1
|
Pangeni R, Poudel S, Momin MAM, Farkas D, Dalton C, Hall F, Kang JD, Hylemon P, Longest W, Hindle M, Xu Q. Inhalable tobramycin EEG powder formulation for treating Pseudomonas aeruginosa-induced lung infection. Int J Pharm 2024; 662:124504. [PMID: 39053676 PMCID: PMC11344668 DOI: 10.1016/j.ijpharm.2024.124504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Pulmonary delivery of antibiotics is an effective strategy in treating bacterial lung infection for cystic fibrosis patients, by achieving high local drug concentrations and reducing overall systemic exposure compared to systemic administration. However, the inherent anatomical lung defense mechanisms, formulation characteristics, and drug-device combination determine the treatment efficacy of the aerosol delivery approach. In this study, we prepared a new tobramycin (Tobi) dry powder aerosol using excipient enhanced growth (EEG) technology and evaluated the in vitro and in vivo aerosol performance. We further established a Pseudomonas aeruginosa-induced lung infection rat model using an in-house designed novel liquid aerosolizer device. Notably, novel liquid aerosolizer yields comparable lung infection profiles despite administering 3-times lower P. aeruginosa CFU per rat in comparison to the conventional intratracheal administration. Dry powder insufflator (e.g. Penn-Century DP-4) to administer small powder masses to experimental animals is no longer commercially available. To address this gap, we developed a novel rat air-jet dry powder insufflator (Rat AJ DPI) that can emit 68-70 % of the loaded mass for 2 mg and 5 mg of Tobi-EEG powder formulations, achieving a high rat lung deposition efficiency of 79 % and 86 %, respectively. Rat AJ DPI can achieve homogenous distribution of Tobi EEG powder formulations at both loaded mass (2 mg and 5 mg) over all five lung lobes in rats. We then demonstrated that Tobi EEG formulation delivered by Rat AJ DPI can significantly decrease CFU counts in both trachea and lung lobes at 2 mg (p < 0.05) and 5 mg (p < 0.001) loaded mass compared to the untreated P. aeruginosa-infected group. Tobi EEG powder formulation delivered by the novel Rat AJ DPI showed excellent efficiencies in substantially reducing the P. aeruginosa-induced lung infection in rats.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Surendra Poudel
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad A M Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Caleb Dalton
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Felicia Hall
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason D Kang
- Division of Microbiology and Immunology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Phillip Hylemon
- Division of Microbiology and Immunology, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Worth Longest
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Qingguo Xu
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Ophthalmology, Massey Cancer Center, Center for Pharmaceutical Engineering, and Institute for Structural Biology, Drug Discovery & Development (ISB3D), Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Yong J, Shu H, Zhang X, Yang K, Luo G, Yu L, Li J, Huang H. Natural Products-Based Inhaled Formulations for Treating Pulmonary Diseases. Int J Nanomedicine 2024; 19:1723-1748. [PMID: 38414528 PMCID: PMC10898359 DOI: 10.2147/ijn.s451206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Given the unique physiological and pathological characteristics of the lung, the direct, inhalable route is more conducive to pulmonary drug delivery and disease control than traditional systemic drug delivery, significantly circumventing drug loss, off-target effects, systemic and organ toxicity, etc., and is widely regarded as the preferred regimen for pulmonary drug delivery. However, very few lung diseases are currently treated with the preferred inhaled formulations, such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. And there is a lack of appropriate inhaled formulations for other critical lung diseases, such as lung cancer and pulmonary fibrosis, due to the fact that the physicochemical properties of the drugs and their pharmacokinetic profiles do not match the physiology of the lung, and conventional inhalation devices are unable to deliver them to the specific parts of the lung. Phytochemicals of natural origin, due to their wide availability and clear safety profile, hold great promise for the preparation of inhalable formulations to improve the current dilemma in the treatment of lung diseases. In particular, the preparation of inhalable formulations based on nano- and microparticulate carriers for drug delivery to deep lung tissues, which overcome the shortcomings of conventional inhalation therapies while targeting the drug activity directly to a specific part of the lung, may be the best approach to change the current dilemma of lung disease treatment. In this review, we discuss recent advances in nano- and micron-carrier-based inhalation formulations for the delivery of natural products for the treatment of pulmonary diseases, which may represent an opportunity for practical clinical translation of natural products.
