1
|
Mehdizadeh K, PourFalatoon S, Nouraliei M, Farsadrooh M, Kim H, Ramezani Farani M, Huh YS. Comparative study of the therapeutic potential of C 24, C 32, B 12N 12, and B 16N 16 nanocages as drug delivery carriers for delivering an erlotinib derivative: DFT and QTAIM investigations. NANOSCALE 2025; 17:11413-11425. [PMID: 40242881 DOI: 10.1039/d4nr05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The use of nanostructures as drug delivery vehicles for a wide range of anticancer medications to lessen their severe side effects by delivering them to the targeted tumor cell location is presently a broadly studied innovative biomedical application of different nanostructures. To investigate the capability of C24 and C32, B12N12, and B16N16 nanocages as nanocarriers for delivering the methyl erlotinib molecule, we conducted density functional theory (DFT) computations using the M06-2X/6-311G(d,p) and M06-2X/6-31G(d) levels of theory. The calculation of the adsorption energy of methyl erlotinib on the nanocages was performed in aqueous and gaseous phases. The adsorption energy values associated with the interaction between the nanocages and methyl erlotinib were negative, indicating that this interaction was exothermic in nature. The adsorption energy values in the aqueous state were higher than those in the gaseous state, suggesting a stronger interaction in the aqueous state, with the exception of the C32 nanocage. Analyses of the density of states (DOS) and projected density of states (PDOS) were performed in order to examine the effect of methyl erlotinib adsorption on the electronic characteristics of selected nanocages. The findings indicated that the B12N12 nanocage following methyl erlotinib molecule adsorption came nearer to the Fermi level than the other nanocages examined. Calculations based on the Quantum Theory of Atoms in Molecules (QTAIM) indicated that methyl erlotinib had a weak interaction with all selected nanocages. According to the values of the adsorption energy derived from both methodologies, the interaction between methyl erlotinib and the B12N12 nanocage was determined to be more robust than the interaction between methyl erlotinib and the C24 nanocage, while the interaction between methyl erlotinib and the B16N16 nanocage was also stronger than that with the C32 nanocage. Notable variations in the ΔEg values were detected for methyl erlotinib@B12N12 and methyl erlotinib@B16N16 across all methods, suggesting that the conductivity of these two nanostructures improved more significantly following the adsorption of methyl erlotinib than that of other nanostructures. Consequently, the B12N12 and B16N16 nanocages can function as nanosensors for methyl erlotinib.
Collapse
Affiliation(s)
- Khourshid Mehdizadeh
- Department of Chemistry, Roudsar and Amlash Branch, Islamic Azad University, Roudsar, Iran
| | - Sourour PourFalatoon
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Nouraliei
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Majid Farsadrooh
- Renewable Energies Research Laboratory, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, P.O. Box 98135 674, Zahedan, Iran.
| | - Hanseung Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
Karimi M, Dehdari Vais R, Karimian K, Parsaei A, Heli H. Investigation of bioavailability and anti-pancreatic cancer efficacy of a self-nanoemulsifying erlotinib delivery system. Ther Deliv 2025; 16:237-246. [PMID: 39991842 PMCID: PMC11875489 DOI: 10.1080/20415990.2025.2466412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/10/2025] [Indexed: 02/25/2025] Open
Abstract
AIMS A new self-nanoemulsifying drug delivery system (SNEDDS) was developed for erlotinib (Ert) oral delivery. MATERIALS AND METHODS A pseudo-ternary phase diagram for olive oil, Tween 80 and polyethylene glycol (PEG) 600 mixtures, was firstly constructed. Based on the data about Ert solubility and cytotoxicity of these components, a SNEDDS composed of 10% olive oil, 20% Tween 80 and 70% (V/V) polyethylene glycol 600 was selected for Ert loading (Ert-SNEDDS). RESULTS AND CONCLUSIONS SNEDDS formed 31.2-nm droplets upon dilution in water, and Ert loading led to increment in the oil droplets to 83.9 ± 0.6 nm. Ert-SNEDDS represented a loading capacity and an entrapment efficiency of 22.7 ± 0.7 and 40.7 ± 0.5%, respectively. Ert release from Ert-SNEDDS was monitored in both a mixture of phosphate buffer saline and 0.5% Tween 80, and artificial gastric fluid. Ert-SNEDDS was orally administrated in rats, and the Ert plasma level was monitored over time to measure pharmacokinetic parameters. Ert-SNEDDS led to enhancement in the drug bioavailability and changed the release route of Ert. Ert-SNEDDS showed enhanced cytotoxicity toward ASPC-1 and PANC-1 cells, and half-maximal inhibitory concentration values were obtained and compared with free Ert. Ert-SNEDDS may be considered as an alternative route for oral Ert delivery.
Collapse
Affiliation(s)
- Maryam Karimi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Dehdari Vais
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Parsaei
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Patil J, Bhattacharya S, Saoji SD, Dande P. Cabozantinib-phospholipid complex for enhanced solubility, bioavailability, and reduced toxicity in liver cancer. Ther Deliv 2025; 16:25-41. [PMID: 39611708 PMCID: PMC11703380 DOI: 10.1080/20415990.2024.2435240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
AIMS To enhance the therapeutic potential of Cabozantinib (CBZ), a tyrosine kinase inhibitor with limited water solubility, low bioavailability, and high toxicity, by developing a Cabozantinib-Phospholipid Complex (CBZ-PLS). MATERIALS & METHODS CBZ-PLS was formulated using solvent evaporation with a Box-Behnken design and characterized using various techniques to confirm molecular interactions. Solubility, in vitro release, pharmacokinetics, and toxicity were evaluated. Cytotoxic effects on HepG2 cell lines were also assessed. RESULTS CBZ-PLS exhibited a 126-fold increase in solubility and enhanced CBZ release in vitro. Pharmacokinetic studies on Wistar rats demonstrated a 1.58-fold increase in bioavailability, while acute toxicity studies confirmed biocompatibility. CBZ-PLS showed superior cytotoxicity, apoptosis induction, migration inhibition, increased ROS generation, and greater DNA fragmentation in HepG2 cells. The complex also maintained stability over 6 months. CONCLUSIONS CBZ-PLS significantly improves the solubility, bioavailability, and therapeutic efficacy of CBZ against liver cancer, presenting a promising approach for more effective liver cancer treatment.
Collapse
Affiliation(s)
- Jayesh Patil
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| | - Suprit D. Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur, Mahatma Jyotiba Fuley Shaikshanik Parisar, University Campus, Nagpur, India
| | - Payal Dande
- Department of Pharmacognosy, School of Pharmacy & Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, India
| |
Collapse
|
4
|
Wang H, Luan Y, Li M, Wu S, Zhang S, Xue J. Crystallization and intermolecular hydrogen bonding in carbamazepine-polyvinyl pyrrolidone solid dispersions: An experiment and molecular simulation study on drug content variation. Int J Pharm 2024; 666:124769. [PMID: 39341386 DOI: 10.1016/j.ijpharm.2024.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The choice of drug content is a critical factor as far as the solid dispersion is concerned. This investigation aims to build the relationship between the drug content, intermolecular hydrogen bonding and the crystalline of the carbamazepine-polyvinyl pyrrolidone solid dispersion. In this work, the microstructural changes of solid dispersions were investigated using experimental characterization combined with molecular simulation. Experimental investigations demonstrated that increasing the drug content enhances the intermolecular hydrogen bonding between drugs, resulting in the crystalline phase of the drug emerged in the solid dispersion. This negatively affects the solubility and stability of solid dispersions. Molecular simulations were then used to analyze the changes of intermolecular hydrogen bonding at different drug content in the system. It revealed a tenfold increase in drug-drug hydrogen bonding concentration as drug content elevated from 10% to 50%, while the drug-excipient hydrogen bonding concentration decreased by 45%. The correlation analysis proves the significant relationships among the drug content, intermolecular hydrogen bonding, and crystallinity of solid dispersion. Using polynomial fitting analysis, the quantitative relationships between the drug content and crystalline properties were investigated. This study will offer valuable insights into the impact of drug content on the performance of solid dispersion.
