1
|
Ponsonby-Thomas E, Pham AC, Huang S, Salim M, Klein LD, Offersen SM, Thymann T, Boyd BJ. Human milk improves the oral bioavailability of the poorly water-soluble drug clofazimine. Eur J Pharm Biopharm 2025; 207:114604. [PMID: 39675684 DOI: 10.1016/j.ejpb.2024.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Clofazimine is an emerging drug for the treatment of cryptosporidiosis in infants. As a poorly water-soluble drug, the formulation of clofazimine in age-appropriate vehicles is challenging and often results in the use of off-label formulations. Milk-based vehicles such as human milk and bovine milk have been investigated as age-appropriate formulations and shown to increase the solubilisation of poorly water-soluble drugs via enhanced solubility in lipid digestion products in vitro. We hypothesised that administration of clofazimine within a milk-based vehicle would enhance bioavailability for infant patients. Towards this objective, suspensions of clofazimine in human and bovine milk were orally administered separately to piglets and rats and the subsequent plasma concentrations were compared to those after administration of an aqueous drug suspension. Initial investigations with a rodent model showed a significant increase (258%) in the oral bioavailability of clofazimine when administered with human milk. Similarly, the oral bioavailability of clofazimine was significantly higher when administered in both human (154%) and bovine milk (175%) using a neonatal piglet model, suggesting comparable enhancement in oral bioavailability could be achieved with human or bovine milk. These findings demonstrate the potential of human milk in particular to provide an effective administration vehicle for clofazimine administration to infants without the need for additional excipients.
Collapse
Affiliation(s)
- Ellie Ponsonby-Thomas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna C Pham
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Shouyuan Huang
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Laura D Klein
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Strategy and Growth, Australian Red Cross Lifeblood, 17 O'Riordan St, Alexandria, NSW 2015, Australia
| | - Simone Margaard Offersen
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, DK-1870 Frederiksberg, Denmark
| | - Thomas Thymann
- Section for Comparative Paediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, DK-1870 Frederiksberg, Denmark
| | - Ben J Boyd
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Be Rziņš KR, Meiland P, Aljabbari A, Boyd BJ. In Operando Analysis of Milk-Based Oral Formulations during Digestion Using Synchrotron Small-Angle X-ray Scattering Coupled to Low-Frequency Raman Spectroscopy. Anal Chem 2024; 96:887-894. [PMID: 38175633 DOI: 10.1021/acs.analchem.3c04540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A low-frequency Raman (LFR) probe was coupled to an in-line small-angle X-ray scattering (SAXS) beamline to test the capabilities of a combinatory approach for the determination of lipid and drug behavior during the enzymatic lipolysis of milk-based oral formulations. Cinnarizine was used as the model drug, and its solubilization dynamics as well as its potential impact on the supramolecular structures formed by the digestion products of bovine milk were evaluated from the perspective of both techniques. The SAXS data were superior in distinguishing various liquid crystalline assemblies formed during the digestion process, with LFR providing complementary information regarding the formation of calcium soaps. On the other hand, studying changes in the LFR domain allowed the differentiation of drug solubilization and precipitation; processes that were less clear from the X-ray scattering data. Given the relative simplicity of the combined experimental setup, these results highlight the advantages that the combination of the two techniques can provide for understanding and developing new lipid-based formulations and will help to translate the results obtained at synchrotron facilities to routine analysis procedures in laboratory/industry-based environments.