Collapse
Affiliation(s)
- Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Hongli Shu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Xiao Zhang
- Department of Clinical Laboratory, Chengdu Children Special Hospital, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Kun Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Guining Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Jiaqi Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Hong Huang
- Department of Clinical Laboratory, the People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People’s Republic of China
| |
Collapse
|
3
|
Zhang C, D'Angelo D, Buttini F, Yang M. Long-acting inhaled medicines: Present and future. Adv Drug Deliv Rev 2024; 204:115146. [PMID: 38040120 DOI: 10.1016/j.addr.2023.115146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Inhaled medicines continue to be an essential part of treatment for respiratory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. In addition, inhalation technology, which is an active area of research and innovation to deliver medications via the lung to the bloodstream, offers potential advantages such as rapid onset of action, enhanced bioavailability, and reduced side effects for local treatments. Certain inhaled macromolecules and particles can also end up in different organs via lymphatic transport from the respiratory epithelium. While the majority of research on inhaled medicines is focused on the delivery technology, particle engineering, combination therapies, innovations in inhaler devices, and digital health technologies, researchers are also exploring new pharmaceutical technologies and strategies to prolong the duration of action of inhaled drugs. This is because, in contrast to most inhaled medicines that exert a rapid onset and short duration of action, long-acting inhaled medicines (LAIM) improve not only the patient compliance by reducing the dosing frequency, but also the effectiveness and convenience of inhaled therapies to better manage patients' conditions. This paper reviews the advances in LAIM, the pharmaceutical technologies and strategies for developing LAIM, and emerging new inhaled modalities that possess a long-acting nature and potential in the treatment and prevention of various diseases. The challenges in the development of the future LAIM are also discussed where active research and innovations are taking place.
Collapse
Affiliation(s)
- Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Davide D'Angelo
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016, Shenyang, China.
| |
Collapse
|
4
|
Matera MG, Rinaldi B, Belardo C, Calzetta L, Cazzola M. Pharmacokinetic considerations surrounding triple therapy for uncontrolled asthma. Expert Opin Drug Metab Toxicol 2023; 19:345-355. [PMID: 37376964 DOI: 10.1080/17425255.2023.2230130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/12/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Solid pharmacological rationale and clinical evidence support the use of a combination of an inhaled corticosteroid (ICS), a long-acting β2-agonist, and a long-acting muscarinic antagonist in severe asthma, which clinically results in increased lung function, improved symptoms, and decreased exacerbation rates. AREAS COVERED We examined the pharmacokinetic issues associated with triple therapy for uncontrolled asthma. We considered the pharmacokinetic characteristics of the three drug classes, the role of inhalers in influencing their pharmacokinetic behavior, and the impact of severe asthma on the pharmacokinetics of inhaled drugs. EXPERT OPINION The pharmacokinetics of ICSs and bronchodilators are not affected to a great extent by severe asthma, according to a detailed review of the currently accessible literature. Compared to healthy people, patients with severe asthma show only minor variations in a few pharmacokinetic characteristics, which are unlikely to have therapeutic significance and do not require particular attention. However, the difficulty of obtaining pharmacokinetic profiles of the three drugs included in a triple therapy suggests that the clinical response should be followed over time, which can be considered a good surrogate indicator of whether the drugs have reached sufficient concentrations in the lung to exert a valid pharmacological action.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Carmela Belardo
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
5
|
