1
|
Andrades U, Gaikar S, Nathani K, Sawarkar S, Omri A. Harnessing nanofibers for targeted delivery of phytoconstituents in age-related macular degeneration. Drug Deliv 2025; 32:2489491. [PMID: 40192800 PMCID: PMC11980246 DOI: 10.1080/10717544.2025.2489491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Age-related macular degeneration is a degenerative eye condition that affects the macula and results in central vision loss. Phytoconstituents show great promise in the treatment of AMD. AMD therapy can benefit from the advantages of phytoconstituents loaded nanofibers. There are opportunities to improve the effectiveness of phytoconstituents in the treatment of age-related macular degeneration (AMD) through the use of nanofiber-based delivery methods. These novel platforms encapsulate and distribute plant-derived bioactives by making use of the special qualities of nanofibers. These qualities include their high surface area-to-volume ratio, variable porosity, and biocompatibility. Exploring the use of nanofiber-based delivery methods to provide phytoconstituents in AMD treatment is a great choice for enhancing patient adherence, safety, and efficacy in managing this condition. This article explores the potential of nanofiber-based delivery methods to revolutionize AMD treatment, providing an innovative and effective approach to treat this condition.
Collapse
Affiliation(s)
- Ulia Andrades
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sahil Gaikar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Khushali Nathani
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
2
|
Bo Y, Li Y. Multi-target mechanisms and potential applications of quercetin in the treatment of acne vulgaris. Front Pharmacol 2025; 16:1523905. [PMID: 40260380 PMCID: PMC12009773 DOI: 10.3389/fphar.2025.1523905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/26/2025] [Indexed: 04/23/2025] Open
Abstract
Acne vulgaris, a prevalent inflammatory dermatosis, afflicts approximately 90% of adolescents globally. Despite the efficacy of conventional therapies, including antibiotics and retinoids, their use is frequently limited by adverse effects and the emergence of drug resistance. Quercetin, a naturally occurring flavonoid, has garnered significant attention owing to its diverse biological activities, encompassing anti-inflammatory, antioxidant, antimicrobial, and immunomodulatory properties. This review comprehensively explores the multi-target mechanisms of quercetin in the treatment of acne, focusing on its ability to modulate inflammatory cytokine production, oxidative stress pathways, sebaceous gland activity, and microbial populations. Additionally, quercetin promotes skin barrier repair and reduces post-inflammatory hyperpigmentation and scarring through its antioxidant and anti-fibrotic effects. Despite promising in vitro and preclinical findings, challenges such as quercetin's low bioavailability and lack of robust clinical evidence necessitate further research. Advanced delivery systems, including nanoparticles and combination therapies, may optimize its therapeutic potential. This review provides insights into the molecular mechanisms and clinical applications of quercetin, highlighting its potential as a safe and effective alternative for acne management.
Collapse
Affiliation(s)
- Yang Bo
- Department of Dermatology, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, China
- Department of Dermatology, Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Yiming Li
- Department of Dermatology, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, China
- Department of Dermatology, Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Luo J, Luo J, Sheng Z, Fang Z, Fu Y, Wang N, Yang B, Xu B. Latest research progress on anti-microbial effects, mechanisms of action, and product developments of dietary flavonoids: A systematic literature review. Trends Food Sci Technol 2025; 156:104839. [DOI: 10.1016/j.tifs.2024.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Suparno S, Prasetyowati R, Aziz KN, Rahma A, Lestari ESA, Nabiilah SC, Grace D. Antibacterial Efficacy Comparison of Electrolytic and Reductive Silver Nanoparticles Against Propionibacterium acnes. Antibiotics (Basel) 2025; 14:86. [PMID: 39858370 PMCID: PMC11759858 DOI: 10.3390/antibiotics14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The aim of this study was to develop an electrolysis system to produce silver nanoparticles free from toxic gases, as the most common reduction and electrolysis techniques produce nitrogen dioxide (NO2) as a byproduct, which is harmful to human health. The new electrolysis system used two identical silver plate electrodes, replacing silver and carbon rods, and used water as the electrolyte instead of silver nitrate (AgNO3) solution since AgNO3 is the source of NO2. Methods: The electrolytic silver nanoparticles (ESNs) produced by the new system were characterized and compared with reductive silver nanoparticles (RSNs). Using UV-Visible spectrophotometry, absorption peaks were found at 425 nm (ESN) and 437 nm (RSN). Using dynamic light scattering, the particle diameters were measured at 40.3 nm and 39.9 nm for ESNs at concentrations of 10 ppm and 30 ppm, respectively, and 74.0 nm and 74.6 nm for RSNs at concentrations of 10 ppm and 30 ppm, respectively. Antibacterial activity against Propionibacterium acnes (P. acnes) was assessed using the Kirby-Bauer method. Results: It was found that the efficacy of ESNs and RSNs was relatively lower than that of 5% chloramphenicol because it was measured in different concentration units (ESNs and RSNs in ppm and chloramphenicol in %). Using the calibration curve, the efficacy of 5% chloramphenicol was comparable to that of 0.005% ESN. It was also found that P. acnes developed a strong resistance to chloramphenicol and showed no resistance to ESNs. Conclusions: This finding underlines the tremendous potential of ESNs as a future antibiotic raw material.
