1
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2025; 45:576-628. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
2
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Awaji AA, Rizk MA, Alsaiari RA, Alqahtani NF, Al-Qadri FA, Alkorbi AS, Hafez HS, Elshaarawy RFM. Chemotherapeutic Activity of Imidazolium-Supported Pd(II) o-Vanillylidene Diaminocyclohexane Complexes Immobilized in Nanolipid as Inhibitors for HER2/neu and FGFR2/FGF2 Axis Overexpression in Breast Cancer Cells. Pharmaceuticals (Basel) 2023; 16:1711. [PMID: 38139837 PMCID: PMC10747766 DOI: 10.3390/ph16121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Two bis-(imidazolium-vanillylidene)-(R,R)-diaminocyclohexane ligands (H2(VAN)2dach, H2L1,2) and their Pd(II) complexes (PdL1 and PdL2) were successfully synthesized and structurally characterized using microanalytical and spectral methods. Subsequently, to target the development of new effective and safe anti-breast cancer chemotherapeutic agents, these complexes were encapsulated by lipid nanoparticles (LNPs) to formulate (PdL1LNP and PdL2LNP), which are physicochemically and morphologically characterized. PdL1LNP and PdL2LNP significantly cause DNA fragmentation in MCF-7 cells, while trastuzumab has a 10% damaging activity. Additionally, the encapsulated Pd1,2LNPs complexes activated the apoptotic mechanisms through the upregulated P53 with p < 0.001 and p < 0.05, respectively. The apoptotic activity may be triggered through the activity mechanism of the Pd1,2LNPs in the inhibitory actions against the FGFR2/FGF2 axis on the gene level with p < 0.001 and the Her2/neu with p < 0.05 and p < 0.01. All these aspects have triggered the activity of the PdL1LNP and PdL2LNP to downregulate TGFβ1 by p < 0.01 for both complexes. In conclusion, LNP-encapsulated Pd(II) complexes can be employed as anti-cancer drugs with additional benefits in regulating the signal mechanisms of the apoptotic mechanisms among breast cancer cells with chemotherapeutic-safe actions.
Collapse
Affiliation(s)
- Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College in Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Moustafa A. Rizk
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Raiedhah A. Alsaiari
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Norah F. Alqahtani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Fatima A. Al-Qadri
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Ali S. Alkorbi
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia or (M.A.R.); (R.A.A.); (F.A.A.-Q.); (A.S.A.)
| | - Hani S. Hafez
- Zoology Department, Faculty of Science, Suez University, Suez 43533, Egypt
| | - Reda F. M. Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, Suez 43533, Egypt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
4
|
Raza F, Zheng M, Zhong H, Su J, He B, Yuan WE, Qiu M. Engineered tumor microvesicles modified by SP94 peptide for arsenic trioxide targeting drug delivery in liver cancer therapy. BIOMATERIALS ADVANCES 2023; 155:213683. [PMID: 37925825 DOI: 10.1016/j.bioadv.2023.213683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Liver cancer is among the leading cause of cancer related death worldwide. There is growing interest in using traditional Chinese medicines such as arsenic trioxide (ATO) to treat liver cancer. ATO have attracted attention due to its wide range of anti-cancer activities. However, the current ATO formulations are associated with drawbacks such as short half-life, lack of targeting ability towards solid tumors and apparent toxic side effects. Tumor microvesicles (TMVs) has shown encouraging results for the delivery of drugs to solid tumor. In this work, we designed ATO loaded TMVs further modified by SP94 peptide as liver cancer specific ligand (ATO@SP94-TMVs). This drug delivery system utilized SP94 peptide that selectively targets liver cancer cells while TMVs increase the accumulation of ATO at tumor site and activate immune response owing to the associated antigens. ATO@SP94-TMVs exhibited high encapsulation efficiency and tumor microenvironment triggered enhanced release of ATO in vitro. Cytotoxicity and uptake studies revealed remarkable inhibition and specific targeting of H22 cells. In addition, excellent immune response was detected in vitro, enhancing anti-tumor efficacy. Furthermore, a tumor inhibition rate of about 53.23 % was observed in H22 bearing tumor model. Overall, these results confirm that ATO@SP94-TMVs can be a promising nano drug delivery system for the future liver cancer therapy and improve its clinical applications.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyuan Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyu Zhong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beixuan He
- Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Li YN, Shi X, Sun D, Han S, Zou Y, Wang L, Yang L, Li Y, Shi Y, Guo J, O'Driscoll CM. Delivery of melarsoprol using folate-targeted PEGylated cyclodextrin-based nanoparticles for hepatocellular carcinoma. Int J Pharm 2023; 636:122791. [PMID: 36863541 DOI: 10.1016/j.ijpharm.2023.122791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/22/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and has become one of the most lethal malignancies in the world. Although chemotherapy remains a cornerstone of cancer therapy, the number of chemotherapeutic drugs approved for HCC is low, and emerging therapeutics are needed. Melarsoprol (MEL) is an arsenic-containing drug, and has been applied in the treatment of human African trypanosomiasis at the late stage. In this study, the potential of MEL for HCC therapy was investigated for the first time using in vitro and in vivo experimental approaches. A folate-targeted polyethylene glycol-modified amphiphilic cyclodextrin nanoparticle was developed for safe, efficient and specific delivery of MEL. Consequently, the targeted nanoformulation achieved cell-specific uptake, cytotoxicity, apoptosis and migration inhibition in HCC cells. Furthermore, the targeted nanoformulation significantly prolonged the survival of mice with orthotopic tumor, without causing toxic signs. This study indicates the potential of the targeted nanoformulation as an emerging chemotherapy option for treating HCC.
Collapse
Affiliation(s)
- Ya-Nan Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoju Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
6
|
Song X, Wu J, Song W, Chen L, Zhang S, Ji H, Liu J, Gu J. Thiolated chitosan nanoparticles for stable delivery and smart release of As 2O 3 for liver cancer through dual actions. Carbohydr Polym 2023; 303:120462. [PMID: 36657859 DOI: 10.1016/j.carbpol.2022.120462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
In this work, multifunctional thiolated chitosan derivatives (DCA-CS-PEG-FA-NAC) were synthesized, and arsenic trioxide (ATO) was loaded onto the derivatives through glutathione (GSH)-sensitive AsIII-S bonds, and stable CS-ATO nanodrugs were prepared by simple self-assembly method. By adjusting the thiol substitution degree of CS, the drug loading capacity of the nanodrugs was significantly improved, which could reach 20 ATO per CS molecule (DCA10.7-CS-PEG3.1-FA-NAC20.2-ATO). In vitro release studies obviously showed the low leakage of ATO under physiological conditions while over 95 % ATO was released after 24 h under GSH. In vitro and in vivo investigations demonstrated that the DCA10.7-CS-PEG3.1-FA-NAC20.2-ATO nanodrug could significantly enhance the tumor intracellular accumulation of ATO, reduce the toxic and side effects of ATO on healthy organs, and improve the therapeutic effect of ATO on the HepG2 mice tumor model (tumor inhibition rate was as high as 86.4 %), indicating the potential application of ATO in clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Xiaoli Song
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Jiamin Wu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Weimin Song
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Lu Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Shuwei Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Hangyu Ji
- Xishan People's Hospital, Wuxi 214011, PR China
| | - Junliang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Jun Gu
- Xishan People's Hospital, Wuxi 214011, PR China.
