapy (cART). Injury and damage to neurons of the brain are the prime causes of neuroAIDS, which happens due to the ingress of HIV by direct permeation across the blood-brain barrier (BBB) or else via peripherally infected macrophage into the central nervous system (CNS). The BBB performs as a stringent barricade for the delivery of therapeutics drugs. The intranasal route of drug administration exhibits as a non-invasive technique to bypass the BBB for the delivery of antiretroviral drugs and other active pharmaceutical ingredients inside the brain and CNS. This method is fruitful for the drugs that are unable to invade the BBB to show its action in the CNS and thus erase the demand of systemic delivery and thereby shrink systemic side effects. Drug delivery from the nose to the brain/CNS takes very less time through both olfactory and trigeminal nerves. Intranasal delivery does not require the involvement of any receptor as it occurs by an extracellular route. Nose to brain delivery also involves nasal associated lymphatic tissues (NALT) and deep cervical lymph nodes. However, very little research has been done to explore the utility of nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. This review focuses on the potential of nasal route for the effective delivery of antiretroviral nanoformulations directly from nose to the brain.
Collapse
Affiliation(s)
- Anupam Sarma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.,Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026 India
| | - Malay K Das
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
24
|
Sibinovska N, Žakelj S, Kristan K. Suitability of RPMI 2650 cell models for nasal drug permeability prediction. Eur J Pharm Biopharm 2019; 145:85-95. [PMID: 31639418 DOI: 10.1016/j.ejpb.2019.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
Abstract
The RPMI 2650 cell line has been a subject of evaluation as a physiological and pharmacological model of the nasal epithelial barrier. However, its suitability for drug permeability assays has not yet been established on a sufficiently large set of model drugs. We investigated two RPMI 2650 cell models (air-liquid and liquid-liquid) for nasal drug permeability determination by adopting the most recent regulatory guidelines on showing suitability of in vitro permeability methods for drug permeability classification. The permeability of 23 model drugs and several zero permeability markers across the cell models was assessed. The functional expression of two efflux transporters P-glycoprotein (P-gp) and Breast Cancer Resistant Protein (BCRP) was shown to be negligible by bidirectional transport studies using appropriate transporter substrates and inhibitors. The model drug permeability determined in the two RPMI 2650 cell models was correlated with the fully differentiated nasal epithelial model (MucilAir™). Additionally, correlations between the drug permeability in the investigated cell models and the ones determined in the Caco-2 cells and isolated rat jejunum were established. In conclusion, the air-liquid RPMI 2650 cell model is a promising pharmacological model of the nasal epithelial barrier and is much more suitable than the liquid-liquid model for nasal drug permeability prediction.
Collapse
Affiliation(s)
- Nadica Sibinovska
- University of Ljubljana, Faculty of Pharmacy, Chair of Biopharmaceutics and Pharmacokinetics, Aškerčeva c. 7, SI- 1000 Ljubljana, Slovenia
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Chair of Biopharmaceutics and Pharmacokinetics, Aškerčeva c. 7, SI- 1000 Ljubljana, Slovenia
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; Lek Pharmaceuticals, d.d., Sandoz Development Center Slovenia, Verovškova 57, 1526 Ljubljana, Slovenia.
