1
|
Xie X, Yue T, Gu W, Cheng W, He L, Ren W, Li F, Piao JG. Recent Advances in Mesoporous Silica Nanoparticles Delivering siRNA for Cancer Treatment. Pharmaceutics 2023; 15:2483. [PMID: 37896243 PMCID: PMC10609930 DOI: 10.3390/pharmaceutics15102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Silencing genes using small interfering (si) RNA is a promising strategy for treating cancer. However, the curative effect of siRNA is severely constrained by low serum stability and cell membrane permeability. Therefore, improving the delivery efficiency of siRNA for cancer treatment is a research hotspot. Recently, mesoporous silica nanoparticles (MSNs) have emerged as bright delivery vehicles for nucleic acid drugs. A comprehensive understanding of the design of MSN-based vectors is crucial for the application of siRNA in cancer therapy. We discuss several surface-functionalized MSNs' advancements as effective siRNA delivery vehicles in this paper. The advantages of using MSNs for siRNA loading regarding considerations of different shapes, various options for surface functionalization, and customizable pore sizes are highlighted. We discuss the recent investigations into strategies that efficiently improve cellular uptake, facilitate endosomal escape, and promote cargo dissociation from the MSNs for enhanced intracellular siRNA delivery. Also, particular attention was paid to the exciting progress made by combining RNAi with other therapies to improve cancer therapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| |
Collapse
|
2
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, Xu Y, Qian X, Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater 2021; 128:435-446. [PMID: 33862284 DOI: 10.1016/j.actbio.2021.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/15/2023]
Abstract
Multi-modal combination therapy has attracted great attention, owing to the unsatisfactory therapeutic efficacy of conventional chemotherapy. Mesoporous silica-coated gold nanorods possess great potential in photothermal therapy and drug delivery. In this work, we fabricate a dual-responsive nanohybrid for combination treatment of the malignant tumor. In this system, gold nanorods are coated with the degradable mesoporous silica, and the chemotherapy drug doxorubicin (DOX) and photosensitizer (IR820) are co-loaded inside the pores of the silica. The encapsulation of hyaluronic acid (HA) endow the nanohybrids with mammary carcinoma targeting ability and better biocompatibility, owning to CD44+ receptor overexpressed in some cancer cells. As-prepared nanohybrids exhibit high responsiveness to a high glutathione (GSH) level and degrade rapidly in the presence of hyaluronidase (HAase) and GSH after endocytosis by 4T1 cells, allowing the efficient release of loaded DOX and IR 820 in tumor sites. Interestingly, near-infrared (NIR) laser not only triggers the generation of reactive oxygen species, but also remarkable photothermal efficacy originating from GNRs. Therefore, upon the irradiation of 808 nm NIR light, the combinatorial photodynamic, photothermal and chemotherapy is achieved, accordingly leading to a highly efficient antitumor outcome in vitro and in vivo. This strategy provides an ideal approach to constructing multimodal cancer therapy system. STATEMENT OF SIGNIFICANCE: • Dual-responsive nanohybrids for combinatorial therapy of breast cancer. • The nanohybrids exhibit both HAase and GSH stimuli-responsive behavior. • The nanohybrids exhibit light-activated PDT/PTT/chemotherapy. • The nanohybrids show good biosafety for potential clinical application.
Collapse
|
4
|
Wang L, Yan Y. A Review of pH-Responsive Organic-Inorganic Hybrid Nanoparticles for RNAi-Based Therapeutics. Macromol Biosci 2021; 21:e2100183. [PMID: 34160896 DOI: 10.1002/mabi.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) shows great potential in the treatment of varying cancer and genetic disorders. The lack of safe and effective delivery methods is an ongoing challenge to realize the full potential of RNAi-based therapeutics. pH-responsive hybrid nanoparticle is a promising non-virus platform for small interfering RNA (siRNA) delivery with unique properties including the robust response to the acidic microenvironment and the capability of theranostic and combined therapeutics. The mechanism of RNAi and the delivery barriers for RNAi-based therapeutics are first discussed. Then, the general patterns of pH-response and the typical construction of hybrid nanoparticles are demonstrated. The recent advances in pH-responsive organic-inorganic hybrid nanoparticles for siRNA delivery are highlighted, in particular, how pH-response of ionizable groups, acid-labile bonds, and decomposition of inorganic components affect the physicochemical properties of hybrid nanoparticles and benefit the cellular uptake and intracellular trafficking of siRNA payloads are discussed. At last, the remaining problems and the prospects for pH-responsive hybrid nanoparticles for siRNA delivery are analyzed.