Mahar R, Chakraborty A, Nainwal N. The influence of carrier type, physical characteristics, and blending techniques on the performance of dry powder inhalers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Castellani S, Trapani A, Elisiana Carpagnano G, Cotoia A, Laselva O, Pia Foschino Barbaro M, Corbo F, Cinnella G, De Giglio E, Larobina D, Di Gioia S, Conese M. Mucopenetration study of solid lipid nanoparticles containing magneto sensitive iron oxide. Eur J Pharm Biopharm 2022; 178:94-104. [PMID: 35926759 DOI: 10.1016/j.ejpb.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
In most chronic respiratory diseases, excessive viscous airway secretions oppose a formidable permeation barrier to drug delivery systems (DDSs), with a limit to their therapeutic efficacy for the targeting epithelium. Since mucopenetration of DDSs with slippery technology (i.e. PEGylation) has encountered a reduction in the presence of sticky and complex airway secretions, our aim was to evaluate the relevance of magnetic PEGylated Solid Lipid Nanoparticles (mSLNs) for pulling them through chronic obstructive pulmonary disease (COPD) airway secretions. Thus, COPD sputum from outpatient clinic, respiratory secretions aspirated from high (HI) and low (LO) airways of COPD patients in acute respiratory insufficiency, and porcine gastric mucus (PGM) were investigated for their permeability to mSLN particles under a magnetic field. Rheological tests and mSLN adhesion to airway epithelial cells (AECs) were also investigated. The results of mucopenetration show that mSLNs are permeable both in PGM sputum and in COPD, while HI and LO secretions are always impervious. Parallel rheological results show a different elastic property, which can be associated with different mucus mesostructures. Finally, adhesion tests confirm the role of the magnetic field in improving the interaction of SLNs with epithelial cells. Overall, our results reveal that mesostructure is of paramount importance in determining the mucopenetration of magnetic SLNs.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Antonella Cotoia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Onofrio Laselva
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gilda Cinnella
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari "Aldo Moro", Bari, Italy
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, Portici (Naples), Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
7
|
High dose nanocrystalline solid dispersion powder of voriconazole for inhalation. Int J Pharm 2022; 622:121827. [PMID: 35589006 DOI: 10.1016/j.ijpharm.2022.121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
In the current work, we aimed to deliver high dose of voriconazole (VRC) to lung through dry powder for inhalation (DPIs). Furthermore, the research tested the hypothesis that drug nanocrystals can escape the clearance mechanisms in lung by virtue of their size and rapid dissolution. High dose nanocrystalline solid dispersion (NCSD) based DPI of VRC was prepared using a novel spray drying process. Mannitol (MAN) and soya lecithin (LEC) were used as crystallization inducer and stabilizer, respectively. The powders were characterized for physicochemical and aerodynamic properties. Chemical interactions contributing to generation and stabilization of VRC nanocrystals in the matrix of MAN were established using computational studies. Performance of NCSD (VRC-N) was compared with microcrystalline solid dispersion (VRC-M) in terms of dissolution, uptake in A549 and RAW 264.7 cells. Plasma and lung distribution of VRC-N and VRC-M in Balb/c mice upon insufflation was compared with the intravenous product. In VRC-N, drug nanocrystals of size 645.86 ± 56.90 nm were successfully produced at VRC loading of 45%. MAN created physical barrier to crystal growth by interacting with N- of triazole and F- of pyrimidine ring of VRC. An increase in drug loading to 60% produced VRC crystals of size 4800 ± 200 nm (VRC-M). The optimized powders were crystalline and showed deposition at stage 2 and 3 in NGI. In comparison to VRC-M, more than 80% of VRC-N dissolved rapidly in around 5-10 mins, therefore, showed higher and lower drug uptake into A549 and RAW 264.7 cells, respectively. In contrast to intravenous product, insufflation of VRC-N and VRC-M led to higher drug concentrations in lung in comparison to plasma. VRC-N showed higher lung AUC0-24 due to escape of macrophage clearance.