Collapse
Affiliation(s)
- Ka Rlis Be Rziņš
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Peter Meiland
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Anas Aljabbari
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville 3052, Victoria, Australia
| |
Collapse
|
3
|
Khan NF, Salim M, Binte Abu Bakar SY, Ristroph K, Prud'homme RK, Hawley A, Boyd BJ, Clulow AJ. Small-volume in vitro lipid digestion measurements for assessing drug dissolution in lipid-based formulations using SAXS. Int J Pharm X 2022; 4:100113. [PMID: 35243327 PMCID: PMC8881665 DOI: 10.1016/j.ijpx.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid-based formulations improve the absorption capacity of poorly-water-soluble drugs and digestion of the formulation is a critical step in that absorption process. A recent approach to understanding the propensity for drug to dissolve in digesting lipid-based formulations couples an in vitro pH-stat lipolysis model to small-angle X-ray scattering (SAXS) by means of a flow-through capillary. However, the conventional pH-stat apparatus used to measure the extent of lipid digestion during such experiments requires digest volumes of 15–30 mL and drug doses of 50–200 mg, which is problematic for scarce compounds and can require excessive amounts of formulation reagents. This manuscript describes an approach to reduce the amount of material required for in vitro lipolysis experiments coupled to SAXS, for use in instances where the amount of drug or formulation medium is limited. Importantly, this was achieved while maintaining the pH stat conditions, which is critical for maintaining biorelevance and driving digestion to completion. The digestibility of infant formula with the poorly-water-soluble drugs halofantrine and clofazimine dispersed into it was measured as an exemplar paediatric-friendly lipid formulation. Halofantrine was incorporated in its powdered free base form and clofazimine was incorporated both as unformulated drug powder and as drug in nanoparticulate form prepared using Flash NanoPrecipitation. The fraction of triglyceride digested was found to be independent of vessel size and the incorporation of drug. The dissolution of the two forms of clofazimine during the digestion of infant formula were then measured using synchrotron SAXS, which revealed complete and partial solubilisation over 30 min of digestion for the powdered drug and nanoparticle formulations, respectively. The main challenge in reducing the volume of the measurements was in ensuring that thorough mixing was occurring in the smaller digestion vessel to provide uniform sampling of the dispersion medium.
Collapse
|
4
|
Iurian S, Bogdan C, Suciu Ș, Muntean DM, Rus L, Berindeie M, Bodi S, Ambrus R, Tomuță I. Milk Oral Lyophilizates with Loratadine: Screening for New Excipients for Pediatric Use. Pharmaceutics 2022; 14:1342. [PMID: 35890238 PMCID: PMC9318030 DOI: 10.3390/pharmaceutics14071342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The development of suitable formulations for the pediatric population remains a challenging field with great advances reported every year in terms of excipients and technology. When developing pediatric formulations, the acceptability of medicines represents a key element to consider. For this reason, milk can be a widely accepted excipient with taste-masking properties and supplementary advantages for drug solubility. In recent years, the orodispersible dosage forms have come onto the market as child-friendly formulations. The current study aimed to develop freeze-dried orodispersible dosage forms containing bovine milk or infant formulae as the main component. In the first stage, an exploratory study evaluated the mechanical properties of placebo milk formulations and the suitability of milk as a matrix-forming agent. As the appropriate mechanical strength to withstand manipulation was demonstrated, milk oral lyophilizates were loaded with a poorly soluble model API, loratadine. Hence, a D-optimal design was conducted to prepare milk lyophilizates with loratadine and to evaluate the effects of three factors (dose of loratadine, the lyophilizate size, and the type of milk) and their interactions. Finally, three formulations were prepared to confront the predictions of the DoE and further studied to thoroughly understand the observed effects. The experimental results showed the potential of milk in the development of oral lyophilizates loaded with different doses of suspended API.
Collapse
Affiliation(s)
- Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania; (S.I.); (Ș.S.); (D.-M.M.); (M.B.); (S.B.); (I.T.)
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ștefana Suciu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania; (S.I.); (Ș.S.); (D.-M.M.); (M.B.); (S.B.); (I.T.)
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania; (S.I.); (Ș.S.); (D.-M.M.); (M.B.); (S.B.); (I.T.)
| | - Lucia Rus
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Mihaela Berindeie
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania; (S.I.); (Ș.S.); (D.-M.M.); (M.B.); (S.B.); (I.T.)
| | - Szidonia Bodi
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania; (S.I.); (Ș.S.); (D.-M.M.); (M.B.); (S.B.); (I.T.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eotvos u. 6, H-6720 Szeged, Hungary;
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania; (S.I.); (Ș.S.); (D.-M.M.); (M.B.); (S.B.); (I.T.)