| |
Collapse
|
7
|
Xia C, Jin X, Garalleh HA, Garaleh M, Wu Y, Hill JM, Pugazhendhi A. Optimistic and possible contribution of nanomaterial on biomedical applications: A review. ENVIRONMENTAL RESEARCH 2023; 218:114921. [PMID: 36504007 DOI: 10.1016/j.envres.2022.114921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials have many advantages over bulk materials, including enhanced surface-to-volume proportion as well as magnetic traits. It has been a steady rise in research with using nanomaterials in various biomedical fields in the past few decades. Constructing nanomaterials has emerged as a leading research primary concern in order to discover specialized biomedical applications. Since, their advantageous properties including chemical stability, non-toxicity, bio - compatibility, relatively high magnetization, and strong magnetic vulnerability, nanoparticles of iron oxide had already influenced implementations in different biomedical fields. Nanomaterials can be divided up into four nanomaterials such as metallic nanomaterials, bimetallic or alloy nanomaterials, metal oxide nanomaterials, as well as magnetic nanomaterials. Hence, the purpose of this review is to conduct such in discussion on emerging advancements in nanomaterials for biomedical, with such a special emphasis upon those options of nanomaterials including metallic nanomaterials: Au and Ag, bimetallic nanomaterials: Fe-Co and Fe-Pt, and metal oxides: TiO2 and CeO2. Securing this information gap will result in a better comprehension of the contribution of nanomaterial type and subsequent huge-scale applications in aspects of both their potential and challenges.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, Jordan
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - James M Hill
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide SA, 5001, Australia
| | | |
Collapse
|
8
|
Huang Y, Xu Z, Wei Y, Han S, Cai X, Chen D. Albumin-Embellished Arsenic Trioxide-Loaded Polymeric Nanoparticles Enhance Tumor Accumulation and Anticancer Efficacy via Transcytosis for Hepatocellular Carcinoma Therapy. AAPS PharmSciTech 2022; 23:111. [PMID: 35411416 DOI: 10.1208/s12249-022-02254-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Arsenic trioxide (ATO) has efficient anticancer effect on hepatocellular carcinoma (HCC) in clinical trials, but its off-target distribution and side effects have limited its use. Here, we demonstrate an albumin-embellished ATO-loaded polyethylene glycol-polycaprolactone-polyethyleneimine (PEG-PCL-PEI) nanoparticle (AATONP) to enhance the tumor distribution and intratumor drug release of ATO for HCC therapy. AATONP is prepared by surface embellishment with albumin on the cationic ATO-loaded PEG-PCL-PEI nanoparticles (CATONP). Albumin embellishment can reduce the cationic material's hemolytic toxicity in blood cells while maintaining the rapid internalization and lysosome escape abilities of the positively charged CATONP. AATONP provides sustained and low pH-responsive drug release, facilitating the targeted drug release in the intratumor acidic microenvironment. Moreover, AATONP can significantly improve the circulation time and tumor distribution of ATO via albumin-mediated transcytosis in HCC tumor-bearing mice. Compared with free ATO and the clinically used nanomedicine Genexol/PM, AATONP shows potent antitumor activity against a human HCC xenograft mouse model, leading to a higher tumor inhibition rate of 89.4% in HCC therapy. In conclusion, this work presents an efficient strategy to achieve tumor accumulation and the intratumor drug release of ATO for HCC therapy. An albumin-embellished arsenic trioxide (ATO)-loaded polyethylene glycol-polycaprolactone-polyethyleneimine nanoparticle (AATONP) is designed to enhance tumor distribution and intratumor drug release of ATO for hepatocellular carcinoma therapy. AATONP can achieve enhanced tumor distribution via albumin-mediated transcytosis and exhibit intratumor drug release of ATO via tumor acidic microenvironment-response, leading to potent antitumor activity.
Collapse
|
9
|
Current Advances of Nanomedicines Delivering Arsenic Trioxide for Enhanced Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14040743. [PMID: 35456577 PMCID: PMC9026299 DOI: 10.3390/pharmaceutics14040743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Arsenic trioxide (ATO) is one of the first-line chemotherapeutic drugs for acute promyelocytic leukemia. Its anti-cancer activities against various human neoplastic diseases have been extensively studied. However, the clinical use of ATO for solid tumors is limited, and these limitations are because of severe systemic toxicity, low bioavailability, and quick renal elimination before it reaches the target site. Although without much success, several efforts have been made to boost ATO bioavailability toward solid tumors without raising its dose. It has been found that nanomedicines have various advantages for drug delivery, including increased bioavailability, effectiveness, dose-response, targeting capabilities, and safety as compared to traditional drugs. Therefore, nanotechnology to deliver ATO to solid tumors is the main topic of this review, which outlines the previous and present medical applications of ATO. We also summarised ATO anti-cancer mechanisms, limitations, and outcomes of combinatorial treatment with chemo agents. As a result, we strongly recommend conducting pre-clinical and clinical studies of ATO, especially nano-system-based ones that might lead to a novel combination therapy for cancer treatment with high efficacy, bioavailability, and low toxicity for cancer patients.