Collapse
Affiliation(s)
- Huaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yajie Luan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengke Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sidian Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
5
|
Singh JK, Kaur S, Chandrasekaran B, Kaur G, Saini B, Kaur R, Silakari P, Kaur N, Bassi P. A QbD-Navigated Approach to the Development and Evaluation of Etodolac-Phospholipid Complex Containing Polymeric Films for Improved Anti-Inflammatory Effect. Polymers (Basel) 2024; 16:2517. [PMID: 39274149 PMCID: PMC11398249 DOI: 10.3390/polym16172517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
The current study focuses on development of phospholipid complex-loaded films of etodolac for enhanced transdermal permeation and anti-inflammatory effect. An etodolac-phospholipid complex was developed using the solvent evaporation method and was characterized by DSC, XRD, FTIR, and 1H-NMR studies. The formation of the complex led to conversion of a crystalline drug to an amorphous form. A stoichiometric ratio of 1:1 (drug-phospholipid) was selected as the optimized ratio. Further, the developed complex was incorporated into films and systematic optimization using a central composite design was carried out using a response surface methodological approach. The desirable design space based on minimum contact angle and maximum tensile strength was selected, while the water vapour transmission rate and swelling index were set within limits. The results for swelling index, contact angle, tensile strength, and water vapour transmission rate were 60.14 ± 1.01%, 31.6 ± 0.03, 2.44 ± 0.39 kg/cm2, and 15.38 g/hm2, respectively. These values exhibited a good correlation with the model-predicted values. The optimized formulation exhibited improved diffusion and permeation across skin. In vivo studies revealed enhanced anti-inflammatory potential of the developed films in comparison to the un-complexed drug. Hence, the study demonstrated that etodolac-phospholipid complex-loaded films improve the transdermal permeation and provided enhanced anti-inflammatory effect.
Collapse
Affiliation(s)
- Jangjeet Karan Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Simran Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Gurpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Pragati Silakari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Narinderpal Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Pallavi Bassi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
6
|
Patil J, Pawde DM, Bhattacharya S, Srivastava S. Phospholipid Complex Formulation Technology for Improved Drug Delivery in Oncological Settings: a Comprehensive Review. AAPS PharmSciTech 2024; 25:91. [PMID: 38664316 DOI: 10.1208/s12249-024-02813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024] Open
Abstract
Addressing poor solubility and permeability issues associated with synthetic drugs and naturally occurring active compounds is crucial for improving bioavailability. This review explores the potential of phospholipid complex formulation technology to overcome these challenges. Phospholipids, as endogenous molecules, offer a viable solution, with drugs complexed with phospholipids demonstrating a similar absorption mechanism. The non-toxic and biodegradable nature of the phospholipid complex positions it as an ideal candidate for drug delivery. This article provides a comprehensive exploration of the mechanisms underlying phospholipid complexes. Special emphasis is placed on the solvent evaporation method, with meticulous scrutiny of formulation aspects such as the phospholipid ratio to the drug and solvent. Characterization techniques are employed to understand structural and functional attributes. Highlighting the adaptability of the phospholipid complex, the review discusses the loading of various nanoformulations and emulsion systems. These strategies aim to enhance drug delivery and efficacy in various malignancies, including breast, liver, lung, cervical, and pancreatic cancers. The broader application of the drug phospholipid complex is showcased, emphasizing its adaptability in diverse oncological settings. The review not only explores the mechanisms and formulation aspects of phospholipid complexes but also provides an overview of key clinical studies and patents. These insights contribute to the intellectual and translational advancements in drug phospholipid complexes.
Collapse
Affiliation(s)
- Jayesh Patil
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Datta Maroti Pawde
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-Be University, Shirpur, Maharashtra, 425405, India.
| | - Sauarbh Srivastava
- Department of Pharmaceutics, School of Pharmacy, KPJ Healthcare University, 71800, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
7
|
Mangla B, Mittal P, Kumar P, Javed S, Ahsan W, Aggarwal G. Development of erlotinib-loaded nanotransferosomal gel for the topical treatment of ductal carcinoma in situ. Nanomedicine (Lond) 2024; 19:855-874. [PMID: 38440976 DOI: 10.2217/nnm-2023-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Aims: This study was aimed to formulate erlotinib (ERL)-loaded transferosomal gel (ERL@TG) intended for topical application for the treatment of ductal carcinoma in situ. Materials & methods: The optimized process involved a thin-film hydration method to generate ERL-loaded transferosomes (ERL@TFS), which was incorporated into a carbopol gel matrix to generate ERL@TG. The optimized formulation was characterized in vitro followed by cytotoxicity evaluation on MCF-7 breast cancer cell lines and acute toxicity and skin irritation studies was performed in vivo. Results: In a comparative assessment against plain ERL, ERL@TG displayed enhanced efficacy against MCF-7 cell lines, reflected in considerably lower IC50 values with an enhanced safety profile. Conclusion: Optimized ERL@TG was identified as a promising avenue for addressing ductal carcinoma in situ breast cancer.
Collapse
Affiliation(s)
- Bharti Mangla
- Centre for Advanced Formulation & Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Priya Mittal
- Centre for Advanced Formulation & Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Pankaj Kumar
- Centre for Advanced Formulation & Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, PO box no. 114, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, PO box no. 114, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Centre for Advanced Formulation & Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| |
Collapse
|
8
|
Jadhav K, Sirvi A, Janjal A, Kashyap MC, Sangamwar AT. Utilization of Lipophilic Salt and Phospholipid Complex in Lipid-Based Formulations to Modulate Drug Loading and Oral Bioavailability of Pazopanib. AAPS PharmSciTech 2024; 25:59. [PMID: 38472682 DOI: 10.1208/s12249-024-02780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Pazopanib hydrochloride (PAZ) displays strong intermolecular interaction in its crystal lattice structure, limiting its solubility and dissolution. The development of lipid-based formulations (LbFs) resulted in reduced PAZ loading due to solid-state mediated low liposolubility. This study aims to enhance our understanding of PAZ crystallinity by synthesizing a lipophilic salt and phospholipid complex and investigating its impact on the drug loading in LbFs. The synthesized pazopanib lipophilic salt and phospholipid complex were extensively characterized. The solid form of pazopanib docusate (PAZ-DOC) and pazopanib phospholipid complex (PAZ-PLC) indicates a reduction in characteristic diffraction peaks of crystalline PAZ. The lipid formulations were prepared using synthesized PAZ-DOC and PAZ-PLC, where PAZ-DOC demonstrated six fold higher drug solubility than the commercial salt form and twice that of the PAZ-PLC due to differences in the crystallinity. Further, the impact of salt and complex formation was assessed on the aqueous drug solubilization using lipolysis and multimedia dissolution experiments. Moreover, the LbFs showed notably faster dissolution compared to the crystalline PAZ and marketed tablet. In terms of in vivo pharmacokinetics, the PAZ-DOC LbF exhibited a remarkable 11-fold increase in AUC value compared to the crystalline PAZ and a 2.5-fold increase compared to Votrient®. Similarly, PAZ-PLC LbF showed an approximately nine fold increase in drug exposure compared to the crystalline PAZ, and a 2.2-fold increase compared to Votrient®. These findings suggest that disrupting the crystallinity of drugs and incorporating them into LbF could be advantageous for enhancing drug loading and overcoming limitations related to drug absorption.