| |
Collapse
|
5
|
Kaneria NS, Tuleu C, Ernest T. Opportunities for enteral drug delivery for neonates, infants and toddlers: a critical exploration. Expert Opin Drug Deliv 2022; 19:475-519. [PMID: 35404191 DOI: 10.1080/17425247.2022.2064449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The field of neonatal, infant and toddler pharmaceutical development is constantly improving, however a lag still remains in comparison to older children and adults. Their rapid anatomical, physiological and behavioural developmental rates pose extra challenges in diagnosing, treating, or preventing their disease. In turn, this brings complexity in formulating truly age-appropriate medicinal products that suit this heterogeneous paediatric subset. Progress in the availability of such products has ensued following the introduction of the 2007 European Union Paediatric Regulation, and in recent years, oral multiparticulate and dispersible solid formulations have gained interest alongside liquid formulations. However, the need is still great for dosage forms that do not compromise on pharmaceutical efficacy, safety and global accessibility in those aged under 2. AREAS COVERED This article highlights some of the formulation challenges correlated with this age group and critically explores recent solid age-appropriate formulations and their administration devices for enteral drug delivery. EXPERT OPINION There are many formulation requirements to consider when formulating drug products for children aged under 2. Efforts are required into understanding acceptability in this age group and of their carers, and whether innovation or optimisation is required, to help guide formulators towards optimal approaches without impacting access.
Collapse
Affiliation(s)
- Nicole Sheena Kaneria
- University College London, School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX UK
| | - Catherine Tuleu
- University College London, School of Pharmacy, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX UK
| | - Terry Ernest
- GlaxoSmithKline, New Frontiers Science Park, Third Avenue Essex, Harlow, CM19 5AW UK.,GlaxoSmithKline, Hertfordshire, Park Road, Ware, UK, SG12 0DP
| |
Collapse
|
6
|
Salim M, Eason T, Boyd BJ. Opportunities for milk and milk-related systems as 'new' low-cost excipient drug delivery materials. Adv Drug Deliv Rev 2022; 183:114139. [PMID: 35143892 DOI: 10.1016/j.addr.2022.114139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/09/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022]
Abstract
Milk is well recognised as an amazing delivery system for essential lipids, poorly soluble nutrients, sugars, amino acids and delivery of critical biological molecules to sustain the infant and adult alike. It is also a safe and abundant resource with potential to act as a low-cost material for formulation of medicines, especially for paediatric patients and those in low economy settings. However, its use in low cost formulations has never developed beyond preclinical evaluation. Reasons for this are several-fold including variable composition and therefore regulatory challenges, as well as a lack of clear understanding around when milk or milk-related materials like infant formula could best be deployed by linking drug properties with excipient composition attributes, especially when taking digestion into account. This review collects the current understanding around these issues. It is apparent from the evolving understanding that while milk may be a bridge too far for translation as an excipient, infant formula is positioned to play a key role in the future because, as a powder-based excipient, it has the performance benefits of milk powder together with the controlled specifications during manufacture and versatility of application to function as a low cost lipid excipient to enable potential translation for the oral delivery of poorly water soluble drugs for key populations including paediatrics and low economy medicines.
Collapse
|
7
|
Evaluating the Taste Masking Ability of Two Novel Dispersible Tablet Platforms Containing Zinc Sulfate and Paracetamol Reconstituted in a Breast Milk Substitute. Pharmaceutics 2022; 14:pharmaceutics14020420. [PMID: 35214152 PMCID: PMC8878340 DOI: 10.3390/pharmaceutics14020420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Milk is often used as a dispersion medium for medicines administration in young children but its taste-masking ability is unknown. A human taste panel was conducted to assess the potential of infant formula milk (Aptamil® 1) to mask the taste of two model WHO priority medicines, zinc sulfate and paracetamol, manufactured as dispersible tablets. Simultaneously, the palatability of powder blends of the tablet platforms was assessed. Twenty healthy adult volunteers performed a swirl-and-spit assessment of placebos and API-containing blends in either a lactose-based or a mannitol-based dispersible tablet platform, reconstituted in 10 mL of either water or Aptamil® 1. Eighteen samples were rated for aversion using a 100-mm Visual Analogue Scale, grittiness using a 5-point Likert scale, and “acceptability-as-a-medicine” evaluated as: “Would you find this sample acceptable to swallow as a medicine?” with binary answers of Yes/No. The API-containing formulations were more aversive than the placebos; the paracetamol-containing samples being more aversive than zinc sulfate samples. The platforms themselves were not aversive. Non-gritty samples had four-fold greater odds of being acceptable as a medicine. Aptamil® 1 masked the taste of zinc sulfate in the mannitol-based formulation but did not mask the taste of paracetamol in either platform, suggesting a limited taste-masking ability, which may be API and formulation dependent.