Collapse
Affiliation(s)
- Lu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
5
|
Salve R, Kumar P, Ngamcherdtrakul W, Gajbhiye V, Yantasee W. Stimuli-responsive mesoporous silica nanoparticles: A custom-tailored next generation approach in cargo delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112084. [PMID: 33947574 DOI: 10.1016/j.msec.2021.112084] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022]
Abstract
The pre-mature release of therapeutic cargos in the bloodstream or off-target sites is a major hurdle in drug delivery. However, stimuli-specific drug release responses are capable of providing greater control over the cargo release. Herein, various types of nanocarriers have been employed for such applications. Among various types of nanoparticles, mesoporous silica nanoparticles (MSNPs) have several attractive characteristics, such as high loading capacity, biocompatibility, small size, porous structure, high surface area, tunable pore size and ease of functionalization of the external and internal surfaces, which facilitates the entrapment and development of stimuli-dependent release of drugs. MSNPs could be modified with such stimuli-responsive entities like nucleic acid, peptides, polymers, organic molecules, etc., to prevent pre-mature cargo release, improving the therapeutic outcome. This controlled drug release system could be modulated to function upon extracellular or intracellular specific stimuli, including pH, enzyme, glucose, glutathione, light, temperature, etc., and thus provide minimal side effects at non-target sites. This system has great potential applications for the targeted delivery of therapeutics to treat clinically challenging diseases like cancer. This review summarizes the synthesis and design of stimuli-responsive release strategies of MSNP-based drug delivery systems along with investigations in biomedical applications.
Collapse
Affiliation(s)
- Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India
| | - Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India
| | | | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411004, India.
| | - Wassana Yantasee
- PDX Pharmaceuticals, Inc., Portland, OR 97239, USA; Biomedical Engineering, OHSU School of Medicine, Portland, OR 97239, USA.
| |
Collapse
|
6
|
Carvalho AM, Cordeiro RA, Faneca H. Silica-Based Gene Delivery Systems: From Design to Therapeutic Applications. Pharmaceutics 2020; 12:E649. [PMID: 32660110 PMCID: PMC7407166 DOI: 10.3390/pharmaceutics12070649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Advances in gene therapy have been foreshadowing its potential for the treatment of a vast range of diseases involving genetic malfunctioning. However, its therapeutic efficiency and successful outcome are highly dependent on the development of the ideal gene delivery system. On that matter, silica-based vectors have diverted some attention from viral and other types of non-viral vectors due to their increased safety, easily modifiable structure and surface, high stability, and cost-effectiveness. The versatility of silane chemistry and the combination of silica with other materials, such as polymers, lipids, or inorganic particles, has resulted in the development of carriers with great loading capacities, ability to effectively protect and bind genetic material, targeted delivery, and stimuli-responsive release of cargos. Promising results have been obtained both in vitro and in vivo using these nanosystems as multifunctional platforms in different potential therapeutic areas, such as cancer or brain therapies, sometimes combined with imaging functions. Herein, the current advances in silica-based systems designed for gene therapy are reviewed, including their main properties, fabrication methods, surface modifications, and potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Henrique Faneca
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (A.M.C.); (R.A.C.)
| |
Collapse
|
7
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|
8
|
Paris JL, Vallet-Regí M. Mesoporous Silica Nanoparticles for Co-Delivery of Drugs and Nucleic Acids in Oncology: A Review. Pharmaceutics 2020; 12:E526. [PMID: 32521800 PMCID: PMC7356816 DOI: 10.3390/pharmaceutics12060526] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Mesoporous silica nanoparticles have attracted much attention in recent years as drug and gene delivery systems for biomedical applications. Among their most beneficial features for biomedicine, we can highlight their biocompatibility and their outstanding textural properties, which provide a great loading capacity for many types of cargos. In the context of cancer nanomedicine, combination therapy and gene transfection/silencing have recently been highlighted as two of its most promising fields. In this review, we aim to provide an overview of the different small molecule drug-nucleic acid co-delivery combinations that have been developed using mesoporous silica nanoparticles as carriers. By carefully selecting the chemotherapeutic drug and nucleic acid cargos to be co-delivered by mesoporous silica nanoparticles, different therapeutic goals can be achieved by overcoming resistance mechanisms, combining different cytotoxic mechanisms, or providing an additional antiangiogenic effect. The examples here presented highlight the great promise of this type of strategies for the development of future therapeutics.
