1
|
Alsaidan OA. Recent advancements in aptamers as promising nanotool for therapeutic and diagnostic applications. Anal Biochem 2025; 702:115844. [PMID: 40090606 DOI: 10.1016/j.ab.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Aptamers are single-strand oligonucleotide molecules having certain structural interactions which allow them to bind to specific targets. Modified nucleotides are added during or after a selection procedure like Systematic Evolution of Ligands by Exponential Enrichment i.e., SELEX to enhance the characteristics and functionality of aptamers. Aptamers are extensible molecular tools with several uses such as in drug administration, biosensing, bioimaging, drug therapies and diagnostics. The ability to detect is improved by using aptamer-based sensors in conjunction with biological molecules among other sensing techniques. Chemical modification, and strong resistance to denaturation, aptamers are appropriate biological recognizing agents for developing sensitive and repeatable aptasensors. This review discusses the most current developments in the aptamers, SELEX method, applications of aptamers as innovative diagnostic, therapeutic & theragnostic tool along with major limitations & prospective directions in the future.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, 72341, Saudi Arabia.
| |
Collapse
|
2
|
Ismail E, Liu Y, Wang Y, Yazdanparast Tafti S, Zhang XF, Cheng X. Aptamer-based biotherapeutic conjugate for shear responsive release of Von Willebrand factor A1 domain. NANOSCALE 2025; 17:1246-1259. [PMID: 39412758 DOI: 10.1039/d4nr02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Smart polymers that mimic and even surpass the functionality of natural responsive materials have been actively researched. This study explores the design and characterization of a Single-MOlecule-based material REsponsive to Shear (SMORES) for the targeted release of A1, the platelet binding domain of the blood clotting protein von Willebrand factor (VWF). Each SMORES construct employs an aptamer molecule as the flow transducer and a microparticle to sense and amplify the hydrodynamic force. Within the construct, the aptamer, ARC1172, undergoes conformational changes beyond a shear stress threshold, mimicking the shear-responsive behavior of VWF. This conformational alteration modulates the bioavailability of its target, the VWF-A1 domain, ultimately releasing it at elevated shear. Through optical tweezer-based single-molecule force measurement, ARC1172s role as a force transducer was assessed by examining its unfolding under constant pulling force. We also investigated its refolding rate as a function of force under varied relaxation periods. These analyses revealed a narrow range of threshold forces (3-7 pN) governing the transition between folded and unfolded states. We subsequently constructed the SMORES material by conjugating ARC1172 and a microbead, and immobilizing the other end of the aptamer on a substrate. Single-molecule flow experiments on immobilized SMORES constructs revealed a peak A1 domain release within a flow rate range of (40-70 μL min-1). A COMSOL Multiphysics model translated these flow rates to total forces of 3.10 pN-5.63 pN experienced by the aptamers, aligning with single-molecule force microscopy predictions. Evaluation under variable flow conditions showed a peak binding of A1 to the platelet glycoprotein Ib (GPIB) within the same force range, confirming released payload functionality. Building on knowledge of aptamer biomechanics, this study presents a new strategy to create shear-stimulated biomaterials based on single biomolecules.
Collapse
Affiliation(s)
- Esraa Ismail
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Yi Liu
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Yi Wang
- Department of Materials Science and Engineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA.