Collapse
|
8
|
Impact of pasteurization on the self-assembly of human milk lipids during digestion. J Lipid Res 2022; 63:100183. [PMID: 35181315 PMCID: PMC9065913 DOI: 10.1016/j.jlr.2022.100183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Human milk is critical for the survival and development of infants. This source of nutrition contains components that protect against infections while stimulating immune maturation. In cases where the mother's own milk is unavailable, pasteurized donor milk is the preferred option. Although pasteurization has been shown to have minimal impact on the lipid and FA composition before digestion, no correlation has been made between the impact of pasteurization on the FFA composition and the self-assembly of lipids during digestion, which could act as delivery mechanisms for poorly water-soluble components. Pooled nonpasteurized and pasteurized human milk from a single donor was used in this study. The evolving FFA composition during digestion was determined using GC coupled to a flame ionization detector. In vitro digestion coupled to small-angle X-ray scattering was utilized to investigate the influence of different calcium levels, fat content, and the presence of bile salts on the extent of digestion and structural behavior of human milk lipids. Almost complete digestion was achieved when bile salts were added to the systems containing high calcium to milk fat ratio, with similar structural behavior of lipids during digestion of both types of human milk being apparent. In contrast, differences in the colloidal structures were formed during digestion in the absence of bile salt because of a greater amount of FFAs being released from the nonpasteurized than pasteurized milks. This difference in FFAs released from both types of human milk could result in varying nutritional implications for infants.
Collapse
|
9
|
Pham AC, Clulow AJ, Boyd BJ. Formation of Self-Assembled Mesophases During Lipid Digestion. Front Cell Dev Biol 2021; 9:657886. [PMID: 34178984 PMCID: PMC8231029 DOI: 10.3389/fcell.2021.657886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Lipids play an important role in regulating bodily functions and providing a source of energy. Lipids enter the body primarily in the form of triglycerides in our diet. The gastrointestinal digestion of certain types of lipids has been shown to promote the self-assembly of lipid digestion products into highly ordered colloidal structures. The formation of these ordered colloidal structures, which often possess well-recognized liquid crystalline morphologies (or “mesophases”), is currently understood to impact the way nutrients are transported in the gut and absorbed. The formation of these liquid crystalline structures has also been of interest within the field of drug delivery, as it enables the encapsulation or solubilization of poorly water-soluble drugs in the aqueous environment of the gut enabling a means of absorption. This review summarizes the evidence for structure formation during the digestion of different lipid systems associated with foods, the techniques used to characterize them and provides areas of focus for advancing our understanding of this emerging field.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
10
|
Morri M, Casabonne C, Leonardi D, Vignaduzzo S. Orphan Formulations for Pediatric Use: Development and Stability Control of Two Sildenafil Citrate Solutions for the Treatment of Pulmonary Hypertension. AAPS PharmSciTech 2020; 21:221. [PMID: 32748291 DOI: 10.1208/s12249-020-01768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
Sildenafil citrate causes vasodilatation, relaxation of the smooth muscle, and reduction of pulmonary arterial pressure. The latter property makes sildenafil citrate efficient for the treatment of cardiovascular diseases, including pulmonary arterial hypertension. Pediatric patients with pulmonary arterial hypertension are more susceptible to errors in drug administration than adults because of a lack of suitable drug dosages. Thus, the purpose of this study was to develop stable (chemically and microbiologically) sildenafil citrate drop liquid formulation, suitable for pediatric patients (including diabetics), ensuring safety during preparation and storing and improving palatability by using milk as a carrier for administration. The significant factors that affect the sildenafil solubility were evaluated by applying a Plackett-Burman design using two levels with six variables. The experiment showed that the type of buffer and glycerin content influenced the sildenafil solubility. The developed formulations proved to be stable for 6 months at all three assayed conditions (40± 2°C, 75 ± 5% RH; 25± 2°C, 60 ± 5% RH; and 4 ± 2°C). The microbiological tests fit with the requirement of the pharmacopeia at day 0 and 90 and even more at day 180. Finally, the palatability assay showed that 0.82 mL of the formulation containing buffer phosphate, 20% glycerin, and 4 mg mL-1 of sildenafil citrate diluted in 4.8 mL milk (which fits the medium pediatric dose) presented similar palatability to milk alone, and no precipitate or turbidity was observed. Graphical abstract.