| |
Collapse
|
25
|
Ladel S, Schlossbauer P, Flamm J, Luksch H, Mizaikoff B, Schindowski K. Improved In Vitro Model for Intranasal Mucosal Drug Delivery: Primary Olfactory and Respiratory Epithelial Cells Compared with the Permanent Nasal Cell Line RPMI 2650. Pharmaceutics 2019; 11:pharmaceutics11080367. [PMID: 31374872 PMCID: PMC6723747 DOI: 10.3390/pharmaceutics11080367] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The epithelial layer of the nasal mucosa is the first barrier for drug permeation during intranasal drug delivery. With increasing interest for intranasal pathways, adequate in vitro models are required. Here, porcine olfactory (OEPC) and respiratory (REPC) primary cells were characterised against the nasal tumour cell line RPMI 2650. Methods: Culture conditions for primary cells from porcine nasal mucosa were optimized and the cells characterised via light microscope, RT-PCR and immunofluorescence. Epithelial barrier function was analysed via transepithelial electrical resistance (TEER), and FITC-dextran was used as model substance for transepithelial permeation. Beating cilia necessary for mucociliary clearance were studied by immunoreactivity against acetylated tubulin. Results: OEPC and REPC barrier models differ in TEER, transepithelial permeation and MUC5AC levels. In contrast, RPMI 2650 displayed lower levels of MUC5AC, cilia markers and TEER, and higher FITC-dextran flux rates. Conclusion: To screen pharmaceutical formulations for intranasal delivery in vitro, translational mucosal models are needed. Here, a novel and comprehensive characterisation of OEPC and REPC against RPMI 2650 is presented. The established primary models display an appropriate model for nasal mucosa with secreted MUC5AC, beating cilia and a functional epithelial barrier, which is suitable for long-term evaluation of sustained release dosage forms.
Collapse
Affiliation(s)
- Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany
| | - Harald Luksch
- School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 4, 85354 Freising-Weihenstephan, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, Hubertus-Liebrecht Straße 35, 88400 Biberach, Germany.
| |
Collapse
|
26
|
Mercier C, Jacqueroux E, He Z, Hodin S, Constant S, Perek N, Boudard D, Delavenne X. Pharmacological characterization of the 3D MucilAir™ nasal model. Eur J Pharm Biopharm 2019; 139:186-196. [PMID: 30951820 DOI: 10.1016/j.ejpb.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
Abstract
The preclinical evaluation of nasally administered drug candidates requires screening studies based on in vitro models of the nasal mucosa. The aim of this study was to evaluate the morpho-functional characteristics of the 3D MucilAir™ nasal model with a pharmacological focus on [ATP]-binding cassette (ABC) efflux transporters. We initially performed a phenotypic characterization of the MucilAir™ model and assessed its barrier properties by immunofluorescence (IF), protein mass spectrometry and examination of histological sections. We then focused on the functional expression of the ABC transporters P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)1, MRP2 and breast cancer resistance protein (BCRP) in bidirectional transport experiments. The MucilAir™ model comprises a tight, polarized, pseudo-stratified nasal epithelium composed of fully differentiated ciliated, goblet and basal cells. These ABC transporters were all expressed by the cell membranes. P-gp and BCRP were both functional and capable of actively effluxing substrates. The MucilAir™ model could consequently represent a potent tool for evaluating the interaction of nasally administered drugs with ABC transporters.
Collapse
Affiliation(s)
- Clément Mercier
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France.
| | - Elodie Jacqueroux
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France.
| | - Zhiguo He
- Université de Lyon, Saint-Etienne F-42023, France; Laboratoire de biologie, d'ingénierie et d'imagerie de la greffe de cornée, BiiGC, EA2521 Saint-Etienne, France.
| | - Sophie Hodin
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France.
| | - Samuel Constant
- Epithelix Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Nathalie Perek
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France.
| | - Delphine Boudard
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France; UF6725 Cytologie et Histologie Rénale, CHU de Saint-Etienne, Saint-Etienne, France.
| | - Xavier Delavenne
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France; Laboratoire de Pharmacologie Toxicologie Gaz du sang, CHU de Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
27
|
Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 2018; 143:155-170. [PMID: 30449731 DOI: 10.1016/j.brainresbull.2018.10.009] [Citation(s) in RCA: 443] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
The acute or chronic drug treatments for different neurodegenerative and psychiatric disorders are challenging from several aspects. The low bioavailability and limited brain exposure of oral drugs, the rapid metabolism, elimination, the unwanted side effects and also the high dose to be added mean both inconvenience for the patients and high costs for the patients, their family and the society. The reason of low brain penetration of the compounds is that they have to overcome the blood-brain barrier which protects the brain against xenobiotics. Intranasal drug administration is one of the promising options to bypass blood-brain barrier, to reduce the systemic adverse effects of the drugs and to lower the doses to be administered. Furthermore, the drugs administered using nasal route have usually higher bioavailability, less side effects and result in higher brain exposure at similar dosage than the oral drugs. In this review the focus is on giving an overview on the anatomical and cellular structure of nasal cavity and absorption surface. It presents some possibilities to enhance the drug penetration through the nasal barrier and summarizes some in vitro, ex vivo and in vivo technologies to test the drug delivery across the nasal epithelium into the brain. Finally, the authors give a critical evaluation of the nasal route of administration showing its main advantages and limitations of this delivery route for CNS drug targeting.