Collapse
|
10
|
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17:21. [PMID: 35144660 PMCID: PMC8830990 DOI: 10.1186/s13020-022-00577-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Mineral drugs are an important constituent of traditional Chinese medicine (TCM). Taking minerals that contain heavy metals as drugs is a very national characteristic part of TCM. However, the safety and scientific nature of mineral drugs are controversial owing to their heavy metals and strong toxicity. In 2000, the Food and Drug Administration (FDA) authorized arsenic trioxide (ATO) as first-line therapy for acute promyelocytic leukemia. This makes the development and utilization of mineral drugs become a research hotspot. The development of nanomedicine has found a great prospect of mineral drugs in nano-delivery carriers. And that will hold promise to address the numerous biological barriers facing mineral drug formulations. However, the studies on mineral drugs in the delivery system are few at present. There is also a lack of a detailed description of mineral drug delivery systems. In this review, the advanced strategies of mineral drug delivery systems in tumor therapy are summarized. In addition, the therapeutic advantages and research progress of novel mineral drug delivery systems are also discussed. Here, we hope that this will provide a useful reference for the design and application of new mineral drug delivery systems.
Collapse
Affiliation(s)
- Xiaoqing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| |
Collapse
|
11
|
Nie Y, Huang B, Hu AL, Xu YY, Zou Y, Liu Y, Liu J. Antitumor effects of cadmium against diethylnitrosamine-induced liver tumors in mice. Oncol Lett 2021; 23:33. [PMID: 34966449 PMCID: PMC8669683 DOI: 10.3892/ol.2021.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022] Open
Abstract
Cadmium (Cd) has been reported to exhibit antitumor effects against chemically induced liver tumors. However, the antitumor effects of Cd are not completely understood. Metallotherapy, the use of a toxic metal to attack liver tumors, could be a viable strategy. In the present study, 8-week old, male, C57BL/6 mice were administered injections of diethylnitrosamine (DEN) (90 mg/kg, and then 50 mg/kg 2 weeks later), followed by liver tumor promotion with carbon tetrachloride. Cadmium chloride was administered in the drinking water (1000 ppm) from 21–40 weeks after DEN initiation. Body weights were recorded and liver tumor formation was monitored via ultrasound. At the end of experiments, livers were removed, weighed, and the tumor incidence, tumor numbers and tumor size scores were recorded. Liver histology and metallothionein (MT) immunostaining were performed. After DEN injection, animal body weight decreased, and then slowly recovered with time. Cd treatment did not affect animal body weight gain. Ultrasound analysis detected liver tumors 35 weeks after DEN injection, and the mice were necropsied at 40 weeks. Liver/body weight ratios increased in the DEN and DEN + Cd groups. Cd treatment decreased the tumor incidence (71 vs. 17%), tumor numbers (15 vs. 2) and tumor scores (22 vs. 3) when compared with the DEN only group. Histopathology showed hepatocyte degeneration in all groups, and immunohistochemistry showed MT-deficiency in the liver tumors, while MT staining was intensified in the surrounding tissues. Reverse transcription-quantitative PCR showed increases in α-fetoprotein level in DEN-treated livers, and increases in MT-2 and tumor necrosis factor α (TNFα) levels in Cd-treated livers. Thus, it was concluded that Cd is effective in the suppression of DEN-induced liver tumors, and that the mechanisms may be related to MT-deficiency in tumors and the induction of TNFα to kill tumor cells.
Collapse
Affiliation(s)
- Yu Nie
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Bo Huang
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - An-Ling Hu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yun-Yan Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yan Zou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yun Liu
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
12
|
Mirveis Z, Kouchak M, Mahdavinia M, Rahbar N. Novel and efficient method for loading aptamer-conjugated liposomes with arsenic trioxide for targeting cancer cells. J Liposome Res 2021; 32:276-283. [PMID: 34918592 DOI: 10.1080/08982104.2021.2005624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although the therapeutic effect of liposomal arsenic trioxide arsenic trioxide (ATO) in the treatment of solid tumours has been confirmed, its dose-limiting loading is a challenging issue. To solve the problems in the preparation of liposomal ATO, different loading strategies were evaluated and compared. In addition, liposomes decorated with anti-nucleolin aptamers were developed as a novel formulation for targeted delivery with high loading efficiency and sustained releasing property in order to treat solid tumours. The liposomes were prepared by a thin-film method exploiting the passive loading strategy of Co(II) hydrogen arsenite (CHA). The structural characteristics of the liposomes were also investigated by Fourier transform infra-red spectroscopy (FT-IR), dynamic light scattering (DLS), zeta potentiometry, field emission scanning electron microscopy (FESEM), and Energy Dispersive X-ray Diffraction (EDX) techniques. To evaluate the potential cytotoxicity of this liposomal drug vehicle in vitro, MTT assay was performed on HT-29 cancer cell line. The results showed that the synthesised liposomes loaded with CHA exhibited high entrapment efficiency (77%). MTT assays showed a significant difference between the percentage of viable cells when HT -29 cells were treated with free ATO and liposomal formulation which can be corresponded to the sustained release of the drug from the liposomes. The results of this study may lead to a promising strategy for the effective treatment of solid tumours.