Collapse
|
8
|
Brunet K, Martellosio JP, Tewes F, Marchand S, Rammaert B. Inhaled Antifungal Agents for Treatment and Prophylaxis of Bronchopulmonary Invasive Mold Infections. Pharmaceutics 2022; 14:pharmaceutics14030641. [PMID: 35336015 PMCID: PMC8949245 DOI: 10.3390/pharmaceutics14030641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary mold infections are life-threatening diseases with high morbi-mortalities. Treatment is based on systemic antifungal agents belonging to the families of polyenes (amphotericin B) and triazoles. Despite this treatment, mortality remains high and the doses of systemic antifungals cannot be increased as they often lead to toxicity. The pulmonary aerosolization of antifungal agents can theoretically increase their concentration at the infectious site, which could improve their efficacy while limiting their systemic exposure and toxicity. However, clinical experience is poor and thus inhaled agent utilization remains unclear in term of indications, drugs, and devices. This comprehensive literature review aims to describe the pharmacokinetic behavior and the efficacy of inhaled antifungal drugs as prophylaxes and curative treatments both in animal models and humans.
Collapse
Affiliation(s)
- Kévin Brunet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Laboratoire de Mycologie-Parasitologie, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
- Correspondence: (K.B.); (B.R.)
| | - Jean-Philippe Martellosio
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Frédéric Tewes
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
| | - Sandrine Marchand
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Blandine Rammaert
- Institut National de la Santé et de la Recherche Médicale, INSERM U1070, Pôle Biologie Santé, 1 rue Georges Bonnet, 86022 Poitiers, France; (J.-P.M.); (F.T.); (S.M.)
- Faculté de Médecine et Pharmacie, Université de Poitiers, 6 rue de la Milétrie, 86073 Poitiers, France
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
- Correspondence: (K.B.); (B.R.)
| |
Collapse
|
9
|
Son YJ, Miller DP, Weers JG. Optimizing Spray-Dried Porous Particles for High Dose Delivery with a Portable Dry Powder Inhaler. Pharmaceutics 2021; 13:pharmaceutics13091528. [PMID: 34575603 PMCID: PMC8470347 DOI: 10.3390/pharmaceutics13091528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This manuscript critically reviews the design and delivery of spray-dried particles for the achievement of high total lung doses (TLD) with a portable dry powder inhaler. We introduce a new metric termed the product density, which is simply the TLD of a drug divided by the volume of the receptacle it is contained within. The product density is given by the product of three terms: the packing density (the mass of powder divided by the volume of the receptacle), the drug loading (the mass of drug divided by the mass of powder), and the aerosol performance (the TLD divided by the mass of drug). This manuscript discusses strategies for maximizing each of these terms. Spray drying at low drying rates with small amounts of a shell-forming excipient (low Peclet number) leads to the formation of higher density particles with high packing densities. This enables ultrahigh TLD (>100 mg of drug) to be achieved from a single receptacle. The emptying of powder from capsules is directly proportional to the mass of powder in the receptacle, requiring an inhaled volume of about 1 L for fill masses between 40 and 50 mg and up to 3.2 L for a fill mass of 150 mg.