Collapse
|
28
|
Mercier C, Perek N, Delavenne X. Is RPMI 2650 a Suitable In Vitro Nasal Model for Drug Transport Studies? Eur J Drug Metab Pharmacokinet 2018; 43:13-24. [PMID: 28688000 DOI: 10.1007/s13318-017-0426-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evaluation of new intranasal medications requires the development of in vitro cell model suitable for high-throughput screening studies. The aim of a pharmacological model is to closely mimic the barrier properties of human nasal mucosa that will influence drug pharmacokinetics. In this context, the human nasal cell line RPMI 2650 has been investigated over these last years. Although the initial studies tended to demonstrate strong physiological correlations between RPMI 2650 cells and nasal mucosa, the variability of experimental designs does not allow a clear comparison of actual data. Thereby, the standardization of cell culture parameters is crucial to obtain a stronger reproducibility and increase the relevance of data. Indeed, RPMI 2650 barrier properties are heavily dependent of cell culture conditions, especially of the physiological air-liquid interface that strengthen the expression of both tight junction proteins and drug transporters. Conversely, cell culture medium and insert composition showed a minor impact on the four key parameters of a nasal barrier. Despite the recent advances in the physiological characterization of RPMI 2650 model, only limited pharmacological data are available concerning the involvement of drug transporters in drug bioavailability. The deployment of standardized bi-directional permeability studies using reference compounds is required to determine the relevance of RPMI 2650 model in the field of drug transport studies.
Collapse
Affiliation(s)
- Clément Mercier
- INSERM, SAINBIOSE U1059, Dysfonction Vasculaire et de l'Hémostase, Université de Lyon, 42023, Saint-Etienne, France.
| | - Nathalie Perek
- INSERM, SAINBIOSE U1059, Dysfonction Vasculaire et de l'Hémostase, Université de Lyon, 42023, Saint-Etienne, France
| | - Xavier Delavenne
- INSERM, SAINBIOSE U1059, Dysfonction Vasculaire et de l'Hémostase, Université de Lyon, 42023, Saint-Etienne, France
| |
Collapse
|
29
|
Dolberg AM, Reichl S. Expression analysis of human solute carrier (SLC) family transporters in nasal mucosa and RPMI 2650 cells. Eur J Pharm Sci 2018; 123:277-294. [PMID: 30041030 DOI: 10.1016/j.ejps.2018.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
With nearly 400 members, the solute-linked carrier (SLC) superfamily is one of the most important gene classes concerning the disposition of drugs and the transport of physiological substrates in the human body. The mapping of related transport proteins is already well advanced for the intestines, kidneys and liver, but it has recently been brought into focus for various respiratory epithelia. The aim of this study was to evaluate the expression of several SLC transporters in differently cultured RPMI 2650 cells, as well as in specimens of the human nasal mucosa. The expression profiles of PEPT2, OATP1A2, OATP4C1, OCT2, OCTN1 and OCTN2 were investigated at the gene and protein levels by performing RT-PCR, western blot analysis and immunohistological staining. Uptake assays using appropriate substrates and inhibitory substances were performed to compare the activity of peptide, organic anion and organic cation transporters, respectively, among the three models. Expression of the six SLC transporters under investigation was confirmed at the mRNA and protein levels in human nasal mucosa ex vivo as well as in RPMI 2650 cells grown under different culture conditions. The functionality was almost equal among all of the models for the PEPT and OCT(N) transporters, while the functional activity of the OATP transporters was more pronounced for both in vitro models than for excised nasal tissue. Despite negligible variations in transporter capacities, the RPMI 2650 cell cultures and freshly isolated human nasal epithelium showed nearly comparable expression patterns for the examined SLC proteins. Therefore, in vitro models based on the RPMI 2650 cell line could provide helpful data during the preclinical investigation of intranasally administered drug formulations and in the development of strategies to target nasal drug transporters for either local or systemic drug delivery.