Collapse
Affiliation(s)
- Karan Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Akash Janjal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Mahesh C Kashyap
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, 160062, India.
| |
Collapse
|
9
|
Rezaee Y, Rezaee E, Karami L, Torshabi M, Haeri A. Crocin-Phospholipid Complex: Molecular Docking, Molecular Dynamics Simulation, Preparation, Characterization, and Antioxidant Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144041. [PMID: 39005730 PMCID: PMC11246643 DOI: 10.5812/ijpr-144041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 07/16/2024]
Abstract
Background Crocin is a water-soluble carotenoid compound present in saffron (Crocus sativus L.), known for its wide range of pharmacological activities, including cardioprotective, hepatoprotective, anti-tumorigenic, anti-atherosclerosis, and anti-inflammatory effects. Objectives The instability of crocin, its low miscibility with oils, and poor bioavailability pose challenges for its pharmaceutical applications. This study aimed to design and prepare a crocin-phospholipid complex (CPC) and assess its physicochemical properties. Methods The study investigated the formation of the complex and its binding affinity through molecular docking. Molecular dynamics (MD) simulations were conducted to find the optimal molar ratio of crocin to phospholipid for the complex's preparation. The CPC was produced using the solvent evaporation method. Techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), nuclear magnetic resonance (NMR), and solubility studies were utilized to characterize and confirm the formation of CPC. Additionally, the in vitro antioxidant activity of crocin and CPC was evaluated. Results Molecular dynamic simulations explored molar ratios of 1: 1, 1: 1.5, and 1: 2 for crocin to phospholipid. The ratio of 1: 2 was found to be the most stable, exhibiting the highest probability of hydrogen bond formation. Molecular docking, FTIR, and NMR studies indicated hydrogen bond interactions between crocin and phospholipid, confirming CPC's formation. XRD and FE-SEM analyses showed a decrease in crocin's crystallinity within the phospholipid complex. Furthermore, the solubility of crocin in n-octanol was enhanced post-complexation, indicating an increase in crocin's lipophilic nature. Conclusions Phospholipid complexation emerges as a promising technique for enhancing the physicochemical characteristics of crocin.
Collapse
Affiliation(s)
- Yasaman Rezaee
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Karami
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hashtrodylar Y, Rabbani S, Dadashzadeh S, Haeri A. Berberine-phospholipid nanoaggregate-embedded thiolated chitosan hydrogel for aphthous stomatitis treatment. Nanomedicine (Lond) 2023; 18:1227-1246. [PMID: 37712555 DOI: 10.2217/nnm-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: This study aimed to develop nanoaggregates of berberine-phospholipid complex incorporated into thiolated chitosan (TCS) hydrogel for the treatment of aphthous stomatitis. Methods: The berberine-phospholipid complex was formulated through the solvent evaporation technique and assembled into nanoaggregates. TCS was synthesized through the attachment of thioglycolic acid to chitosan (CS). Nanoaggregates-TCS was prepared by the incorporation of nanoaggregates into TCS and underwent in vitro and in vivo tests. Results: Nanoaggregates-TCS exhibited prolonged release of berberine. The mucoadhesive strength of nanoaggregates-TCS increased 1.75-fold compared with CS hydrogel. In vivo studies revealed the superior therapeutic efficacy of nanoaggregates-TCS compared with that of other groups. Conclusion: Due to prolonged drug release, appropriate residence time and anti-inflammatory effects, nanoaggregates-TCS is an effective system for the treatment of aphthous stomatitis.
Collapse
Affiliation(s)
- Yasaman Hashtrodylar
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, 1313814117, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics & Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, 1996835113, Tehran, Iran
| |
Collapse
|
11
|
Chaudhari D, Kuche K, Yadav V, Ghadi R, Date T, Bhargavi N, Jain S. Exploring paclitaxel-loaded adenosine-conjugated PEGylated PLGA nanoparticles for targeting triple-negative breast cancer. Drug Deliv Transl Res 2023; 13:1074-1087. [PMID: 36528709 DOI: 10.1007/s13346-022-01273-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
In present investigation, we developed paclitaxel (PTX)-loaded adenosine (ADN)-conjugated PLGA nanoparticles for combating triple-negative breast cancer (TNBC), where ADN acts as a substrate for adenosine receptors (AR) that are overexpressed in TNBC. Using synthesized PLGA-PEG-ADN, PTX-loaded nanoparticles (PTX ADN-PEG-PLGA NPs) were prepared via emulsion diffusion evaporation process that rendered particles of size 135 ± 12 nm, PDI of 0.119 ± 0.03, and entrapment-efficiency of 79.26 ± 2.52%. The NPs showed higher %cumulative release at pH 5.5 over 7.4 with Higuchi release kinetics. The PTX ADN-PEG-PLGA NPs showed ~ 4.87- and 5.22-fold decrease in %hemolysis in comparison to free PTX and Intaxel®, indicating their hemocompatible nature. The ADN modification assisted cytoplasmic internalization of particles via AR-mediated endocytosis that resulted in ~ 3.77- and 3.51-fold reduction in IC50 and showed apoptosis index of 0.93 and 1.18 in MDA-MB-231 and 4T1 cells respectively. The pharmacokinetic profile of ADN-PEG-PLGA NPs revealed higher AUC and t1/2 than Intaxel® and Nanoxel® pharmacodynamic activity showed ~ 18.90-fold lower %tumor burden than control. The kidney and liver function biomarkers showed insignificant change in the levels, when treated with PTX ADN-PEG-PLGA NPs and exhibited no histological alterations in the liver, spleen, and kidney. Overall, the optimized particles were found to be biocompatible with improved anti-TNBC activity.
Collapse
Affiliation(s)
- Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Nallamothu Bhargavi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
12
|
Solanki P, Ansari MD, Alam MI, Aqil M, Ahmad FJ, Sultana Y. Precision engineering designed phospholipid-tagged pamidronate complex functionalized SNEDDS for the treatment of postmenopausal osteoporosis. Drug Deliv Transl Res 2023; 13:883-913. [PMID: 36414929 DOI: 10.1007/s13346-022-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Disodium pamidronate, a second-generation bisphosphonate is a potent drug for the treatment of osteoporosis, which has been very well established by previous literature. It has very low oral permeability, leading to its low oral bioavailability, which restrict this drug to being administered orally. Therefore, the present research work includes the development of an orally effective nanoformulation of pamidronate. In this work, disodium pamidronate was complexed with phospholipon 90G for the enhancement of permeability and to investigate the phospholipon 90G-tagged pamidronate complex-loaded SNEDDS for oral delivery with promises of enhanced bioavailability and anti-osteoporotic activity. The rational design and optimization was employed using Central Composite Design (Design Expert® 12, software) to optimize nanoformulation parameters. In this work, a commercially potential self nano-emulsifying drug delivery system (SNEDDS) has been developed and evaluated for improved oral bioavailability and better clinical acceptance. The hot micro-emulsification and ultracentrifugation method with vortex mixing was utilized for effective tagging of phospholipon 90G with pamidronate and then loading into the SNEDDS nanocarrier. The optimized Pam-PLc SNEDDS formulation was characterized for particle size, PDI, and zeta potential and found to be 56.38 ± 1.37 nm, 0.218 ± 0.113, and 22.41 ± 1.14 respectively. Also, a 37.9% improved bioavailability of pamidronate compared to marketed tablet was observed. Similarly, in vivo pharmacokinetic studies suggest a 31.77% increased bone density and significant enhanced bone biomarkers compared to marketed tablets. The developed formulation is safe and effectively overcomes anti-osteoporosis promises with improved therapeutic potential. This work provides very significant achievements in postmenopausal osteoporosis treatment and may lead to possible use of nanotherapeutic-driven emerging biodegradable carriers-based drug delivery.