Collapse
Affiliation(s)
- Mauro Morri
- Planta piloto de Producción de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Cecilia Casabonne
- Área de Bacteriología. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Darío Leonardi
- Área Técnica Farmacéutica, Departamento Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina. .,IQUIR-CONICET, Suipacha 570, S2002LRK, Rosario, Argentina.
| | - Silvana Vignaduzzo
- IQUIR-CONICET, Suipacha 570, S2002LRK, Rosario, Argentina. .,Área Análisis de Medicamentos, Departamento Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
11
|
Pham AC, Peng KY, Salim M, Ramirez G, Hawley A, Clulow AJ, Boyd BJ. Correlating Digestion-Driven Self-Assembly in Milk and Infant Formulas with Changes in Lipid Composition. ACS APPLIED BIO MATERIALS 2020; 3:3087-3098. [PMID: 32455340 PMCID: PMC7241073 DOI: 10.1021/acsabm.0c00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022]
Abstract
![]()
Lipids in mammalian
milks such as bovine milk and human breast
milk have been shown to self-assemble into various liquid crystalline
materials during digestion. In this study, the direct correlation
between the composition of the lipids from three types of mammalian
milk, three brands of infant formulas (IFs), and soy milk and the
liquid crystalline structures that form during their digestion was
investigated to link the material properties to the composition. The
self-assembly behavior was assessed using in vitro digestion coupled with in situ small-angle X-ray
scattering (SAXS). Lipid composition was determined during in vitro digestion using ex situ liquid
chromatography–mass spectrometry. All tested milks self-assembled
into ordered structures during digestion, with the majority of milks
displaying nonlamellar phases. Milks that released mostly long-chain
fatty acids (>95 mol % of the top 10 fatty acids released) with
more
than 47 mol % unsaturation predominantly formed a micellar cubic phase
during digestion. Other milks released relatively more medium-chain
fatty acids and medium-chain monoglycerides and produced a range of
ordered liquid crystalline structures including the micellar cubic
phase, the hexagonal phase, and the bicontinuous cubic phase. One
infant formula did not form liquid crystalline structures at all as
a consequence of differences in fatty acid distributions. The self-assembly
phenomenon provides a powerful discriminator between different classes
of nutrition and a roadmap for the design of human milklike systems
and is anticipated to have important implications for nutrient transport
and the delivery of bioactives.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Kang-Yu Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, Clayton, VIC 3168, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia
| |
Collapse
|
12
|
Salim M, Fraser-Miller SJ, Be Rziņš KR, Sutton JJ, Ramirez G, Clulow AJ, Hawley A, Beilles S, Gordon KC, Boyd BJ. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion. Mol Pharm 2020; 17:885-899. [PMID: 32011151 PMCID: PMC7054896 DOI: 10.1021/acs.molpharmaceut.9b01149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Techniques enabling in situ monitoring of drug solubilization and changes in the solid-state of the drug during the digestion of milk and milk-based formulations are valuable for predicting the effectiveness of such formulations in improving the oral bioavailability of poorly water-soluble drugs. We have recently reported the use of low-frequency Raman scattering spectroscopy (region of analysis <200 cm-1) as an analytical approach to probe solubilization of drugs during digestion in milk using ferroquine (SSR97193) as the model compound. This study investigates the wider utilization of this technique to probe the solubilization behavior of other poorly water-soluble drugs (halofantrine, lumefantrine, and clofazimine) in not only milk but also infant formula in the absence or presence of bile