Collapse
Affiliation(s)
- Anne M Dolberg
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany; Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
30
|
Mercier C, Hodin S, He Z, Perek N, Delavenne X. Pharmacological Characterization of the RPMI 2650 Model as a Relevant Tool for Assessing the Permeability of Intranasal Drugs. Mol Pharm 2018; 15:2246-2256. [PMID: 29709196 DOI: 10.1021/acs.molpharmaceut.8b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The RPMI 2650 cell line has been described as a potent model of the human nasal mucosa. Nevertheless, pharmacological data are still insufficient, and the role of drug efflux transporters has not been fully elucidated. We therefore pursued the pharmacological characterization of this model, initially investigating the expression of four well-known adenosine triphosphate [ATP]-binding cassette (ABC) transporters (P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)1, MRP2, and breast cancer resistance protein (BCRP)) by means of ELISA and immunofluorescence staining. The functional activity of the selected transporters was assessed by accumulation studies based on specific substrates and inhibitors. We then performed standardized bidirectional transport experiments under air-liquid interface (ALI) culture conditions, using four therapeutic compounds of local intranasal relevance in upper airway diseases. Protein expression of P-gp, MRP1, MRP2, and BCRP was detected at the membrane of the RPMI 2650 cells. In addition, all four transporters exhibited functional activity at the cellular level. In the bidirectional transport experiments, the RPMI 2650 model was able to accurately discriminate the four therapeutic compounds according to their physicochemical properties. The ABC transporters tested did not play a major role in the efflux of these compounds at the barrier level. In conclusion, the RPMI 2650 model represents a promising tool for assessing the nasal absorption of drugs on the basis of preclinical pharmacological data.
Collapse
Affiliation(s)
- Clément Mercier
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France
| | - Sophie Hodin
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Zhiguo He
- Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Biologie, d'Ingénierie et d'Imagerie de la Greffe de Cornée , BiiGC , EA2521 Saint-Etienne , France
| | - Nathalie Perek
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Xavier Delavenne
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang , CHU de Saint-Etienne , Saint-Etienne CS 82301 , France
| |
Collapse
|
31
|
Pozzoli M, Traini D, Young PM, Sukkar MB, Sonvico F. Development of a Soluplus budesonide freeze-dried powder for nasal drug delivery. Drug Dev Ind Pharm 2017; 43:1510-1518. [DOI: 10.1080/03639045.2017.1321659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Michele Pozzoli
- Graduate School of Health – Pharmacy, University of Technology Sydney, Ultimo, New South Wales, Australia
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Glebe, New South Wales, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Glebe, New South Wales, Australia
| | - Paul M. Young
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, Glebe, New South Wales, Australia
| | - Maria B. Sukkar
- Graduate School of Health – Pharmacy, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Fabio Sonvico
- Graduate School of Health – Pharmacy, University of Technology Sydney, Ultimo, New South Wales, Australia
- Department of Pharmacy, University of Parma, Parma, Italy
| |
Collapse
|
32
|
Dolberg AM, Reichl S. Activity of Multidrug Resistance-Associated Proteins 1-5 (MRP1-5) in the RPMI 2650 Cell Line and Explants of Human Nasal Turbinate. Mol Pharm 2017; 14:1577-1590. [PMID: 28291371 DOI: 10.1021/acs.molpharmaceut.6b00838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The profound influence of ATP-binding cassette (ABC) transporters on the disposition of numerous drugs has led to increased interest in characterizing their expression profiles in various epithelial and endothelial barriers. The present work examined the presence and functional activity of five ABC efflux proteins, i.e., MRP 1-5, in freshly isolated human nasal epithelial cells and two in vitro models based on the human RPMI 2650 cell line. To evaluate the expression patterns of MRP1, MRP2, MRP3, MRP4, and MRP5 at the mRNA and protein levels in the ex vivo model and the differently cultured RPMI 2650 cells, reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analysis, and indirect immunofluorescence staining were used. The functionality of the MRP transporters in the three models was assessed using efflux experiments and accumulation assays with the respective substrates and inhibitors. The mRNA and protein expression of all selected ABC transporters was detected in excised human nasal mucosa as well as in the corresponding cell culture models. Moreover, the functional expression of the MRP transport proteins was demonstrated in the three models for the first time. Therefore, the potential impact of multidrug resistance-associated proteins 1-5 on drug disposition after intranasal administration may be taken into consideration for future developments. The specimens of human nasal turbinate exhibited slightly lower efflux capacities of MRP1, MRP3, and MRP5 in relation to the submerged and ALI-cultured RPMI 2650 cells, but showed a promising comparability to both in vitro models concerning the activity of MRP2 and MRP4. In this regard, the different RPMI 2650 cell culture models will be able to provide useful experimental data in the preclinical phase to estimate the interaction of particular efflux transporters with drug candidates for nasal application.