Collapse
Affiliation(s)
- Yoen-Ju Son
- Genentech, South San Francisco, CA 94080, USA;
| | | | - Jeffry G. Weers
- Cystetic Medicines, Inc., Burlingame, CA 94010, USA;
- Correspondence: ; Tel.: +1-650-339-3832
| |
Collapse
|
10
|
Development and Preclinical Evaluation of New Inhaled Lipoglycopeptides for the Treatment of Persistent Pulmonary Methicillin-Resistant Staphylococcus aureus Infections. Antimicrob Agents Chemother 2021; 65:e0031621. [PMID: 33941518 PMCID: PMC8373216 DOI: 10.1128/aac.00316-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic pulmonary methicillin-resistant Staphylococcus aureus (MRSA) disease in cystic fibrosis (CF) has a high probability of recurrence following treatment with standard-of-care antibiotics and represents an area of unmet need associated with reduced life expectancy. We developed a lipoglycopeptide therapy customized for pulmonary delivery that not only demonstrates potent activity against planktonic MRSA, but also against protected colonies of MRSA in biofilms and within cells, the latter of which have been linked to clinical antibiotic failure. A library of next-generation potent lipoglycopeptides was synthesized with an emphasis on attaining superior pharmacokinetics (PK) and pharmacodynamics to similar compounds of their class. Our strategy focused on hydrophobic modification of vancomycin, where ester and amide functionality were included with carbonyl configuration and alkyl length as key variables. Candidates representative of each carbonyl attachment chemistry demonstrated potent activity in vitro, with several compounds being 30 to 60 times more potent than vancomycin. Selected compounds were advanced into in vivo nose-only inhalation PK evaluations in rats, where RV94, a potent lipoglycopeptide that utilizes an inverted amide linker to attach a 10-carbon chain to vancomycin, demonstrated the most favorable lung residence time after inhalation. Further in vitro evaluation of RV94 showed superior activity to vancomycin against an expanded panel of Gram-positive organisms, cellular accumulation and efficacy against intracellular MRSA, and MRSA biofilm killing. Moreover, in vivo efficacy of inhaled nebulized RV94 in a 48 h acute model of pulmonary MRSA (USA300) infection in neutropenic rats demonstrated statistically significant antibacterial activity that was superior to inhaled vancomycin.
Collapse
|
11
|
Jara MO, Warnken ZN, Sahakijpijarn S, Moon C, Maier EY, Christensen DJ, Koleng JJ, Peters JI, Hackman Maier SD, Williams Iii RO. Niclosamide inhalation powder made by thin-film freezing: Multi-dose tolerability and exposure in rats and pharmacokinetics in hamsters. Int J Pharm 2021; 603:120701. [PMID: 33989748 PMCID: PMC8112893 DOI: 10.1016/j.ijpharm.2021.120701] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In this work, we have developed and tested a dry powder form of niclosamide made by thin-film freezing (TFF) and administered it by inhalation to rats and hamsters to gather data about its toxicology and pharmacokinetics. Niclosamide, a poorly water-soluble drug, is an interesting drug candidate because it was approved over 60 years ago for use as an anthelmintic medication, but recent studies demonstrated its potential as a broad-spectrum antiviral with pharmacological effect against SARS-CoV-2 infection. TFF was used to develop a niclosamide inhalation powder composition that exhibited acceptable aerosol performance with a fine particle fraction (FPF) of 86.0% and a mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) of 1.11 µm and 2.84, respectively. This formulation not only proved to be safe after an acute three-day, multi-dose tolerability and exposure study in rats as evidenced by histopathology analysis, and also was able to achieve lung concentrations above the required IC90 levels for at least 24 h after a single administration in a Syrian hamster model. To conclude, we successfully developed a niclosamide dry powder inhalation that overcomes niclosamide’s limitation of poor oral bioavailability by targeting the drug directly to the primary site of infection, the lungs.