salts during in vitro digestion. Multivariate analysis was used to interpret changes to the spectra related to the drug as a function of digestion time, through tracking changes in the principal component (PC) values characteristic to the drug signals. Characteristic low-frequency Raman bands for all of the drugs were evident after dispersing the solid drugs in suspension form in milk and infant formula. The drugs were generally solubilized during the digestion of the formulations as observed previously for ferroquine and correlated with behavior determined using small-angle X-ray scattering (SAXS). A greater extent of drug solubilization was also generally observed in the infant formula compared to milk. However, in the case of the drug clofazimine, the correlation between low-frequency Raman scattering and SAXS was not clear, which may arise due to background interference from clofazimine being an intense red dye, which highlights a potential limitation of this new approach. Overall, the in situ monitoring of drug solubilization in milk and milk-based formulations during digestion can be achieved using low-frequency Raman scattering spectroscopy, and the information obtained from studying this spectral region can provide better insights into drug solubilization compared to the mid-frequency Raman region.
Collapse
Affiliation(s)
- Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sara J Fraser-Miller
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ka Rlis Be Rziņš
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Joshua J Sutton
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, Victoria 3169, Australia
| | | | - Keith C Gordon
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Nowak E, Livney YD, Niu Z, Singh H. Delivery of bioactives in food for optimal efficacy: What inspirations and insights can be gained from pharmaceutics? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
|
15
|
O'Brien F, Clapham D, Krysiak K, Batchelor H, Field P, Caivano G, Pertile M, Nunn A, Tuleu C. Making Medicines Baby Size: The Challenges in Bridging the Formulation Gap in Neonatal Medicine. Int J Mol Sci 2019; 20:E2688. [PMID: 31159216 PMCID: PMC6600135 DOI: 10.3390/ijms20112688] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
The development of age-appropriate formulations should focus on dosage forms that can deliver variable yet accurate doses that are safe and acceptable to the child, are matched to his/her development and ability, and avoid medication errors. However, in the past decade, the medication needs of neonates have largely been neglected. The aim of this review is to expand on what differentiates the needs of preterm and term neonates from those of the older paediatric subsets, in terms of environment of care, ability to measure and administer the dose (from the perspective of the patient and carer, the routes of administration, the device and the product), neonatal biopharmaceutics and regulatory challenges. This review offers insight into those challenges posed by the formulation of medicinal products for neonatal patients in order to support the development of clinically relevant products.
Collapse
Affiliation(s)
- Fiona O'Brien
- School of Pharmacy, Royal College of Surgeons in Ireland, 111 St Stephens Green Dublin 2, Ireland.
| | | | - Kamelia Krysiak
- School of Pharmacy, Royal College of Surgeons in Ireland, 111 St Stephens Green Dublin 2, Ireland.
| | - Hannah Batchelor
- College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Peter Field
- University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Grazia Caivano
- Chiesi Farmaceutici S.p.A. Largo Francesco Belloli 11/A-43122 Parma, Italy.
| | - Marisa Pertile
- Chiesi Farmaceutici S.p.A. Largo Francesco Belloli 11/A-43122 Parma, Italy.
| | - Anthony Nunn
- Department of Women's and Children's Health, University of Liverpool, Liverpool Women's Hospital, Liverpool L8 7SS, UK.