Collapse
Affiliation(s)
- Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Civil, 29009 Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
- Centro de Investigación Biomédicaen Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
9
|
Du M, Chen Y, Tu J, Liufu C, Yu J, Yuan Z, Gong X, Chen Z. Ultrasound Responsive Magnetic Mesoporous Silica Nanoparticle-Loaded Microbubbles for Efficient Gene Delivery. ACS Biomater Sci Eng 2020; 6:2904-2912. [PMID: 33463299 DOI: 10.1021/acsbiomaterials.0c00014] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Xiaojing Gong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, China
| | - ZhiYi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Duo Bao Road 63, Guangzhou 510150, China
| |
Collapse
|
10
|
Peng SY, Zou MZ, Zhang CX, Ma JB, Zeng X, Xiao W. Fabrication of rapid-biodegradable nano-vectors for endosomal-triggered drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Luo T, Liang H, Jin R, Nie Y. Virus-inspired and mimetic designs in non-viral gene delivery. J Gene Med 2019; 21:e3090. [PMID: 30968996 DOI: 10.1002/jgm.3090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
Virus-inspired mimics for nucleic acid transportation have attracted much attention in the past decade, especially the derivative microenvironment stimuli-responsive designs. In the present mini-review, the smart designs of gene carriers that overcome biological barriers and realize an efficient delivery are categorized with respect to the different "triggers" provided by tumor cells, including pH, redox potentials, ATP, enzymes and reactive oxygen species. Some dual/multi-responsive gene vectors have also been introduced that show a more precise and efficient delivery in the complicated environment of human body. In addition, inspired by the special recognition mechanisms and components of viruses, improvements in the design of carriers relating to targeting/penetration properties, as well as chemical component evolution, are also addressed.
Collapse
Affiliation(s)
- Tianying Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hong Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Li T, Shi S, Goel S, Shen X, Xie X, Chen Z, Zhang H, Li S, Qin X, Yang H, Wu C, Liu Y. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater 2019; 89:1-13. [PMID: 30797106 DOI: 10.1016/j.actbio.2019.02.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/25/2023]
Abstract
Recently, drug delivery systems based on nanotechnology have received great attention in cancer therapeutics and diagnostics since they can not only improve the treatment efficacy but also reduce the side effects. Among them, mesoporous silica nanoparticles (MSNs) with large surface area, high pore volume, tunable pore size, abundant surface chemistry, and acceptable biocompatibility exhibit unique advantages and are considered as promising candidates for cancer diagnosis and therapy. In this review, we update the recent progress on MSN-based systems for cancer treatment purposes. We also discuss the drug loading mechanism of MSNs, stimuli-responsive drug release, and surface modification strategies for improving biocompatibility, and targeting functionalities. STATEMENT OF SIGNIFICANCE: The development of MSN-based delivery systems that can be used in both diagnosis and treatment of cancer has attracted tremendous interest in the past decade. MSN-based delivery systems can improve therapeutic efficacy and reduce cytotoxicity to normal tissue. To further improve the in vivo properties of MSNs and potential translation to the clinics, it is critical to design MSNs with appropriate surface engineering and desirable cancer targeting. This review is intended to provide the readers a comprehensive background of the vast literature till date on silica-based drug delivery systems, and to inspire further innovations in silica nanomedicine in the future.
Collapse
Affiliation(s)
- Tingting Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Sixiang Shi
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Shreya Goel
- Department of Materials Science & Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xue Shen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Xiaoxue Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Zhongyuan Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hanxi Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Shun Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Xiang Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Hong Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Chunhui Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Center for Information in Biology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China
| | - Yiyao Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, PR China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China.