Collapse
Affiliation(s)
- Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Zachary N Warnken
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Sawittree Sahakijpijarn
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Chaeho Moon
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Esther Y Maier
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Jay I Peters
- UT- Health San Antonio Department of Medicine, Division of Pulmonary/Critical Care Medicine, San Antonio, TX 78229, USA
| | | | - Robert O Williams Iii
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Xing Y, Lu P, Xue Z, Liang C, Zhang B, Kebebe D, Liu H, Liu Z. Nano-Strategies for Improving the Bioavailability of Inhaled Pharmaceutical Formulations. Mini Rev Med Chem 2021; 20:1258-1271. [PMID: 32386491 DOI: 10.2174/1389557520666200509235945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary pharmaceutical formulations are targeted for the treatment of respiratory diseases. However, their application is limited due to the physiological characteristics of the lungs, such as branching structure, mucociliary and macrophages, as well as certain properties of the drugs like particle size and solubility. Nano-formulations can ameliorate particle sizes and improve drug solubility to enhance bioavailability in the lungs. The nano-formulations for lungs reviewed in this article can be classified into nanocarriers, no-carrier-added nanosuspensions and polymer-drug conjugates. Compared with conventional inhalation preparations, these novel pulmonary pharmaceutical formulations have their own advantages, such as increasing drug solubility for better absorption and less inflammatory reaction caused by the aggregation of insoluble drugs; prolonging pulmonary retention time and reducing drug clearance; improving the patient compliance by avoiding multiple repeated administrations. This review will provide the reader with some background information for pulmonary drug delivery and give an overview of the existing literature about nano-formulations for pulmonary application to explore nano-strategies for improving the bioavailability of pulmonary pharmaceutical formulations.
Collapse
Affiliation(s)
- Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
13
|
Pharmacokinetics of rifampicin after repeated intra-tracheal administration of amorphous and crystalline powder formulations to Sprague Dawley rats. Eur J Pharm Biopharm 2021; 162:1-11. [PMID: 33639255 DOI: 10.1016/j.ejpb.2021.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Accepted: 02/21/2021] [Indexed: 11/24/2022]
Abstract
Rifampicin is one of the key drugs used to treat tuberculosis and is currently used orally. The use of higher oral doses of rifampicin is desired for better therapeutic efficacy, but this is accompanied by increased risk of systemic toxicity thus limiting its recommended oral dose to 10 mg/kg per day. Inhaled delivery of rifampicin is a potential alternative mode of delivery, to achieve high drug concentrations in both the lung and potentially the systemic circulation. In addition, rifampicin exists either as amorphous or crystalline particles, which may show different pharmacokinetic behaviour. However, disposition behaviour of amorphous and crystalline rifampicin formulations after inhaled high-dose delivery is unknown. In this study, rifampicin pharmacokinetics after intra-tracheal administration of carrier-free, amorphous and crystalline powder formulations to Sprague Dawley rats were evaluated. The formulations were administered once daily for seven days by oral, intra-tracheal and oral plus intra-tracheal delivery, and the pharmacokinetics were studied on day 0 and day 6. Intra-tracheal administration of the amorphous formulation resulted in a higher area under the plasma concentration curve (AUC) compared to the crystalline formulation. For both formulations, the intra-tracheal delivery led to significantly higher AUC compared to the oral delivery at the same dose suggesting higher rifampicin bioavailability from the inhaled route. Increasing the intra-tracheal dose resulted in a more than dose proportional AUC suggesting non-linear pharmacokinetics of rifampicin from the inhaled route. Upon repeated administration for seven days, no significant decrease in the AUCs were observed suggesting the absence of rifampicin induced enzyme auto-induction in this study. The present study suggests an advantage of inhaled delivery of rifampicin in achieving higher drug bioavailability compared to the oral route.
Collapse
|
14
|
Gatti M, De Ponti F. Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities. Pharmaceutics 2021; 13:302. [PMID: 33668969 PMCID: PMC7996547 DOI: 10.3390/pharmaceutics13030302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 may lead to severe respiratory distress syndrome and high risk of death in some patients. So far (January 2021), only the antiviral remdesivir has been approved, although no significant benefits in terms of mortality and clinical improvement were recently reported. In a setting where effective and safe treatments for COVID-19 are urgently needed, drug repurposing may take advantage of the fact that the safety profile of an agent is already well known and allows rapid investigation of the efficacy of potential treatments, at lower costs and with reduced risk of failure. Furthermore, novel pharmaceutical formulations of older agents (e.g., aerosolized administration of chloroquine/hydroxychloroquine, remdesivir, heparin, pirfenidone) have been tested in order to increase pulmonary delivery and/or antiviral effects of potentially active drugs, thus overcoming pharmacokinetic issues. In our review, we will highlight the importance of the drug repurposing strategy in the context of COVID-19, including regulatory and ethical aspects, with a specific focus on novel pharmaceutical formulations and routes of administration.