- Current Address: Analytical Research and Development, Merck & Co., Inc. Greater Philadelphia, Pennsylvania, USA
| | - Sajedehalsadat Yazdanparast Tafti
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
| | - X Frank Zhang
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Xuanhong Cheng
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
3
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
4
|
Gil-Cabrerizo P, Simon-Yarza T, Garbayo E, Blanco-Prieto MJ. Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics. Adv Drug Deliv Rev 2024; 208:115302. [PMID: 38574952 DOI: 10.1016/j.addr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems. Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Elisa Garbayo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
5
|
Yu T, Xu Q, Chen X, Deng X, Chen N, Kou MT, Huang Y, Guo J, Xiao Z, Wang J. Biomimetic nanomaterials in myocardial infarction treatment: Harnessing bionic strategies for advanced therapeutics. Mater Today Bio 2024; 25:100957. [PMID: 38322664 PMCID: PMC10844134 DOI: 10.1016/j.mtbio.2024.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Myocardial infarction (MI) and its associated poor prognosis pose significant risks to human health. Nanomaterials hold great potential for the treatment of MI due to their targeted and controlled release properties, particularly biomimetic nanomaterials. The utilization of biomimetic strategies based on extracellular vesicles (EVs) and cell membranes will serve as the guiding principle for the development of nanomaterial therapy in the future. In this review, we present an overview of research progress on various exosomes derived from mesenchymal stem cells, cardiomyocytes, or induced pluripotent stem cells in the context of myocardial infarction (MI) therapy. These exosomes, utilized as cell-free therapies, have demonstrated the ability to enhance the efficacy of reducing the size of the infarcted area and preventing ischaemic reperfusion through mechanisms such as oxidative stress reduction, polarization modulation, fibrosis inhibition, and angiogenesis promotion. Moreover, EVs can exert cardioprotective effects by encapsulating therapeutic agents and can be engineered to specifically target the infarcted myocardium. Furthermore, we discuss the use of cell membranes derived from erythrocytes, stem cells, immune cells and platelets to encapsulate nanomaterials. This approach allows the nanomaterials to camouflage themselves as endogenous substances targeting the region affected by MI, thereby minimizing toxicity and improving biocompatibility. In conclusion, biomimetic nano-delivery systems hold promise as a potentially beneficial technology for MI treatment. This review serves as a valuable reference for the application of biomimetic nanomaterials in MI therapy and aims to expedite the translation of NPs-based MI therapeutic strategies into practical clinical applications.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xu Chen
- Department of Clinical Pharmacy, Daqing Oilfield General Hospital, Daqing, 163000, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Man Teng Kou
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
6
|
Islam P, Schaly S, Abosalha AK, Boyajian J, Thareja R, Ahmad W, Shum-Tim D, Prakash S. Nanotechnology in development of next generation of stent and related medical devices: Current and future aspects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1941. [PMID: 38528392 DOI: 10.1002/wnan.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Coronary stents have saved millions of lives in the last three decades by treating atherosclerosis especially, by preventing plaque protrusion and subsequent aneurysms. They attenuate the vascular SMC proliferation and promote reconstruction of the endothelial bed to ensure superior revascularization. With the evolution of modern stent types, nanotechnology has become an integral part of stent technology. Nanocoating and nanosurface fabrication on metallic and polymeric stents have improved their drug loading capacity as well as other mechanical, physico-chemical, and biological properties. Nanofeatures can mimic the natural nanofeatures of vascular tissue and control drug-delivery. This review will highlight the role of nanotechnology in addressing the challenges of coronary stents and the recent advancements in the field of related medical devices. Different generations of stents carrying nanoparticle-based formulations like liposomes, lipid-polymer hybrid NPs, polymeric micelles, and dendrimers are discussed highlighting their roles in local drug delivery and anti-restenotic properties. Drug nanoparticles like Paclitaxel embedded in metal stents are discussed as a feature of first-generation drug-eluting stents. Customized precision stents ensure safe delivery of nanoparticle-mediated genes or concerted transfer of gene, drug, and/or bioactive molecules like antibodies, gene mimics via nanofabricated stents. Nanotechnology can aid such therapies for drug delivery successfully due to its easy scale-up possibilities. However, limitations of this technology such as their potential cytotoxic effects associated with nanoparticle delivery that can trigger hypersensitivity reactions have also been discussed in this review. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ahmed Kh Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Royal Victoria Hospital, McGill University Health Centre, McGill University, Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Yang R, Gu Y, Qin J, Liu Q, Liu Q. Potential role of Chinese medicine nanoparticles to treat coronary artery disease. Heliyon 2023; 9:e19766. [PMID: 37809499 PMCID: PMC10559060 DOI: 10.1016/j.heliyon.2023.e19766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death worldwide, while conventional treatments such as percutaneous coronary intervention (PCI) have limitations. This review aims to explore the potential of nanoparticles loaded with Chinese medicine in the treatment of CAD. We conducted a comprehensive literature search to summarize the characteristics of nanovehicle systems, targeting strategies, and administration methods of various nanoparticles containing Chinese medicine for CAD treatment. Nanoparticle-based drug delivery systems, capable of delivering Chinese medicine, offer several advantages, including high targeting efficiency, prolonged half-life, and low systemic toxicity, making them promising for CAD treatment. Overall, nanoparticles containing Chinese medicine present a promising approach for the treatment of CAD.