Collapse
Affiliation(s)
- Pavitra Solanki
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Iqbal Alam
- Department of Physiology, Hamdard Institute of Medical Sciences & Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.
| |
Collapse
|
13
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Almajidi YQ, Maraie NK, Raauf AMR. Modified solid in oil nanodispersion containing vemurafenib-lipid complex- in vitro/ in vivo study. F1000Res 2022; 11:841. [PMID: 36339973 PMCID: PMC9627402 DOI: 10.12688/f1000research.123041.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Vemurafenib (VEM) was a licensed drug for the treatment of skin melanoma and is available only in the market as oral tablets prescribed in huge doses (1920 mg/day). One reason for the high dose is vemurafenib's low oral bioavailability. Methods: VEM-lipid complex (DLC) was predicted based on Conquest and Mercury programs and prepared using the solvent evaporation method using the lipid (phosphatidylethanolamine). DLC was subjected to characterization (FT-IR, Raman spectroscopy, DSC, TGA, P-XRD, and FESEM) to confirm complexation. DLC was used to prepare solid in oil nanodispersion (DLC-SON) and subjected to in vitro, ex vivo, and in vivo evaluation in comparison to our recently prepared conventional SON (VEM-SON) and DLC-control. Results: Conquest and Mercury predict the availability of intermolecular hydrogen bonding between VEM and phosphatidylethanolamine (PE). All characterization tests of DLC ensure the complexation of the drug with PE. Ex vivo studies showed that the drug in DLC-SON has significantly (P<0.05) higher skin permeation than DLC-control but lower drug permeation than conventional SON but it has a higher % skin deposition (P<0.05) than others. The half-maximal inhibitory concentration (IC50) of the prepared DLC-SON is significantly high (P<0.05) in comparison to the conventional SON and pure VEM. In vivo permeation using confocal laser scanning microscopy (on the rat) results indicated that both conventional SON and DLC-SON can cross the SC and infiltrate the dermis and epidermis but DLC-SON has a higher luminance/gray value after 24 h in the dermis in comparison to the conventional SON. Conclusion: The novel lipid complex for VEM prepared using PE as a lipid and enclosed in SON showed higher anticancer activity and topical permeation as well as sustained delivery and good retention time in the dermis that localize the drug in a sufficient concentration to eliminate early diagnosed skin melanoma.
Collapse
Affiliation(s)
- Yasir Q. Almajidi
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq,
| | - Nidhal K. Maraie
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Ayad M. R. Raauf
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| |
Collapse
|
15
|
Almajidi YQ, Maraie NK, Raauf AMR. Modified solid in oil nanodispersion containing vemurafenib-lipid complex- in vitro/ in vivo study. F1000Res 2022; 11:841. [PMID: 36339973 PMCID: PMC9627402 DOI: 10.12688/f1000research.123041.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 07/30/2023] Open
Abstract
Background: Vemurafenib (VEM) was a licensed drug for the treatment of skin melanoma and is available only in the market as oral tablets prescribed in huge doses (1920 mg/day). One reason for the high dose is vemurafenib's low oral bioavailability. Methods: VEM-lipid complex (DLC) was predicted based on Conquest and Mercury programs and prepared using the solvent evaporation method using the lipid (phosphatidylethanolamine). DLC was subjected to characterization (FT-IR, Raman spectroscopy, DSC, TGA, P-XRD, and FESEM) to confirm complexation. DLC was used to prepare solid in oil nanodispersion (DLC-SON) and subjected to in vitro, ex vivo, and in vivo evaluation in comparison to our recently prepared conventional SON (VEM-SON) and DLC-control. Results: Conquest and Mercury predict the availability of intermolecular hydrogen bonding between VEM and phosphatidylethanolamine (PE). All characterization tests of DLC ensure the complexation of the drug with PE. Ex vivo studies showed that the drug in DLC-SON has significantly (P<0.05) higher skin permeation than DLC-control but lower drug permeation than conventional SON but it has a higher % skin deposition (P<0.05) than others. The half-maximal inhibitory concentration (IC50) of the prepared DLC-SON is significantly high (P<0.05) in comparison to the conventional SON and pure VEM. In vivo permeation using confocal laser scanning microscopy (on the rat) results indicated that both conventional SON and DLC-SON can cross the SC and infiltrate the dermis and epidermis but DLC-SON has a higher luminance/gray value after 24 h in the dermis in comparison to the conventional SON. Conclusion: The novel lipid complex for VEM prepared using PE as a lipid and enclosed in SON showed higher anticancer activity and topical permeation as well as sustained delivery and good retention time in the dermis that localize the drug in a sufficient concentration to eliminate early diagnosed skin melanoma.
Collapse
Affiliation(s)
- Yasir Q. Almajidi
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Nidhal K. Maraie
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Ayad M. R. Raauf
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| |
Collapse
|
16
|
Wang MX, Wang MM, Liu C, Chen JS, Liu JS, Guo X, Zhang MQ, Zhang J, Sun JY, Liao ZX. A geniposide-phospholipid complex ameliorates posthyperuricemia chronic kidney disease induced by inflammatory reactions and oxidative stress. Eur J Pharmacol 2022; 930:175157. [PMID: 35870480 DOI: 10.1016/j.ejphar.2022.175157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Hyperuricemia is a common metabolic disease and is one of the factors that could induce chronic kidney disease (CKD). Geniposide (GEN) is a typical natural iridoid glucoside compound with a series of biological activities, but the poor bioavailability of GEN limits its clinical application. In this context, the pharmacological activity of the geniposide-phospholipid complex (GEN-PLC) in ameliorating posthyperuricemia CKD was evaluated by in vitro and in vivo experiments in this study. In vitro cell experiments showed that GEN-PLC treatment markedly decreased inflammatory cytokine levels and reactive oxygen species levels compared with those of GEN in uric acid-treated HKC cells. In vivo research results confirmed that a high concentration of uric acid could cause CKD by increasing inflammatory cytokines and reactive oxygen species in hyperuricemic mice. At the same time, GEN-PLC could regulate the PI3K/AKT/NF-κB and Keap1/Nrf2/HO-1 signaling pathways to effectively inhibit the inflammatory response and oxidative stress, thereby ameliorating posthyperuricemia CKD, and the therapeutic effect was better than that of GEN. In addition, the preparation technology of GEN-PLC was optimized, and the physiochemical analysis explained the intermolecular interactions of the two components. Based on the research results, GEN-PLC could enhance the bioavailability of GEN and become a promising candidate for clinical drug development.