Collapse
Affiliation(s)
- Anne M Dolberg
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig , Braunschweig 38106, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig , Braunschweig 38106, Germany.,Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig , Braunschweig 38106, Germany
| |
Collapse
|
33
|
Gonçalves VSS, Matias AA, Poejo J, Serra AT, Duarte CMM. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int J Pharm 2016; 515:1-10. [PMID: 27702697 DOI: 10.1016/j.ijpharm.2016.09.086] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
During the development of intranasal drug delivery systems for local/systemic effect or brain targeting, it is necessary to assess its cytotoxicity and drug transport through nasal epithelium. In order to avoid animal experiments or the use of excised tissues, in vitro cell models, such as RPMI 2650 cells, are being preferred during recent years. Nevertheless, the deposition of solid formulations into nasal cell layers with further transepithelial transport rate of drugs has been poorly studied or reported. Thus, the purpose of this work is to further investigate RPMI 2650 cell line as an effective alternative to animal tissues for solid drug-loaded formulations cytotoxicity and drug permeation studies in order to become an option as a tool for drug discovery. Furthermore, we wanted to determine the extent to which the administration of drugs in particulate forms would differ in relation to the permeability of the same compounds applied as solutions. RPMI 2650 cells were cultured in submersed or at air-liquid interface conditions and characterized regarding transepithelial electrical resistance (TEER) and production of mucus. Pure ketoprofen (used as model compound) and five formulations loaded with same drug, namely solid lipid particles (Gelucire 43/01™), structured lipid particles (Gelucire 43/01™:Glyceryl monooleate) and aerogel microparticles (Alginate, Alginate:Pectin, Alginate:Carrageenan), were evaluated with RPMI 2650 model in terms of cytotoxicity and permeability of drug (applied as solution, dispersion or powder+buffer). RPMI 2650 cells were capable to grow in monolayer and multilayer, showing the same permeability as excised human nasal mucosa for sodium fluorescein (paracellular marker), with analogous TEER values and production of mucus, as referred by other authors. None of the powders showed cytotoxicity when applied to RPMI 2650 cells. Regarding permeation of drug through cell layers, not only the form of application of powders but also their physical and chemical properties affected the final permeation of active pharmaceutical ingredient. Aerogel microparticles administered directly to the cell layer (powder+buffer) exhibited the highest permeation-enhancing effect compared to the pure drug, which can be attributed to the mucoadhesive properties of the materials composing the carriers, proving to be an attractive formulation for nasal drug delivery. According to these results, RPMI 2650 showed to be a promising alternative to ex vivo or in vivo nasal models for cytotoxicity and evaluation of drug permeability of nasal drug-loaded formulations.
Collapse
Affiliation(s)
- Vanessa S S Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Escuela de Ingenierías Industriales, Universidad de Valladolid, C/Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Ana A Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.
| | - Joana Poejo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Ana T Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Catarina M M Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|