Collapse
Affiliation(s)
- Rongyuan Yang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Yingming Gu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Jinying Qin
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Qingqing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| | - Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong, 510120, China
| |
Collapse
|
8
|
Korsah MA, Jeevanandam J, Tan KX, Danquah MK. Phytosynthesized nanomaterials for cardiovascular applications. EMERGING PHYTOSYNTHESIZED NANOMATERIALS FOR BIOMEDICAL APPLICATIONS 2023:115-143. [DOI: 10.1016/b978-0-12-824373-2.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Tan KX, Jeevanandam J, Rodrigues J, Danquah MK. Aptamer-Mediated Antiviral Approaches for SARS-CoV-2. FRONT BIOSCI-LANDMRK 2022; 27:306. [PMID: 36472112 DOI: 10.31083/j.fbl2711306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Indexed: 11/18/2022]
Abstract
2020 and 2021 were disastrous years across the world, with the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) virus as a pandemic, which continues to be a top global health issue. There are still many countries and regions struggling to fight coronavirus disease 2019 (COVID-19), and, with the emergence of the various variants of the virus, we are still far from considering this global pandemic over. In addition to having good diagnostic tools and a variety of vaccines with high efficacy, it is of utmost importance to develop effective antiviral drugs or therapies to battle COVID-19. Aptamers known as the next-generation targeting elements can offer promising opportunities in developing antiviral drugs against SARS-CoV-2. This is owing to their high specificity and affinity, making them ideal for targeting ligands and neutralizers to impede both, viral entry and replication or even further enhance the anti-infection effects in the infected host cells. Also, aptamers are extremely attractive as they can be rapidly synthesized and scalable with a lower production cost. This work provides in-depth discussions on the potential of aptamers in therapeutic applications, their mode of action, and current progress on the use of aptamer-based therapies against SARS-CoV-2 and other viruses. The article also discusses the limitations associated with aptamer-based SARS-CoV-2-antiviral therapy with several proposed ideas to resolve them. Lastly, theranostic applications of aptamer nanoformulated dendrimers against viral infections are discussed.
Collapse
Affiliation(s)
- Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 349248 Singapore, Singapore
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37996, USA
| |
Collapse
|
10
|
Bae Y, Kim GY, Jessa F, Ko KS, Han J. Gallic acid-mitochondria targeting sequence-H 3R 9 induces mitochondria-targeted cytoprotection. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:15-24. [PMID: 34965992 PMCID: PMC8723982 DOI: 10.4196/kjpp.2022.26.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/15/2022]
Abstract
The development of selective targeting of drug molecules towards the mitochondria is an important issue related to therapy efficacy. In this study, we report that gallic acid (GA)-mitochondria targeting sequence (MTS)-H3R9 exhibits a dual role as a mitochondria-targeting vehicle with antioxidant activity for disease therapy. In viability assays, GA-MTS-H3R9 showed a better rescue action compared to that of MTS-H3R9. GA-MTS-H3R9 dramatically exhibited cell penetration and intercellular uptake compared to MTS and fit escape from lysosome release to the cytosol. We demonstrated the useful targeting of GA-MTS-H3R9 towards mitochondria in AC16 cells. Also, we observed that the antioxidant properties of mitochondrial-accrued GA-MTS-H3R9 alleviated cell damage by reactive oxygen species production and disrupted mitochondrial membrane potential. GA-MTS-H3R9 showed a very increased cytoprotective effect against anticancer activity compared to that of MTS-H3R9. We showed that GA-MTS-H3R9 can act as a vehicle for mitochondria-targeting and as a reagent for therapeutic applications intended for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Yoonhee Bae
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University College of Medicine, Busan 47392, Korea
- Division of Applied Medicine, Research Institute for Korea Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Goo-Young Kim
- Department of Biology and Clinical Pharmacology, R&D Center, Samyang Biopharmaceuticals Corporation, Seongnam 13488, Korea
| | - Flores Jessa
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University College of Medicine, Busan 47392, Korea
| | - Kyung Soo Ko
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Internal Medicine, Sanggye Paik Hospital, Cardiovascular and Metabolic Disease Center, Inje University, Seoul 01757, Korea
| | - Jin Han
- Department of Physiology, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University College of Medicine, Busan 47392, Korea
| |
Collapse
|
11
|