Collapse
Affiliation(s)
- Mu-Xuan Wang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China
| | - Min-Min Wang
- Taian Traditional Chinese Medicine Hospital, Tai'an, 271000, PR China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Jia-Shu Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jian-Shu Liu
- Shanxi Functional Food Engineering Center Co. Ltd, Xian, 710000, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Meng-Qi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jing Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Zhi-Xin Liao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
17
|
Jain S, Dongare K, Nallamothu B, Parkash Dora C, Kushwah V, Katiyar SS, Sharma R. Enhanced stability and oral bioavailability of erlotinib by solid self nano emulsifying drug delivery systems. Int J Pharm 2022; 622:121852. [PMID: 35618179 DOI: 10.1016/j.ijpharm.2022.121852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023]
Abstract
The present investigation demonstrates the preparation of solid self nanoemulsfying drug delivery system (sSNEDDS) to enhance stability and bioavailability of Erlotinib (ERL) via the oral route. Capmul®MCM EP (CPM EP, oil), Cremophor® RH 40 (CMR RH 40, surfactant), and LBF CS (LBF CS, cosurfactant) were chosen as chief components for preparing Liquids SNEDDS (L-ERL-SNEDDS) based on solubility and emulsion forming ability. Pseudo ternary phase diagram and constrained mixture designs were applied to identify the self-emulsifying area and it was found that CPM EP, CMR RH 40, and LBF CS in the ratio of 59:11:30 showed optimized particle size (110.08 nm), with narrow PDI (0.114) and high ERL loading capacity (14.31 mg/g). Adsorption method was implemented for solidification of L-ERL-SNEDDS. Among various solid carriers were studied, Aerosil® 200 (A200) was finalized based on free flowing property and reconstitution ability. DSC and XRD studies revealed that crystallinity of drug was reduced in developed system. The developed formulation (named as, A200-ERL-sSNEDDS) showed increased cytotoxicity and apoptosis in PANC-1 and MIA PaCa-2 cells. Pharmacokinetic studies revealed ∼2.2 times increase in AUC0-∞values in case of A200-ERL-sSNEDDS as compared to free ERL. Thus current strategy can be extrapolated for delivering of poorly soluble drugs via oral route.
Collapse
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| | - Kiran Dongare
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Bhargavi Nallamothu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Reena Sharma
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
18
|
Stabilizing Effect of Soluplus on Erlotinib Metastable Crystal Form in Microparticles and Amorphous Solid Dispersions. Polymers (Basel) 2022; 14:polym14061241. [PMID: 35335571 PMCID: PMC8949943 DOI: 10.3390/polym14061241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Microparticles (MPs) and amorphous solid dispersions (SDs) are effective methods to improve the dissolution of insoluble drugs. However, stability is a concern for these two high-energy systems, resulting from high surface area and amorphous polymorph, respectively. As an amphiphilic polymer, Soluplus (SOL) is usually used as a carrier in SDs. In this study, erlotinib microparticles (ERL MPs) and erlotinib solid dispersions (ERL SDs) were prepared with SOL by bottom-up technology and solvent evaporation. The solid-state properties of ERL MPs and ERL SDs were characterized by Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM). The ERL MPs existed in a metastable crystal form A while the ERL SDs existed in an amorphous state. Fourier transform infrared spectroscopy (FT-IR) showed that there was a hydrogen bond interaction between the N-H group of ERL and the carbonyl group of SOL in ERL MPs and SDs. The dissolution profiles of ERL SDs and ERL MPs were improved significantly. ERL MPs showed better stability than ERL SDs in accelerated stability test. The discrepant stabilizing effects of polymer SOL in two systems may provide effective ideas for solubilization of insoluble drugs and the stability of drugs after recrystallization.
Collapse
|
19
|
Zhang S, Zhang X, Meng J, Lu L, Du S, Xu H, Wu S. Study on the Effect of Polymer Excipients on the Dispersibility, Interaction, Solubility, and Scavenging Reactive Oxygen Species of Myricetin Solid Dispersion: Experiment and Molecular Simulation. ACS OMEGA 2022; 7:1514-1526. [PMID: 35036814 PMCID: PMC8756572 DOI: 10.1021/acsomega.1c06329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Although the preparation of amorphous solid dispersions can improve the solubility of crystalline drugs, there is still a lack of guidance on the micromechanism in the screening and evaluation of polymer excipients. In this study, a particular method of experimental characterization combined with molecular simulation was attempted on solubilization of myricetin (MYR) by solid dispersion. According to the analysis of the dispersibility and hydrogen-bond interaction, the effectiveness of the solid dispersion and the predicted sequence of poly(vinyl pyrrolidone) (PVP) > hypromellose (HPMC) > poly(ethylene glycol) (PEG) as the polymer excipient were verified. Through the dissolution, cell viability, and reactive oxygen species (ROS)-level detection, the reliability of simulation and micromechanism analysis was further confirmed. This work not only provided the theoretical guidance and screening basis for the miscibility of solid dispersions from the microscopic level but also served as a reference for the modification of new drugs.
Collapse
Affiliation(s)
- Sidian Zhang
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xue Zhang
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Jie Meng
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Ling Lu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shanda Du
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haiyan Xu
- Institute
of Basic Medical Sciences, Chinese Academy
of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Sizhu Wu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
20
|
Role of solid lipid nanoparticles as drug delivery vehicles on the pharmacokinetic variability of Erlotinib HCl. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Impact of Selected Small-Molecule Kinase Inhibitors on Lipid Membranes. Pharmaceuticals (Basel) 2021; 14:ph14080746. [PMID: 34451842 PMCID: PMC8401620 DOI: 10.3390/ph14080746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/20/2023] Open
Abstract
Small-molecule protein kinase inhibitors are used for the treatment of various diseases. Although their effect(s) on the respective kinase are generally quite well understood, surprisingly, their interaction with membranes is only barely investigated; even though these drugs necessarily come into contact with the plasma and intracellular membranes. Using biophysical methods such as NMR, ESR, and fluorescence spectroscopy in combination with lipid vesicles, we studied the membrane interaction of the kinase inhibitors sunitinib, erlotinib, idelalisib, and lenvatinib; these drugs are characterized by medium log p values, a parameter reflecting the overall hydrophobicity of the molecules, which is one important parameter to predict the interaction with lipid membranes. While all four molecules tend to embed in a similar region of the lipid membrane, their presence has different impacts on membrane structure and dynamics. Most notably, sunitinib, exhibiting the lowest log p value of the four inhibitors, effectively influences membrane integrity, while the others do not. This shows that the estimation of the effect of drug molecules on lipid membranes can be rather complex. In this context, experimental studies on lipid membranes are necessary to (i) identify drugs that may disturb membranes and (ii) characterize drug-membrane interactions on a molecular level. Such knowledge is important for understanding the efficacy and potential side effects of respective drugs.
Collapse
|
22
|
Erdoğar N, Akkın S, Varan G, Bilensoy E. Erlotinib complexation with randomly methylated β-cyclodextrin improves drug solubility, intestinal permeability, and therapeutic efficacy in non-small cell lung cancer. Pharm Dev Technol 2021; 26:797-806. [PMID: 34219578 DOI: 10.1080/10837450.2021.1946695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to investigate the impact of anticancer drug erlotinib-randomly methylated-β-cyclodextrin complex (ERL-RAMEB CD) on drug solubility and dissolution rate. Phase solubility study showed erlotinib displayed maximum solubility in RAMEB CD solution and the stability constant (Kc) was calculated to be 370 ± 16 M-1. The optimal formulation was obtained with ERL-RAMEB CD in a 1:1 molar ratio using the co-lyophilization technique. Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) verified the inclusion of complex formation. In vitro dissolution study confirmed ERL-RAMEB CD as a favorable approach to increase drug dissolution with a 1.5-fold increase than free ERL at 1 h. An improved dissolution with ∼88.4% drug release at 1 h was observed, in comparison with Erlotinib with ∼58.7% release in 45 min. The in vitro cytotoxicity results indicated that the ERL-RAMEB CD inclusion complex reduced cell viability than free erlotinib. Caco-2 cell uptake that is indicative of drug intestinal permeability resulted in a 5-fold higher uptake of ERL-RAMEB CD inclusion complex than the ERL solution. Hence, ERL-RAMEB CD complexation displays a strong potential to increase dissolution and permeability of erlotinib leading eventually to enhanced oral bioavailability.