Collapse
Affiliation(s)
- Zohreh Mirveis
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
MMP2-responsive dual-targeting drug delivery system for valence-controlled arsenic trioxide prodrug delivery against hepatic carcinoma. Int J Pharm 2021; 609:121209. [PMID: 34678398 DOI: 10.1016/j.ijpharm.2021.121209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
Arsenic trioxide (ATO) is the active ingredient in traditional Chinese medicine, i.e., Arsenic, which has shown excellent therapeutic effects on hepatocellular carcinoma. However, due to its poor tumor distribution and high toxicity, the mass adoption of ATO in clinical applications has been severely impeded. In this study, matrix metalloproteinase 2 (MMP2)-responsive cleaved cell-penetrating peptide (PF) and folate (FA) co-modified liposome coated calcium arsenate nanoparticles (FA/PF-LP-CaAs) were fabricated based on these two considerations: (1) The tumor microenvironment characterized by overexpressed MMP2 in extracellular matrix and folate receptor on the cell membrane can enhance drug accumulation and accelerate endocytosis; (2) leveraging different toxicity of arsenic in different valence states, i.e., AsV can be reduced to more toxic AsIII by glutathione in tumor cells. Furthermore, FA/PF-LP-CaAs could be responsively degraded by the mild acidic tumor environment, and the degraded product could escape from lysosomes after endocytosis. More importantly, in light of the in vivo biodistribution and pharmacodynamic studies, the vehicle was able to accumulate in the tumor efficiently. Also, it was able to exhibit excellent anti-tumor efficacy with minimized side effects when compared to single-modified counterparts. Thus, the novel strategy based on the tumor microenvironment proposed in this work can enhance the tumor-targeting efficiency and intratumor toxicity.
Collapse
|
14
|
Miodragović Ð, Qiang W, Sattar Waxali Z, Vitnik Ž, Vitnik V, Yang Y, Farrell A, Martin M, Ren J, O’Halloran TV. Iodide Analogs of Arsenoplatins-Potential Drug Candidates for Triple Negative Breast Cancers. Molecules 2021; 26:molecules26175421. [PMID: 34500854 PMCID: PMC8434261 DOI: 10.3390/molecules26175421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Patients with triple negative breast cancers (TNBCs)—highly aggressive tumors that do not express estrogen, progesterone, and human epidermal growth factor 2 receptors—have limited treatment options. Fewer than 30% of women with metastatic TNBC survive five years after their diagnosis, with a mortality rate within three months after a recurrence of 75%. Although TNBCs show a higher response to platinum therapy compared to other breast cancers, drug resistance remains a major obstacle; thus, platinum drugs with novel mechanisms are urgently needed. Arsenoplatins (APs) represent a novel class of anticancer agents designed to contain the pharmacophores of the two FDA approved drugs cisplatin and arsenic trioxide (As2O3) as one molecular entity. Here, we present the syntheses, crystal structures, DFT calculations, and antiproliferative activity of iodide analogs of AP-1 and AP-2, i.e., AP-5 and AP-4, respectively. Antiproliferative studies in TNBC cell lines reveal that all AP family members are more potent than cisplatin and As2O3 alone. DFT calculations demonstrate there is a low energy barrier for hydrolysis of the platinum-halide bonds in arsenoplatins, possibly contributing to their higher cytotoxicities compared to cisplatin.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Department of Chemistry, Northeastern Illinois University, 5500 St. Louis Ave, Chicago, IL 60625, USA; (Ð.M.); (M.M.)