Pan S, Goudoulas TB, Jeevanandam J, Tan KX, Chowdhury S, Danquah MK. Therapeutic Applications of Metal and Metal-Oxide Nanoparticles: Dermato-Cosmetic Perspectives. Front Bioeng Biotechnol 2021; 9:724499. [PMID: 34490229 PMCID: PMC8417693 DOI: 10.3389/fbioe.2021.724499] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Invention of novel nanomaterials guaranteeing enhanced biomedical performance in diagnostics and therapeutics, is a perpetual initiative. In this regard, the upsurge and widespread usage of nanoparticles is a ubiquitous phenomenon, focusing predominantly on the application of submicroscopic (< 100 nm) particles. While this is facilitated attributing to their wide range of benefits, a major challenge is to create and maintain a balance, by alleviating the associated toxicity levels. In this minireview, we collate and discuss particularly recent advancements in therapeutic applications of metal and metal oxide nanoparticles in skin and cosmetic applications. On the one hand, we outline the dermatological intrusions, including applications in wound healing. On the other hand, we keep track of the recent trends in the development of cosmeceuticals via nanoparticle engrossments. The dermato-cosmetic applications of metal and metal oxide nanoparticles encompass diverse aspects, including targeted, controlled drug release, and conferring ultraviolet and antimicrobial protections to the skin. Additionally, we deliberate on the critical aspects in comprehending the advantage of rheological assessments, while characterizing the nanoparticulate systems. As an illustration, we single out psoriasis, to capture and comment on the nanodermatology-based curative standpoints. Finally, we lay a broad outlook and examine the imminent prospects.
Collapse
Affiliation(s)
- Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Thomas B Goudoulas
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Kei Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN, United States
| |
Collapse
|
12
|
Zhuang Y, Cui W. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv Drug Deliv Rev 2021; 176:113885. [PMID: 34324886 DOI: 10.1016/j.addr.2021.113885] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Gene therapy is a promising novel method of tissue regeneration by stimulating or inhibiting key signaling pathways. However, their therapeutic applications in vivo are largely limited by several physiological obstacles, such as degradation of nucleases, impermeability of cell membranes, and transport to the desired intracellular compartments. Biomaterial-based gene delivery systems can overcome the problems of stability and local drug delivery, and can temporarily control the overexpression of therapeutic genes, leading to the local production of physiologically relevant levels of regulatory factors. But the gene delivery of biomaterials for tissue regeneration relies on multi-factor design. This review aims to outline the impact of gene delivery methods, therapeutic genes and biomaterials selection on this strategy, emphatically introduce the latest developments in the design of gene delivery vehicles based on biomaterials, summarize the mechanism of nucleic acid for tissue regeneration, and explore the strategies of nucleic acid delivery vehicles for various tissue regeneration.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
13
|
Jianghong L, Tingting M, Yingping Z, Tong Y, Lanxia Z, Jingwen L, Wentao Z, Pengbo C, Hong Y, Fuqiang H. Aptamer and Peptide-Modified Lipid-Based Drug Delivery Systems in Application of Combined Sequential Therapy of Hepatocellular Carcinoma. ACS Biomater Sci Eng 2021; 7:2558-2568. [PMID: 34047187 DOI: 10.1021/acsbiomaterials.1c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is known as the most common malignancy of the hepatobiliary system with a continued increase in incidence but limited therapeutic options. Nanomedicine has provided a promising strategy through engineered nanocarriers that are capable of targeting therapeutic agents specifically to tumor cells. In this research, two aptamer/peptide-modified lipid-based drug delivery systems (A54-PEG-SLN/OXA and A15-PEG-SLN/SAL) were developed as a sequential therapeutic strategy to conquer specific hepatocellular carcinoma. The nanomedicine A54-PEG-SLN/OXA was able to target specific hepatocellular carcinoma cell BEL-7402 and exhibited a strong targeting ability and antitumor efficiency both in vitro and in vivo. The A15-PEG-SLN/SAL could target and penetrate deeply to the spheroid composed of CD133+ cancer cells. In the study of developing a sequential therapeutic strategy, we demonstrated that A54-PEG-SLN/OXA could kill tumor cells and expose CD133+ cancer cells. After the administration of A15-PEG-SLN/SAL, the growth of the tumors was significantly inhibited. In conclusion, the aptamer/peptide-modified lipid-based drug delivery systems, A54-PEG-SLN/OXA and A15-PEG-SLN/SAL, could specifically target carcinoma cells and had an evident antitumor effect when administrated sequentially.