Collapse
Affiliation(s)
- Nazlı Erdoğar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gamze Varan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
Veerman GDM, Hussaarts KGAM, Peric R, Oomen-de Hoop E, Landa KD, van der Leest CH, Broerse SD, Rutten HB, Belderbos HNA, Steendam CMJ, Paats MS, Koolen SLW, Dingemans AMC, van Gelder T, van Leeuwen RWF, Aerts JGJV, Mathijssen RHJ. Influence of Cow's Milk and Esomeprazole on the Absorption of Erlotinib: A Randomized, Crossover Pharmacokinetic Study in Lung Cancer Patients. Clin Pharmacokinet 2021; 60:69-77. [PMID: 32557346 PMCID: PMC7808986 DOI: 10.1007/s40262-020-00910-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Erlotinib's gastrointestinal solubility and absorption are decreased by proton pump inhibitors (PPIs). Since erlotinib is a lipophilic drug, we hypothesized that concomitant intake with the fatty beverage milk may be a feasible way to increase erlotinib uptake. We performed a two-period, randomized, crossover study to investigate the influence of cow's milk with 3.9% fat on the exposure of erlotinib with and without the PPI esomeprazole in patients with non-small cell lung cancer (NSCLC). The effect of esomeprazole was studied in an additional intrapatient comparison. METHOD Pharmacokinetic sampling was performed on days 7 and 14 during 24 consecutive hours. During the 7 days prior to pharmacokinetic sampling, erlotinib was taken daily with 250 mL of either water or milk. In the PPI arm, esomeprazole (40 mg once daily 3 h prior to erlotinib) was taken for 3 days. RESULTS Erlotinib area under the curve from time zero to 24 h (AUC24) did not significantly change when administered with milk, compared with water, in both non-PPI users (n = 14; - 3%; 95% confidence interval [CI] - 12 to 8%; p = 0.57) and patients who used esomeprazole (n = 15; 0%; 95% CI - 15 to 17%; p = 0.95). Esomeprazole decreased erlotinib AUC24 by 47% (n = 9; 95% CI - 57 to - 34%; p < 0.001) and Cmax by 56% (95% CI - 64 to - 46%; p < 0.001). No differences in toxicities were observed between milk and water. CONCLUSION Milk with 3.9% fat has no effect on the exposure to erlotinib in NSCLC patients, independent of PPI use. The combination with milk is safe and well tolerated. Concomitant esomeprazole treatment strongly decreased both erlotinib AUC24 and Cmax and should be avoided if possible.
Collapse
Affiliation(s)
- G D Marijn Veerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Koen G A M Hussaarts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Robert Peric
- Department of Pulmonology, Erasmus MC, Rotterdam, The Netherlands
| | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Kersten D Landa
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | | | - Suzanna D Broerse
- Department of Pulmonology, Franciscus Gasthuis and Vlietland Hospital, Rotterdam, The Netherlands
| | - Hugo B Rutten
- Department of Pulmonology, Bravis Hospital, Roosendaal and Bergen op Zoom, The Netherlands
| | | | - Christi M J Steendam
- Department of Pulmonology, Erasmus MC, Rotterdam, The Netherlands
- Department of Pulmonology, Amphia Hospital, Breda, The Netherlands
| | - Marthe S Paats
- Department of Pulmonology, Erasmus MC, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | | | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Roelof W F van Leeuwen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021; 11:1546-1567. [PMID: 33408767 PMCID: PMC7778595 DOI: 10.7150/thno.48662] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent progress in nanomedicine and targeted therapy brings new breeze into the field of therapeutic applications of tyrosine kinase inhibitors (TKIs). These drugs are known for many side effects due to non-targeted mechanism of action that negatively impact quality of patients' lives or that are responsible for failure of the drugs in clinical trials. Some nanocarrier properties provide improvement of drug efficacy, reduce the incidence of adverse events, enhance drug bioavailability, helps to overcome the blood-brain barrier, increase drug stability or allow for specific delivery of TKIs to the diseased cells. Moreover, nanotechnology can bring new perspectives into combination therapy, which can be highly efficient in connection with TKIs. Lastly, nanotechnology in combination with TKIs can be utilized in the field of theranostics, i.e. for simultaneous therapeutic and diagnostic purposes. The review provides a comprehensive overview of advantages and future prospects of conjunction of nanotransporters with TKIs as a highly promising approach to anticancer therapy.
Collapse
Affiliation(s)
- Veronika Smidova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zita Goliasova
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, Prague 5 CZ-15006, Czech Republic
| | - Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
25
|
pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and Docetaxel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111664. [DOI: 10.1016/j.msec.2020.111664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023]
|
26
|
Liang J, Yang X, Liu D, Cong M, Song Y, Bai S. Lipid/Hyaluronic Acid-Coated Doxorubicin-Fe 3O 4 as a Dual-Targeting Nanoparticle for Enhanced Cancer Therapy. AAPS PharmSciTech 2020; 21:235. [PMID: 32803528 DOI: 10.1208/s12249-020-01764-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Development of a delivery system to lower systemic toxicity and enhance doxorubicin (DOX) antitumor efficacy against multi-drug resistant (MDR) tumors is of great clinical significance. Here, lipid/hyaluronic acid (HA)-coated DOX-Fe3O4 was characterized to determine its optimal safety and efficacy on a tumor. DOX was first conjugated onto the Fe3O4 NPs surface, which was subsequently coated with phosphatidylcholine (PC) lipids, which consisted of a tumor cell-targeting HA ligand, to generate a dual-targeting nanoparticle (NP). DOX-Fe3O4 synthesis was validated by the Fourier-transform infrared (FT-IR) analysis results. Core-shell PC/HA@DOX-Fe3O4 formation, which had an average particle size of 48.2 nm, was observed based on the transmission electron microscopy (TEM) and dynamic laser light scattering (DLS) results. The saturation magnetization value of PC/HA@DOX-Fe3O4 was discovered to be 28 emu/g using vibrating-sample magnetometry. Furthermore, the designed PC/HA@DOX-Fe3O4 achieved greater MCF-7/ADR cellular uptake and cytotoxicity as compared with DOX. In addition, PC/HA@DOX-Fe3O4 exhibited significant DOX tumor-targeting capabilities and enhanced tumor growth inhibition activity in the xenograft MCF-7/ADR tumor-bearing nude mice following magnetic attraction and ligand-mediated targeting, with less cardiotoxicity. Therefore, PC/HA@DOX-Fe3O4 is a potential candidate for MDR tumor chemotherapy. Graphical abstract.