| | - Catherine Tuleu
- University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
16
|
Charalabidis A, Sfouni M, Bergström C, Macheras P. The Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS): Beyond guidelines. Int J Pharm 2019; 566:264-281. [PMID: 31108154 DOI: 10.1016/j.ijpharm.2019.05.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
The recent impact of the Biopharmaceutics Classification System (BCS) and the Biopharmaceutics Drug Disposition Classification System (BDDCS) on relevant scientific advancements is discussed. The major advances associated with the BCS concern the extensive work on dissolution of poorly absorbed BCS class II drugs in nutritional liquids (e.g. milk, peanut oil) and biorelevant media for the accurate prediction of the rate and the extent of oral absorption. The use of physiologically based pharmacokinetic (PBPK) modeling as predictive tool for bioavailability is also presented. Since recent dissolution studies demonstrate that the two mechanisms (diffusion- and reaction-limited dissolution) take place simultaneously, the neglected reaction-limited dissolution models are discussed, regarding the biopharmaceutical classification of drugs. Solubility- and dissolution-enhancing formulation strategies based on the supersaturation principle to enhance the extent of drug absorption, along with the applications of the BDDCS to the understanding of disposition phenomena are reviewed. Finally, recent classification systems relevant either to the BCS or the BDDCS are presented. These include: i) a model independent approach based on %metabolism and the fulfilment (or not) of the current regulatory dissolution criteria, ii) the so called ΑΒΓ system, a continuous version of the BCS, and iii) the so-called Extended Clearance Classification System (ECCS). ECCS uses clearance concepts (physicochemical properties and membrane permeability) to classify compounds and differentiates from BDDCS by bypassing the measure of solubility (based on the assumption that since it inter-correlates with lipophilicity, it is not directly relevant to clearance mechanisms or elimination).
Collapse
Affiliation(s)
- Aggelos Charalabidis
- Laboratory of Pharmacognosy, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Maria Sfouni
- Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece
| | - Christel Bergström
- Department of Pharmacy, Uppsala University, BMC P.O. Box 580, SE-751 23 Uppsala, Sweden
| | - Panos Macheras
- Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Research Center ATHENA, Athens, Greece; Department of Pharmaceutical Sciences, State University of New York (SUNY), Buffalo, USA.
| |
Collapse
|
17
|
Salim M, Ramirez G, Clulow AJ, Zhang Y, Ristroph KD, Feng J, McManus SA, Hawley A, Prud'homme RK, Boyd BJ. Solid-State Behavior and Solubilization of Flash Nanoprecipitated Clofazimine Particles during the Dispersion and Digestion of Milk-Based Formulations. Mol Pharm 2019; 16:2755-2765. [PMID: 31038976 PMCID: PMC6549212 DOI: 10.1021/acs.molpharmaceut.9b00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Clofazimine, a drug previously used
to treat leprosy, has recently
been identified as a potential new drug for the treatment for cryptosporidiosis:
a diarrheal disease that contributes to 500 000 infant deaths
a year in developing countries. Rapid dissolution and local availability
of the drug in the small intestine is considered key to the treatment
of the infection. However, the commercially available clofazimine
formulation (Lamprene) is not well-suited to pediatric use, and therefore
reformulation of clofazimine is desirable. Development of clofazimine
nanoparticles through the process of flash nanoprecipitation (FNP)
has been previously shown to provide fast and improved drug dissolution
rates compared to clofazimine crystals and Lamprene. In this study,
we investigate the effects of milk-based formulations (as possible
pediatric-friendly vehicles) on the in vitro solubilization of clofazimine
formulated as either lecithin- or zein/casein-stabilized nanoparticles.
Milk and infant formula were used as the lipid vehicles, and time-resolved
synchrotron X-ray scattering was used to monitor the presence of crystalline
clofazimine in suspension during in vitro lipolysis under intestinal
conditions. The study confirmed faster dissolution of clofazimine
from all the FNP formulations after the digestion of infant formula
was initiated, and a reduced quantity of fat was required to achieve
similar levels of drug solubilization compared to the reference drug
material and the commercial formulation. These attributes highlight
not only the potential benefits of the FNP approach to prepare drug
particles but also the fact that enhanced dissolution rates can be
complemented by considering the amount of co-administered fat in lipid-based
formulations to drive the solubilization of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | - Yingyue Zhang
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Kurt D Ristroph
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Jie Feng
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Simon A McManus
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO , 800 Blackburn Rd , Clayton , Victoria 3169 , Australia
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | | |
Collapse
|