Collapse
Affiliation(s)
- Lv Jianghong
- Sir Run Run Shaw Hospital School of Medicine Zhejiang University No. 3 Qingchun East Road, Hangzhou 310016, China
| | - Meng Tingting
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zeng Yingping
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yu Tong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Zhao Lanxia
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong Province 266000, P. R. China
| | - Liu Jingwen
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, United States
| | - Zhou Wentao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Chen Pengbo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yuan Hong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Hu Fuqiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| |
Collapse
|
14
|
Jeevanandam J, Danquah MK, Pan S. Plant-Derived Nanobiomaterials as a Potential Next Generation Dental Implant Surface Modifier. FRONTIERS IN MATERIALS 2021; 8. [DOI: 10.3389/fmats.2021.666202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Dental implants resemble synthetic materials, mainly designed as teeth-mimics to replace the damaged or irregular teeth. Specifically, they are demarcated as a surgical fixture of artificial implant materials, which are placed into the jawbone, and are allowed to be fused with the bone, similar to natural teeth. Dental implants may be categorized into endosteal, subperiosteal, and zygomatic classes, based on the placement of the implant “in the bone” or on top of the jawbone, under the gum tissue. In general, titanium and its alloys have found everyday applications as common, successful dental implant materials. However, these materials may also undergo corrosion and wear, which can lead to degradation into their ionic states, deposition in the surrounding tissues, as well as inflammation. Consequently, nanomaterials are recently introduced as a potential alternative to replace the conventional titanium-based dental implants. However, nanomaterials synthesized via physical and chemical approaches are either costly, non/less biocompatible, or toxic to the bone cells. Hence, biosynthesized nanomaterials, or bionanomaterials, are proposed in recent studies as potential non-toxic dental implant candidates. Further, nanobiomaterials with plant origins, such as nanocelluloses, nanometals, nanopolymers, and nanocarbon materials, are identified to possess enhanced biocompatibility, bioavailability and no/less cytotoxicity with antimicrobial efficacy at low costs and ease of fabrication. In this minireview, we present an outline of recent nanobiomaterials that are extensively investigated for dental implant applications. Additionally, we discuss their action mechanisms, applicability, and significance as dental implants, shortcomings, and future perspectives.
Collapse
|
15
|
Overview of the Therapeutic Potential of Aptamers Targeting Coagulation Factors. Int J Mol Sci 2021; 22:ijms22083897. [PMID: 33918821 PMCID: PMC8069679 DOI: 10.3390/ijms22083897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences that bind target molecules with high specificity and affinity. Aptamers exhibit several notable advantages over protein-based therapeutics. Aptamers are non-immunogenic, easier to synthesize and modify, and can bind targets with greater affinity. Due to these benefits, aptamers are considered a promising therapeutic candidate to treat various conditions, including hematological disorders and cancer. An active area of research involves developing aptamers to target blood coagulation factors. These aptamers have the potential to treat cardiovascular diseases, blood disorders, and cancers. Although no aptamers targeting blood coagulation factors have been approved for clinical use, several aptamers have been evaluated in clinical trials and many more have demonstrated encouraging preclinical results. This review summarized our knowledge of the aptamers targeting proteins involved in coagulation, anticoagulation, fibrinolysis, their extensive applications as therapeutics and diagnostics tools, and the challenges they face for advancing to clinical use.