Collapse
|
27
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Jeevithan E, Hu X, Shin S, Wang MH. Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy. Carbohydr Polym 2020; 245:116407. [PMID: 32718591 DOI: 10.1016/j.carbpol.2020.116407] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
The present work was developed the pH dependent-aptamer AS1411 (APT) decorated and erlotinib (En) loaded chitosan nanoparticles (CSNPs) for promising non-small-cell lung carcinoma (NSCLC) treatment. The characterization studies revealed that formulated APT-En-CSNPs were spherical in shape with size of 165.95 d. nm and PDI of 0.212. FTIR spectrum recorded molecular chemical interactions with composition of En or En-CSNPs. Cell viability assay, flow cytometry and fluorescent microscopy results revealed that APT-En-CSNPs triggered cancer cell death through pH-sensitive and nucleolin receptor-targeted release of En. The decoration of the APT improved the cellular uptake of En as evidenced by cellular sensing fluorescence and BioTEM assay. The APT-En-CSNPs induced the apoptosis through excessive ROS generation, nucleus damage and Δψm loss in the A549 cells. Hence, the present study revealed that the APT-En-CSNPs improved the therapeutic efficiency of En in NSCLC through the nucleolin targeted drug release.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Anbazhagan Sathiyaseelan
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Arokia Vijaya Anand Mariadoss
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Elango Jeevithan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Sukjin Shin
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
28
|
|
29
|
Li H, Lu S, Luo M, Li X, Liu S, Zhang T. A matrix dispersion based on phospholipid complex system: preparation, lymphatic transport, and pharmacokinetics. Drug Dev Ind Pharm 2020; 46:557-565. [PMID: 32126844 DOI: 10.1080/03639045.2020.1735408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Raloxifene hydrochloride (RH) suffers from low oral bioavailability due to its low water-solubility and first-pass metabolism. Therefore, a novel phospholipid complex of RH (RHPC) and a matrix dispersion based on phospholipid complex (RHPC-MD) were successfully prepared and optimized. Several methods were used to validate the formation of RHPC and RHPC-MD, such as differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, particle size, and zeta potential, meanwhile, their octanol-water partition coefficient, solubility, and dissolution in vitro were also evaluated. To investigate the absorption mechanism of RHPC in vivo, the RHPC was administered to the chylomicron flow blockage rat model. Interestingly, as we expected, a significant reduction in RHPC absorption (67%) (**p< .01) in presence of cycloheximide (CXI) inhibitor was observed, thus confirming the RHPC could be absorbed by lymphatic transport in vivo. Pharmacokinetic studies revealed that the relative oral bioavailability of RHPC as well as RHPC-MD was 223% and 329%, respectively, when comparing with the commercial RH tablets. These outcomes suggested that the current study provided an attractive formulation to enhance the oral bioavailability of RH and stimulated to further research the absorption mechanism of RHPC in vivo.
Collapse
Affiliation(s)
- Huixin Li
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Sirun Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meiling Luo
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoting Li
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Suyan Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianhong Zhang
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
30
|
Truong DH, Le VKH, Pham TT, Dao AH, Pham TPD, Tran TH. Delivery of erlotinib for enhanced cancer treatment: An update review on particulate systems. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: in vitro and in vivo evaluations. Eur J Pharm Sci 2019; 138:104994. [PMID: 31302210 DOI: 10.1016/j.ejps.2019.104994] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Dihydromyricetin (DMY), a flavanonol compound found as the most abundant and bioactive constituent in Ampelopsis grossedentata (Hand-Mazz) W.T. Wang, possesses numerous pharmacological activities, such as antioxidant, anti-inflammation, anticancer, anti-microbial, hypoglycemic and hypolipidemic effects, and so on. Recently, DMY shows a promising potential to develop as an agent for the prevention and treatment of Type 2 diabetes mellitus (T2DM). However, the low oral bioavailability of DMY was one of the special concerns to be resolved for its clinical applications. In this study, DMY phospholipid complex (DMY-HSPC COM) was prepared by the solvent evaporation technique and optimized with DMY combination ratio. Scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier transform infrared spectrophotometry (FT-IR) were carried to characterize the formation of DMY-HSPC COM. The particle size, zeta potential, drug loading and solubility of DMY-HSPC COM were further investigated. The phospholipid complex technology could significantly improve the solubility of DMY. Pharmacokinetic study results of DMY-HSPC COM in healthy SD rats and T2DM rats demonstrated that the oral bioavailability was significantly increased when compared with pure DMY as well, which could be attributed to the improvement of the aqueous solubility of the complex, absorption promotion and a probable decrease in intestinal and hepatic metabolism. In addition, when compared with healthy SD rats, pharmacokinetic parameters of pure DMY and DMY-HSPC COM showed significant difference in T2DM rats. Thus, phospholipid complex technology holds a promising potential for increasing the oral bioavailability of DMY.
Collapse
|
32
|
Zhao M, Cui Y, Zhao L, Zhu T, Lee RJ, Liao W, Sun F, Li Y, Teng L. Thiophene Derivatives as New Anticancer Agents and Their Therapeutic Delivery Using Folate Receptor-Targeting Nanocarriers. ACS OMEGA 2019; 4:8874-8880. [PMID: 31459975 PMCID: PMC6648408 DOI: 10.1021/acsomega.9b00554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 05/12/2023]
Abstract
A series of thiophene derivatives were synthesized by functionalization of 2,3-fused thiophene scaffolds. Their cytotoxicity was assessed against HeLa and Hep G2 cells. Compound 480 was identified as a promising candidate because of its low IC50 in HeLa (12.61 μg/mL) and Hep G2 (33.42 μg/mL) cells. The drug was loaded into folic acid (FA)-coated nanoparticles (NPs) to address its poor water solubility and to improve its selectivity for cancer cells. Compound 480 was shown to induce apoptosis by changes in mitochondrial membrane potential (ΔΨm) and the reactive oxygen species level. Furthermore, FA-modified NPs enhanced uptake capacity compared to unmodified controls by flow cytometry. This drug delivered in folate nanocarriers is promising for the treatment of cancers.
Collapse
Affiliation(s)
- Menghui Zhao
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yaxin Cui
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lang Zhao
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Tianyu Zhu
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Robert J. Lee
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- College
of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus 43210, United States
| | - Weiwei Liao
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fengying Sun
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Youxin Li
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- E-mail: (Y.L.)
| | - Lesheng Teng
- School
of Life Sciences and College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- E-mail: (L.T.)
| |
Collapse
|
33
|
Jain S, Dongave SM, Date T, Kushwah V, Mahajan RR, Pujara N, Kumeria T, Popat A. Succinylated β-Lactoglobuline-Functionalized Multiwalled Carbon Nanotubes with Improved Colloidal Stability and Biocompatibility. ACS Biomater Sci Eng 2019; 5:3361-3372. [DOI: 10.1021/acsbiomaterials.9b00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Shesherao M. Dongave
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Rahul R. Mahajan
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sec 67, S.A.S. Nagar (Mohali), Punjab 160062, India
| | - Naisarg Pujara
- School of Pharmacy, The University of Queensland Brisbane, Queensland 4102, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland Brisbane, Queensland 4102, Australia
- Translational Research Institute, Mater Research Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland Brisbane, Queensland 4102, Australia
- Translational Research Institute, Mater Research Institute, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
34
|
Katiyar SS, Kushwah V, Dora CP, Patil RY, Jain S. Design and Toxicity Evaluation of Novel Fatty Acid-Amino Acid-Based Biocompatible Surfactants. AAPS PharmSciTech 2019; 20:186. [PMID: 31065931 DOI: 10.1208/s12249-019-1396-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/16/2019] [Indexed: 11/30/2022] Open
Abstract
Surfactants occupy an important place owing to their wide application, but primarily compromised due to its toxicity issues. This raises the need for exploration of newer surfactants with increased biocompatibility. Novel fatty acid- and amino acid-based surfactants were prepared using standard carbodiimide chemistry. Pyrene assay was implemented to confirm the amphiphilic nature of the surfactants and to calculate their CMC (critical micellar concentration). In vitro hemolytic and cell culture study in MCF-7 and HEK cell line were done to check the in vitro biocompatibility of the developed surfactants in comparison to marketed surfactants Triton X-100 and Tween ® 80. In vivo biocompatibility test in female Swiss albino mice was carried out in comparison to marketed surfactants with respect to serum markers, organ histology, and RBC morphology. Surfactant synthesis provided more than 60% yield in all the conjugates. Pyrene assay concluded the amphiphilic nature of the surfactants with lowest CMC of 0.083% w/v in the case of stearic acid and valine conjugate. In vitro hemolytic and cell culture study depicted highest biocompatibility in vitro as compared to marketed surfactants. Similar results were obtained in in vivo biocompatibility with respect to AST (aspartate transaminase), ALT (alanine transaminase), BUN (blood urea nitrogen), and creatinine serum levels and histology of spleen, liver, and kidney in comparison to marketed surfactants Triton X-100 and Tween ® 80. The developed surfactant also depicted least RBC morphology changes in vivo. Stearic acid valine conjugate thus depicted potential for further application in formulation development replacing the commercially available surfactants.