| |
Collapse
|
13
|
Sufi SA, Pajaniradje S, Mukherjee V, Rajagopalan R. Redox Nano-Architectures: Perspectives and Implications in Diagnosis and Treatment of Human Diseases. Antioxid Redox Signal 2019; 30:762-785. [PMID: 29334759 DOI: 10.1089/ars.2017.7412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Efficient targeted therapy with minimal side-effects is the need of the hour. Locally altered redox state is observed in several human ailments, such as inflammation, sepsis, and cancer. This has been taken advantage of in designing redox-responsive nanodrug carriers. Redox-responsive nanosystems open a door to a multitude of possibilities for the control of diseases over other drug delivery systems. Recent Advances: The first-generation nanotherapy relies on novel properties of nanomaterials to shield the drug and deliver it to the diseased tissue or organ. The second generation is based on targeting the drug or diagnostic material to the diseased cell-specific receptors, or to a particular organ to improve the efficacy of the drug. The third and the latest generation of nanocarriers, the stimuli-responsive nanocarriers exploit the disease condition or environment to specifically deliver the drug or diagnostic probe for the best diagnosis and treatment. Several different kinds of stimuli such as temperature, magnetic field, pH, and altered redox state-responsive nanosystems have educed immense promise in the field of nanomedicine and therapy. CRITICAL ISSUES We describe the evolution of nanomaterial since its inception with an emphasis on stimuli-responsive nanocarriers, especially redox-sensitive nanocarriers. Importantly, we discuss the future perspectives of redox-responsive nanocarriers and their implications. FUTURE DIRECTIONS Redox-responsive nanocarriers achieve a near-to-zero premature release of the drug, thus avoiding off-site toxicity associated with the free drug. This bears great potential for the development of more effective drug delivery with better pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Shamim Akhtar Sufi
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Victor Mukherjee
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
14
|
Folate-Functionalized Mesoporous Hollow SnO 2 Nanofibers as a Targeting Drug Carrier to Improve the Antitumor Effect of Paclitaxel for Liver Cancer Therapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8526190. [PMID: 30596100 PMCID: PMC6286759 DOI: 10.1155/2018/8526190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
In this study, we prepared PTX-loaded mesoporous hollow SnO2 nanofibers conjugated with folic acid (SFNFP) for liver cancer therapy. According to SEM and TEM characterization, SFNF showed a mesoporous hollow structure. The average outer diameter was 200 nm, and the wall thickness was 50 nm. The DSC and XRD study showed that PTX in the channels of nanofibers was present in an amorphous state. The in vitro release experiments demonstrated that SFNF could efficiently improve the dissolution rate of PTX. Both in vitro cell experiments and in vivo antitumor experiments showed that SFNFP could efficiently inhibit the growth of liver cancer cells. Therefore, SFNF is a promising targeting antitumor drug delivery carrier.
Collapse
|
15
|
Cao L, Zhou Z, Niu S, Cao C, Li X, Shan Y, Huang Q. Positive-Charge Functionalized Mesoporous Silica Nanoparticles as Nanocarriers for Controlled 2,4-Dichlorophenoxy Acetic Acid Sodium Salt Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6594-6603. [PMID: 28640597 DOI: 10.1021/acs.jafc.7b01957] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Because of its relatively high water solubility and mobility, 2,4-dichlorophenoxy acetic acid (2,4-D) has a high leaching potential threatening the surface water and groundwater. Controlled release formulations of 2,4-D could alleviate the adverse effects on the environment. In the present study, positive-charge functionalized mesoporous silica nanoparticles (MSNs) were facilely synthesized by incorporating trimethylammonium (TA) groups onto MSNs via a postgrafting method. 2,4-D sodium salt, the anionic form of 2,4-D, was effectively loaded into these positively charged MSN-TA nanoparticles. The loading content can be greatly improved to 21.7% compared to using bare MSNs as a single encapsulant (1.5%). Pesticide loading and release patterns were pH, ionic strength and temperature responsive, which were mainly dominated by the electrostatic interactions. Soil column experiments clearly demonstrated that MSN-TA can decrease the soil leaching of 2, 4-D sodium salt. Moreover, this novel nanoformulation showed good bioactivity on target plant without adverse effects on the growth of nontarget plant. This strategy based on electrostatic interactions could be widely applied to charge carrying agrochemicals using carriers bearing opposite charges to alleviate the potential adverse effects on the environment.