Collapse
|
16
|
Ștefan G, Hosu O, De Wael K, Lobo-Castañón MJ, Cristea C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Shoueir KR, El-Desouky N, Rashad MM, Ahmed MK, Janowska I, El-Kemary M. Chitosan based-nanoparticles and nanocapsules: Overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int J Biol Macromol 2021; 167:1176-1197. [PMID: 33197477 DOI: 10.1016/j.ijbiomac.2020.11.072] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in the synthesis, properties, and applications of chitosan as the second after cellulose available biopolymer in nature were discussed in this review. A general overview of processing and production procedures from A to Z was highlighted. Chitosan exists in three polymorphic forms which differ in degree of crystallinity (α, β, and γ). Thus, the degree of deacetylation, crystallinity, surface area, and molecular mass significantly affect most applications. Otherwise, the synthesis of chitosan nanofibers is suffering from many drawbacks that were recently treated by co-electrospun with other polymers such as polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolactone (PCL). Ultimately, this review focuses on the area of new trend utilization of chitosan nanoparticles as nanospheres and nanocapsules, in cartilage and bone regenerative medicine. Owing to its biocompatibility, bioavailability, biodegradability, and costless synthesis, chitosan is a promising biopolymeric structure for water remediation, drug delivery, antimicrobials, and tissue engineering.
Collapse
Affiliation(s)
- Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France.
| | - Nagwa El-Desouky
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Moataz M Rashad
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Izabela Janowska
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS UMR 7515-Université de Strasbourg, 25 rue Becquerel 67087 Strasbourg, France
| | - Maged El-Kemary
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; Pharos University, Alexandria, Egypt.
| |
Collapse
|
18
|
Endothelial progenitor cells as the target for cardiovascular disease prediction, personalized prevention, and treatments: progressing beyond the state-of-the-art. EPMA J 2020; 11:629-643. [PMID: 33240451 DOI: 10.1007/s13167-020-00223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Stimulated by the leading mortalities of cardiovascular diseases (CVDs), various types of cardiovascular biomaterials have been widely investigated in the past few decades. Although great therapeutic effects can be achieved by bare metal stents (BMS) and drug-eluting stents (DES) within months or years, the long-term complications such as late thrombosis and restenosis have limited their further applications. It is well accepted that rapid endothelialization is a promising approach to eliminate these complications. Convincing evidence has shown that endothelial progenitor cells (EPCs) could be mobilized into the damaged vascular sites systemically and achieve endothelial repair in situ, which significantly contributes to the re-endothelialization process. Therefore, how to effectively capture EPCs via specific molecules immobilized on biomaterials is an important point to achieve rapid endothelialization. Further, in the context of predictive, preventive, personalized medicine (PPPM), the abnormal number alteration of EPCs in circulating blood and certain inflammation responses can also serve as important indicators for predicting and preventing early cardiovascular disease. In this contribution, we mainly focused on the following sections: the definition and classification of EPCs, the mechanisms of EPCs in treating CVDs, the potential diagnostic role of EPCs in predicting CVDs, as well as the main strategies for cardiovascular biomaterials to capture EPCs.