Collapse
|
35
|
Novel biosurfactant and lipid core-shell type nanocapsular sustained release system for intravenous application of methotrexate. Int J Pharm 2019; 557:86-96. [DOI: 10.1016/j.ijpharm.2018.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
|
36
|
Kuche K, Bhargavi N, Dora CP, Jain S. Drug-Phospholipid Complex-a Go Through Strategy for Enhanced Oral Bioavailability. AAPS PharmSciTech 2019; 20:43. [PMID: 30610392 DOI: 10.1208/s12249-018-1252-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Among many, the oral route of delivery is considered to be the most favorable route with the highest patient compliance. The main issue with oral delivery is the environmental vulnerability of gastro intestinal tract (G.I.T). The bioavailability could further decrease when drug has poor aqueous solubility and permeability through biological membrane. This drawback could be resolved by employing drug-phospholipid complex strategy, as they utilize mechanism which is similar to the absorption mechanism of nutritional constituents form G.I.T. The drug-phospholipid complexes are considered ideal for oral delivery as they are biodegradable and non-toxic, which enable them to be employed as solubilizer, emulsifier, and as a matrix forming excipient for dugs with poor solubility and/or permeability. The present review compiles the basic know how about the phospholipids and the mechanism through which it improves the bioavailability of drugs. Further, it also compiles the crucial formulation aspects and methods of preparations of drug-phospholipid complex along with its physical and in silico characterization techniques. The increase in number of recent reports involving the utilization of drug-phospholipid complex to improve oral bioavailability of drugs thus explains how vital the strategy is for a successful oral delivery.
Collapse
|
37
|
Katiyar SS, Kushwah V, Dora CP, Jain S. Lipid and TPGS based novel core-shell type nanocapsular sustained release system of methotrexate for intravenous application. Colloids Surf B Biointerfaces 2018; 174:501-510. [PMID: 30497012 DOI: 10.1016/j.colsurfb.2018.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/11/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Core shell nanocapsules present an interesting system for attaining high loading of drug. In an attempt, lipid and TPGS based novel core-shell nanocapsule were prepared to achieve high drug loading with sustained release of model hydrophilic drug methotrexate (MTX). Antisolvent nanoprecipitation was utilized for the formulation of nanoparticles. Optimized formulation depicted 223.6 ± 24.1 nm particle size, 0.243 ± 0.034 PDI, zeta potential -2.07 ± 0.51 mV and 15.03 ± 1.92%drug loading. In vitro release showed biphasic release for 12 h with initial burst phase followed by sustained release phase. Haemolytic study on RBCs revealed haemocompatible nature of MTX-TPGS nanoparticles compared to Biotrexate® (Zydus). In vitro cell culture studies depicted 3 folds and 2.66 folds increase in cellular uptake of MTX at 10 μg/ml and 15 μg/ml respectively for developed nanoparticles with 3.81 folds decrease in IC50 value as compared to Biotrexate®. Higher apoptosis and increased lysosomal membrane permeability were also depicted by MTX-TPGS nanoparticles. 2.45 folds increase in AUC and 3.68 folds increase in T1/2 was achieved in pharmacokinetic study. Significant reduction in tumor burden and serum biochemical parameters depicted efficacy and safety respectively of the formulation as compared to Biotrexate®. RBCs morphology was retained after MTX-TPGS exposure proving its haemocompatibility in vivo.
Collapse
Affiliation(s)
- Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India
| | - Chander Parkash Dora
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India.
| |
Collapse
|
38
|
Desale JP, Swami R, Kushwah V, Katiyar SS, Jain S. Chemosensitizer and docetaxel-loaded albumin nanoparticle: overcoming drug resistance and improving therapeutic efficacy. Nanomedicine (Lond) 2018; 13:2759-2776. [DOI: 10.2217/nnm-2018-0206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Investigated strategy exploits the utilization of quercetin as a chemosensitizer for docetaxel (DTX), which was incorporated into albumin nanoparticles (NPs; bovine serum albumin NPs [BSA–NPs]). Material & methods: BSA–NPs containing both drugs were optimized, extensively characterized for different quality attributes and performance was investigated using series of in vitro and in vivo investigations. Results: Co-encapsulated BSA–NPs exhibited size: 209.26 ± 9.84 nm, polydispersibility index: 0.184 ± 0.05 and good entrapment efficiency (∼75% for DTX and ∼68% for quercetin). Higher in vitro cytotoxicity, cell uptake and apoptosis were achieved in MCF-7 cell line. Similarly, higher P-glycoprotein efflux inhibition was observed in MDA-MB-231. About 2.5-fold increase in bioavailability of DTX was achieved with improved antitumor efficacy and reduced in vivo toxicity. Conclusion: Developed BSA–NPs provide an effective and safer alternative approach using co-delivery of chemosensitizer.
Collapse
Affiliation(s)
- Jagdish P Desale
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali) Punjab 160062, India
| | - Rajan Swami
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali) Punjab 160062, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali) Punjab 160062, India
| | - Sameer S Katiyar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali) Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, SAS Nagar (Mohali) Punjab 160062, India
| |
Collapse
|
39
|
Jain S, Reddy CSK, Swami R, Kushwah V. Amphotericin B Loaded Chitosan Nanoparticles: Implication of Bile Salt Stabilization on Gastrointestinal Stability, Permeability and Oral Bioavailability. AAPS PharmSciTech 2018; 19:3152-3164. [PMID: 30136175 DOI: 10.1208/s12249-018-1153-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/10/2018] [Indexed: 11/30/2022] Open
Abstract
Through current investigation, we presented a lucrative way to formulate amphotericin B loaded bile salt stabilized carbohydrate polymer i.e. chitosan nanoparticles (NPs) for enhancing gastrointestinal stability of NPs thereby increasing the oral bioavailability of the drug. NPs were prepared using ionic gelation method, and stabilized using bile salt to provide gastric pH stability to chitosan NPs. NPs were optimized on different parameters such as particle size, encapsulation efficiency and estimated for their in vitro and in vivo performance. Developed NPs presented a higher stability in gastrointestinal milieu, reduced haemolytic toxicity and significantly higher uptake in Caco-2 cell lines followed by increased bioavailability as compared to naive drug, marketed formulation i.e. Fungizone® and uncoated chitosan NPs. Biochemical parameters and histology further substantiated the lower toxicity. In nutshell, the present research explored the bioadhesive and higher uptake potential of cationic carbohydrate polymer at the same time along with bile salts for stabilization of NPs in gastric milieu.
Collapse
|