Collapse
Affiliation(s)
- Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Zhaolu Zhou
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Shujun Niu
- Institute of Plant Protection , Gansu Academy of Agricultural Sciences , No. 1 Nongkeyuan New Village , An'ning District, Lanzhou 730070 , P. R. China
| | - Chong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Xiuhuan Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Yongpan Shan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Qiliang Huang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection , Chinese Academy of Agricultural Sciences , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| |
Collapse
|
16
|
pH-sensitive biocompatible mesoporous magnetic nanoparticles labeled with folic acid as an efficient carrier for controlled anticancer drug delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Roacho-Perez JA, Gallardo-Blanco HL, Sanchez-Dominguez M, Garcia-Casillas PE, Chapa-Gonzalez C, Sanchez-Dominguez CN. Nanoparticles for death‑induced gene therapy in cancer (Review). Mol Med Rep 2017; 17:1413-1420. [PMID: 29257213 DOI: 10.3892/mmr.2017.8091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
Abstract
Due to the high toxicity and side effects of the use of traditional chemotherapy in cancer, scientists are working on the development of alternative therapeutic technologies. An example of this is the use of death‑induced gene therapy. This therapy consists of the killing of tumor cells via transfection with plasmid DNA (pDNA) that contains a gene which produces a protein that results in the apoptosis of cancerous cells. The cell death is caused by the direct activation of apoptosis (apoptosis‑induced gene therapy) or by the protein toxic effects (toxin‑induced gene therapy). The introduction of pDNA into the tumor cells has been a challenge for the development of this therapy. The most recent implementation of gene vectors is the use of polymeric or inorganic nanoparticles, which have biological and physicochemical properties (shape, size, surface charge, water interaction and biodegradation rate) that allow them to carry the pDNA into the tumor cell. Furthermore, nanoparticles may be functionalized with specific molecules for the recognition of molecular markers on the surface of tumor cells. The binding between the nanoparticle and the tumor cell induces specific endocytosis, avoiding toxicity in healthy cells. Currently, there are no clinical protocols approved for the use of nanoparticles in death‑induced gene therapy. There are still various challenges in the design of the perfect transfection vector, however nanoparticles have been demonstrated to be a suitable candidate. This review describes the role of nanoparticles used for pDNA transfection and key aspects for their use in death‑induced gene therapy.
Collapse
Affiliation(s)
- Jorge A Roacho-Perez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Hugo L Gallardo-Blanco
- Department of Genetics, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| | - Margarita Sanchez-Dominguez
- Centro de Investigacion en Materiales Avanzados, S. C. (CIMAV, S.C.), Unidad Monterrey, Apodaca, Nuevo Leon 66628, Mexico
| | - Perla E Garcia-Casillas
- Universidad Autonoma de Ciudad Juarez, Institute of Engineering and Technology, Ciudad Juarez, Chihuahua 32310, Mexico
| | - Christian Chapa-Gonzalez
- Universidad Autonoma de Ciudad Juarez, Institute of Engineering and Technology, Ciudad Juarez, Chihuahua 32310, Mexico
| | - Celia N Sanchez-Dominguez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico
| |
Collapse
|
18
|
Watermann A, Brieger J. Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E189. [PMID: 28737672 PMCID: PMC5535255 DOI: 10.3390/nano7070189] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
Abstract
Even though cancer treatment has improved over the recent decades, still more specific and effective treatment concepts are mandatory. Surgical removal is not always possible, metastases are challenging and chemo- and radiotherapy can not only have severe side-effects but also resistances may occur. To cope with these challenges more efficient therapies with fewer side-effects are required. One promising approach is the use of drug delivery vehicles. Here, mesoporous silica nanoparticles (MSN) are discussed as biodegradable drug carrier to improve efficacy and reduce side-effects. MSN excellently fulfill the criteria for nanoparticulate carriers: their distinct structure allows high loading capacity and a plethora of surface modifications. MSN synthesis permits fine-tuning of particle and pore sizes. Moreover, drug release can be tailored through various gatekeeper systems which are for example pH-sensitive or redox-sensitive. Furthermore, MSN can either enter tumors passively by the enhanced permeability and retention effect or can be actively targeted by various ligands. PEGylation prolongs circulation time and availability. A huge advantage of MSN is their explicitly low toxic profile in vivo. Yet, clinical translation remains challenging. Overall, mesoporous silica nanoparticles are a promising tool for innovative, more efficient and safer cancer therapies.
Collapse
Affiliation(s)
- Anna Watermann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Juergen Brieger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
19
|
Li Y, Gao J, Zhang C, Cao Z, Cheng D, Liu J, Shuai X. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Cham) 2017; 375:27. [DOI: 10.1007/s41061-017-0119-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
20
|
Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. Int J Pharm 2016; 515:132-164. [DOI: 10.1016/j.ijpharm.2016.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
|