Collapse
|
19
|
Yue L, Jin W, Chi S, Yang T, Lei Z, Zhu H, Zhao Y. pH‐responsive
chitosan/sulfobutyl ether‐β‐cyclodextrin supramolecular nanoparticles for controlled release of sodium ferulate. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lulu Yue
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming Yunnan China
| | - Wen Jin
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming Yunnan China
| | - Shaoming Chi
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming Yunnan China
| | - Tong Yang
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming Yunnan China
| | - Ze Lei
- Guangdong Goodscend Pharmaceutical Technology Co., Ltd Shantou China
| | - Hongyou Zhu
- Guangdong Goodscend Pharmaceutical Technology Co., Ltd Shantou China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering Yunnan Normal University Kunming Yunnan China
| |
Collapse
|
20
|
Su Y, Xue T, Wu L, Hu Y, Wang J, Xu Q, Chen Y, Lin Z. Label-free detection of biomarker alpha fetoprotein in serum by ssDNA aptamer functionalized magnetic nanoparticles. NANOTECHNOLOGY 2020; 31:095104. [PMID: 31726443 DOI: 10.1088/1361-6528/ab57f7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the clinic, with the characteristics of occult onset, rapid progression, and high degree of malignancy. Alpha fetoprotein (AFP) is the most important biomarker of HCC, which is widely used in early screening, diagnosis, and prognosis observation. A series of immunoassays have been developed and frequently used in the detection of AFP based on antibodies. Unfortunately, the shortcomings of antibodies, such as thermal unstable and fluctuant activity by batches, lead to the inaccuracy in the detection of AFP. In this study, aptamers instead of antibodies were adopted as the specific recognition element for AFP, aiming to seek an alternative strategy to immunoassays. An AFP-specific ssDNA aptamer was grafted to magnetic nanoparticles (Fe3O4@SiO2) via avidin-biotin interaction, and the resultant aptamer functionalized magnetic nanoparticles (Ap-MNPs) were adequately characterized and tested. The Ap-MNPs in solution exhibited a fast response to the outer magnetic field, and can be completely separated in several minutes. It was found that Ap-MNPs have good specificity to the target AFP, as the recovery of AFP (87.0%) was much higher than the competitive proteins IgG (38.9%), HSA (18.5%), and FIB (11.4%). A convenient and efficient label-free detection method of AFP in serum was developed based on Ap-MNPs in combination with high-performance liquid chromatography. The linearity of this method was over a range of 1-50 μg ml-1 with a correlation coefficient of 0.9999, and the limit of detection was 0.27 μg ml-1. This study indicated that aptamers are an ideal tool for the recognition and detection of biomarkers, and thus will find wide applications in clinical practice.
Collapse
Affiliation(s)
- Yu Su
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mendez-Fernandez A, Cabrera-Fuentes HA, Velmurugan B, Irei J, Boisvert WA, Lu S, Hausenloy DJ. Nanoparticle delivery of cardioprotective therapies. CONDITIONING MEDICINE 2020; 3:18-30. [PMID: 34268485 PMCID: PMC8279025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute myocardial infarction (AMI), and the heart failure (HF) that often follows, are leading causes of death and disability worldwide. Crucially, there are currently no effective treatments, other than myocardial reperfusion, for reducing myocardial infarct (MI) size and preventing HF following AMI. Thus, there is an unmet need to discover novel cardioprotective therapies to reduce MI size, and prevent HF in AMI patients. Although a large number of therapies have been shown to reduce MI size in experimental studies, the majority have failed to benefit AMI patients. Failure to deliver cardioprotective therapy to the ischemic heart in sufficient concentrations following AMI is a major factor for the lack of success observed in previous clinical cardioprotection studies. Therefore, new strategies are needed to improve the delivery of cardioprotective therapies to the ischemic heart following AMI. In this regard, nanoparticles have emerged as drug delivery systems for improving the bioavailability, delivery, and release of cardioprotective therapies, and should result in improved efficacy in terms of reducing MI size and preventing HF. In this article, we provide a review of currently available nanoparticles, some of which have been FDA-approved, in terms of their use as drug delivery systems in cardiovascular disease and cardioprotection.
Collapse
Affiliation(s)
- Abraham Mendez-Fernandez
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
- National Heart Research Institute Singapore, National Heart Centre, Singapore
| | - Hector A Cabrera-Fuentes
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Russian Federation
- Institute of Physiology, Medical School, Justus-Liebig-University, Germany
| | - Bhaarathy Velmurugan
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Jason Irei
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, USA
| | - Shengjie Lu
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, UK
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan
| |
Collapse
|
22
|
Zhu C, Yang G, Ghulam M, Li L, Qu F. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers. Biotechnol Adv 2019; 37:107432. [PMID: 31437572 DOI: 10.1016/j.biotechadv.2019.107432] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Aptamers have drawn considerable attention as newly emerging molecular recognition elements in clinical diagnostics, drug delivery, therapeutics, environmental monitoring, and food safety analyses. As the in vitro screening antibody analogs, aptamers are enabled to recognize various types of targets with high affinity and specificity like or even superior to antibodies. However, the restrictions and inefficiency of selection have been hampering their wider application. Among various modified systematic evolution of ligands by exponential enrichment (SELEX) methods, capillary electrophoresis (CE)-SELEX holds multiple functions and advantages with the powerful qualitative and quantitative analysis capabilities, less consumption of sample and analytical reagent, natural binding environment, higher screening efficiency, and availability in multiple modes. This review summarizes the key developments in the area of CE-SELEX by leading research groups, including our teams' ten years of research and experience to help researchers fully understand and utilize CE-SELEX. Aptamers' history, applications, as well as the SELEX developments, have been briefly described; the advantages of CE-SELEX are highlighted compared with the conventional SELEX methods. Further, we describe some essential CE-SELEX models and provide an overview of the CE-SELEX, including the targets and ssDNA library, every technical point in the selection process, and post-SELEX protocol. We expect this review will inspire more researchers to have insight into the screening problems from CE-SELEX viewpoint and will help to improve the selection efficiency and probability of success to meet the growing needs of aptamers' discovery in bioanalytical and medical fields.