Collapse
Affiliation(s)
| | - Fabrizio De Ponti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
15
|
Matera MG, Calzetta L, Ora J, Rogliani P, Cazzola M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv 2021; 18:891-906. [PMID: 33412922 DOI: 10.1080/17425247.2021.1873271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Inhaled drugs are important in the treatment of many lung pathologies, but to be therapeutically effective they must reach unbound concentrations at their effect site in the lung that are adequate to interact with their pharmacodynamic properties (PD) and exert the pharmacological action over an appropriate dosing interval. Therefore, the evaluation of pharmacokinetic (PK)/PD relationship is critical to predict their possible therapeutic effect.Areas covered: We review the approaches used to assess the PK/PD relationship of the major classes of inhaled drugs that are prescribed to treat pulmonary pathologies.Expert opinion: There are still great difficulties in producing data on lung concentrations of inhaled drugs and interpreting them as to their ability to induce the desired therapeutic action. The structural complexity of the lungs, the multiplicity of processes involved simultaneously and the physical interactions between the lungs and drug make any PK/PD approach to drug delivery design for inhalation medications extremely challenging. New approaches/methods are increasing our understanding about what happens to inhaled drugs, but they are still not ready for regulatory purposes. Therefore, we must still rely on plasma concentrations based on the axiom that they reflect both the extent and the pattern of deposition within the lungs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Dept. Medicine and Surgery, University of Parma, Parma, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
16
|
Brillault J, Tewes F. Control of the Lung Residence Time of Highly Permeable Molecules after Nebulization: Example of the Fluoroquinolones. Pharmaceutics 2020; 12:pharmaceutics12040387. [PMID: 32340298 PMCID: PMC7238242 DOI: 10.3390/pharmaceutics12040387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Pulmonary drug delivery is a promising strategy to treat lung infectious disease as it allows for a high local drug concentration and low systemic side effects. This is particularly true for low-permeability drugs, such as tobramycin or colistin, that penetrate the lung at a low rate after systemic administration and greatly benefit from lung administration in terms of the local drug concentration. However, for relatively high-permeable drugs, such as fluoroquinolones (FQs), the rate of absorption is so high that the pulmonary administration has no therapeutic advantage compared to systemic or oral administration. Formulation strategies have thus been developed to decrease the absorption rate and increase FQs’ residence time in the lung after inhalation. In the present review, some of these strategies, which generally consist of either decreasing the lung epithelium permeability or decreasing the release rate of FQs into the epithelial lining fluid after lung deposition, are presented in regards to their clinical aspects.
Collapse
Affiliation(s)
- Julien Brillault
- INSERM U-1070, Pôle Biologie Santé, 86000 Poitiers, France
- UFR Médecine-Pharmacie, Université de Poitiers, 86073 Poitiers, France
- Correspondence: (J.B.); (F.T.)
| | - Frédéric Tewes
- INSERM U-1070, Pôle Biologie Santé, 86000 Poitiers, France
- UFR Médecine-Pharmacie, Université de Poitiers, 86073 Poitiers, France
- Correspondence: (J.B.); (F.T.)