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Wenan Qiang
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Željko Vitnik
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (Ž.V.); (V.V.)
| | - Vesna Vitnik
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia; (Ž.V.); (V.V.)
| | - Yi Yang
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Annie Farrell
- Department of Chemistry, University of Illinois at Urbana Champaign, 102 N. Neil St., Champaign, IL 61820, USA;
| | - Matthew Martin
- Department of Chemistry, Northeastern Illinois University, 5500 St. Louis Ave, Chicago, IL 60625, USA; (Ð.M.); (M.M.)
| | - Justin Ren
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
| | - Thomas V. O’Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA; (W.Q.); (Z.S.W.); (Y.Y.); (J.R.)
- Department of Chemistry and Department of Microbiology & Molecular Genetics, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA
- Correspondence: or ; Tel.: +1-847-491-5060; Fax: +1-847-467-1566
| |
Collapse
|
15
|
Sequential Release of Paclitaxel and Imatinib from Core-Shell Microparticles Prepared by Coaxial Electrospray for Vaginal Therapy of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168760. [PMID: 34445466 PMCID: PMC8395827 DOI: 10.3390/ijms22168760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
To optimize the anti-tumor efficacy of combination therapy with paclitaxel (PTX) and imatinib (IMN), we used coaxial electrospray to prepare sequential-release core–shell microparticles composed of a PTX-loaded sodium hyaluronate outer layer and an IMN-loaded PLGA core. The morphology, size distribution, drug loading, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), in vitro release, PLGA degradation, cellular growth inhibition, in vivo vaginal retention, anti-tumor efficacy, and local irritation in a murine orthotopic cervicovaginal tumor model after vaginal administration were characterized. The results show that such core–shell microparticles were of spherical appearance, with an average size of 14.65 μm and a significant drug-loading ratio (2.36% for PTX, 19.5% for IMN, w/w), which might benefit cytotoxicity against cervical-cancer-related TC-1 cells. The DSC curves indicate changes in the phase state of PTX and IMN after encapsulation in microparticles. The FTIR spectra show that drug and excipients are compatible with each other. The release profiles show sequential characteristics in that PTX was almost completely released in 1 h and IMN was continuously released for 7 days. These core–shell microparticles showed synergistic inhibition in the growth of TC-1 cells. Such microparticles exhibited prolonged intravaginal residence, a >90% tumor inhibitory rate, and minimal mucosal irritation after intravaginal administration. All results suggest that such microparticles potentially provide a non-invasive local chemotherapeutic delivery system for the treatment of cervical cancer by the sequential release of PTX and IMN.
Collapse
|
16
|
Xu H, Li C, Wei Y, Zheng H, Zheng H, Wang B, Piao JG, Li F. Angiopep-2-modified calcium arsenite-loaded liposomes for targeted and pH-responsive delivery for anti-glioma therapy. Biochem Biophys Res Commun 2021; 551:14-20. [PMID: 33714754 DOI: 10.1016/j.bbrc.2021.02.138] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
The blood-brain barrier (BBB) is the most critical obstacle in the treatment of central nervous system disorders, such as glioma, the most typical type of brain tumor. To overcome the BBB and enhance drug-penetration abilities, we used angiopep-2-modified liposomes to deliver arsenic trioxide (ATO) across the BBB, targeting the glioma. Angiopep-2-modified calcium arsenite-loaded liposomes (A2-PEG-LP@CaAs), with uniformly distributed hydrodynamic diameter (96.75 ± 0.57 nm), were prepared using the acetate gradient method with high drug-loading capacity (7.13 ± 0.72%) and entrapment efficiency (54.30 ± 9.81%). In the acid tumor microenvironment, arsenic was responsively released, thereby exerting an anti-glioma effect. The anti-glioma effect of A2-PEG-LP@CaAs was investigated both in vitro and in vivo. As a result, A2-PEG-LP@CaAs exhibited a potent, targeted anti-glioma effect mediated by the lipoprotein receptor-related (LRP) receptor, which is overexpressed in both the BBB and glioma. Therefore, A2-PEG-LP@CaAs could dramatically promote the anti-glioma effect of ATO, as a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Hengwu Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chaoqun Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinghui Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hangsheng Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Binhui Wang
- The Affiliated Municipal Hospital of Taizhou University, Taizhou, 318000, China.
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Fanzhu Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|