Collapse
Affiliation(s)
- Chao Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Ge Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Murtaza Ghulam
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing 100081, China.
| |
Collapse
|
23
|
High-efficiency selection of aptamers for bovine lactoferrin by capillary electrophoresis and its aptasensor application in milk powder. Talanta 2019; 205:120088. [PMID: 31450439 DOI: 10.1016/j.talanta.2019.06.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Capillary electrophoresis-based systematic evolution of ligands by exponential enrichment (CE-SELEX) is a high-efficient technique for aptamers selection, and has been evolved into many modes. In this study, we obtained the aptamer against bovine lactoferrin (BLF) with high affinity (dissociation constant, Kd = 20.74 ± 6.89 nM) and good specificity (>1000 folds) using single step CE-SELEX (ssCE-SELEX) mode. In the selection process, ssCE demonstrated high-efficiency selection with bulk Kd reaching at 0.19 ± 0.04 μM by only two rounds, as compared to capillary zone electrophoresis (CZE) mode with Kd of 0.39 ± 0.03 μM. Next-generation sequencing (NGS) was performed by two methods of high output (Hiseq) and medium output (Miseq) with different sequencing depths, and their same results of high-frequency sequences confirmed the reliability of the obtained sequences. Through affinity analysis, the primer region and single base mutation (SBM) were observed to affect the sequence structure and to result in affinity change. Besides, molecular dynamics (MD) simulation was performed to validate the binding affinity of the candidates with BLF by analyzing binding sites, interaction forces, and binding free energy. Moreover, BLF detection in milk powder matrices was completed successfully with the optimized CE-aptasensor. The signal response was in a good linear relationship (R2 = 0.9930) with 4-128 nM of BLF and the detection limit was 1 nM. The obtained results of BLF in four milk powder samples were in an acceptable agreement with the labeled concentrations. This study presented a completed CE based process including aptamers selection, affinity characterization, and detection application, which also validated the high-efficiency selection of ssCE-SELEX mode.
Collapse
|
24
|
Nanotherapies for Treatment of Cardiovascular Disease: A Case for Antioxidant Targeted Delivery. CURRENT PATHOBIOLOGY REPORTS 2019; 7:47-60. [PMID: 31396435 DOI: 10.1007/s40139-019-00196-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Cardiovascular disease (CVD) involves a broad range of clinical manifestations resulting from a dysfunctional vascular system. Overproduction of reactive oxygen and nitrogen species are causally implicated in the severity of vascular dysfunction and CVD. Antioxidant therapy is an attractive avenue for treatment of CVD associated pathologies. Implementation of targeted nano-antioxidant therapies has the potential to overcome hurdles associated with systemic delivery of antioxidants. This review examines the currently available options for nanotherapeutic targeting CVD, and explores successful studies showcasing targeted nano-antioxidant therapy. Recent Findings Active targeting strategies in the context of CVD heavily focus on immunotargeting to inflammatory markers like cell adhesion molecules, or to exposed extracellular matrix components. Targeted antioxidant nanotherapies have found success in pre-clinical studies. Summary This review underscores the potential of targeted nanocarriers as means of finding success translating antioxidant therapies to the clinic, all with a focus on CVD.
Collapse
|