| |
Collapse
|
17
|
Ritter D, Knebel J, Niehof M, Loinaz I, Marradi M, Gracia R, te Welscher Y, van Nostrum CF, Falciani C, Pini A, Strandh M, Hansen T. In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicol In Vitro 2020; 63:104714. [DOI: 10.1016/j.tiv.2019.104714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
|
18
|
Ciacci N, Boncompagni S, Valzano F, Cariani L, Aliberti S, Blasi F, Pollini S, Rossolini GM, Pallecchi L. In Vitro Synergism of Colistin and N-acetylcysteine against Stenotrophomonas maltophilia. Antibiotics (Basel) 2019; 8:antibiotics8030101. [PMID: 31349560 PMCID: PMC6784201 DOI: 10.3390/antibiotics8030101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging global opportunistic pathogen, responsible for a wide range of human infections, including respiratory tract infections. Intrinsic multidrug resistance and propensity to form biofilms make S. maltophilia infections recalcitrant to treatment. Colistin is among the second-line options in case of difficult-to-treat S. maltophilia infections, with the advantage of being also administrable by nebulization. We investigated the potential synergism of colistin in combination with N-acetylcysteine (NAC) (a mucolytic agent with antioxidant and anti-inflammatory properties) against S. maltophilia grown in planktonic phase and biofilm. Eighteen S. maltophilia clinical isolates (comprising three isolates from cystic fibrosis (CF) and two trimethoprim-sulfamethoxazole (SXT)-resistant strains) were included. Checkerboard assays showed a synergism of colistin/NAC combinations against the strains with colistin Minimum Inhibitory Concentration (MIC) >2 µg/mL (n = 13), suggesting that NAC could antagonize the mechanisms involved in colistin resistance. Nonetheless, time–kill assays revealed that NAC might potentiate colistin activity also in case of lower colistin MICs. A dose-dependent potentiation of colistin activity by NAC was also clearly observed against S. maltophilia biofilms, also at sub-MIC concentrations. Colistin/NAC combinations, at concentrations likely achievable by topical administration, might represent a valid option for the treatment of S. maltophilia respiratory infections and should be examined further.
Collapse
Affiliation(s)
- Nagaia Ciacci
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Selene Boncompagni
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Felice Valzano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Lisa Cariani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Cystic Fibrosis Microbiology Laboratory, 20122 Milan, Italy
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, 20122 Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Respiratory unit and Adult Cystic Fibrosis Center, 20122 Milan, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Lucia Pallecchi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
19
|
Eedara BB, Tucker IG, Zujovic ZD, Rades T, Price JR, Das SC. Crystalline adduct of moxifloxacin with trans-cinnamic acid to reduce the aqueous solubility and dissolution rate for improved residence time in the lungs. Eur J Pharm Sci 2019; 136:104961. [PMID: 31220546 DOI: 10.1016/j.ejps.2019.104961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
A crystalline adduct of the anti-tubercular drug, moxifloxacin and trans-cinnamic acid (1:1 molar ratio (MCA1:1)) was prepared to prolong the residence time of the drug in the lungs by reducing its solubility and dissolution rate. Whether the adduct is a salt or cocrystal has not been unequivocally determined. Equilibrium solubility and intrinsic dissolution rate measurements for the adduct (MCA1:1) in phosphate buffered saline (PBS, pH 7.4) revealed a significant decrease in the solubility of moxifloxacin (from 17.68 ± 0.85 mg mL-1 to 6.10 ± 0.05 mg mL-1) and intrinsic dissolution rate (from 0.47 ± 0.04 mg cm-2 min-1 to 0.14 ± 0.03 mg cm-2 min-1) compared to the supplied moxifloxacin. The aerosolization behaviour of the adduct from an inhaler device, Aerolizer®, using a Next Generation Impactor showed a fine particle fraction of 30.4 ± 1.2%. The dissolution behaviour of the fine particle dose of respirable particles collected was assessed in a small volume of stationary mucus fluid using a custom-made dissolution apparatus. The respirable adduct particles showed a lower dissolution (microscopic observation) and permeation compared to the supplied moxifloxacin. The crystalline adduct MCA1:1 has a lower solubility and dissolution rate than moxifloxacin and could improve the local residence time and therapeutic action of moxifloxacin in the lungs.
Collapse
Affiliation(s)
| | - Ian G Tucker
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Zoran D Zujovic
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jason R Price
- ANSTO - Australian Synchrotron, 800 Blackburn Rd, Clayton, 3168 Victoria, Australia
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
20
|
|