Collapse
Affiliation(s)
- Suparno Suparno
- Department of Physics Education, Faculty of Mathematics and Science, Universitas Negeri Yogyakarta, 1st Colombo St., Karangmalang, Sleman, Yogyakarta 55281, Indonesia; (R.P.); (K.N.A.); (A.R.); (E.S.A.L.); (S.C.N.); (D.G.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Huang K, Si Y, Guo C, Hu J. Recent advances of electrospun strategies in topical products encompassing skincare and dermatological treatments. Adv Colloid Interface Sci 2024; 331:103236. [PMID: 38917594 DOI: 10.1016/j.cis.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
As the potential applications of electrospinning in healthcare continue to be explored, along with advancements in industrial-scale solutions and the emergence of portable electrospinning devices, some researchers have explored electrospinning technology in topical products, including its application in skincare, such as facial masks, beauty patches, sunscreen, and dermatological treatments for conditions like atopic dermatitis, psoriasis, acne, skin cancer, etc. In this review, we first outline the fundamental principles of electrospinning and provide an overview of existing solutions for large-scale production and the components and functionalities of portable spinning devices. Based on the essential functionalities required for skincare products and the mechanisms and treatment methods for the aforementioned dermatological diseases, we summarize the potential advantages of electrospinning technology in these areas, including encapsulation, sustained release, large surface area, and biocompatibility, among others. Furthermore, considering the further commercialization and clinical development of electrospinning technology, we offer our insights on current challenges and future perspectives in these areas, including issues such as ingredients, functionality, residue concerns, environmental impact, and efficiency issues.
Collapse
Affiliation(s)
- Kaisong Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Chunxia Guo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, S.A.R 999077, China.
| |
Collapse
|
6
|
Paolella G, Montefusco A, Caputo I, Gorrasi G, Viscusi G. Quercetin encapsulated polycaprolactone-polyvinylpyrrolidone electrospun membranes as a delivery system for wound healing applications. Eur J Pharm Biopharm 2024; 200:114314. [PMID: 38740224 DOI: 10.1016/j.ejpb.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The present work focuses on the production of electrospun membranes based on Poly(ε-caprolactone) (PCL) and Polyvinylpyrrolidone (PVP) for the topical release of Quercetin (Q). Membranes were prepared at 0.5, 1.0, 3.0, 7.0 and 15 % wt of Quercetin and studied from a morphological, physical, and biological point of view. The scanning electron microscopy (SEM) evidences micrometric dimensions of the fibres with a good dispersion of the functional molecule. The retention degree of liquids was evaluated by testing four different liquid media while the radical scavenging activity of Quercetin-loaded membranes was evaluated through DPPH analysis. The release kinetics of Quercetin highlights the presence of an initial burst followed by slower release up to attaining an equilibrium state, after roughly 50 h, showing the possibility of a fine-tuning of drug release. Diffusion coefficients were then evaluated by using Fick's law. Finally, to verify the actual biocompatibility of the systems produced and the possible application in the repair of tissue injury, the biological activity of Quercetin released from drug-loaded membranes was analysed in an immortalized human keratinocyte cell line HaCaT by a wound healing assay. So, the reported preliminary data confirm the possibility of applying the electrospun Quercetin-loaded PCL-PVP membranes for wound healing applications.
Collapse
Affiliation(s)
- Gaetana Paolella
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| | - Antonio Montefusco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
7
|
Alabrahim OAA, Azzazy HMES. Synergistic anticancer effect of Pistacia lentiscus essential oils and 5-Fluorouracil co-loaded onto biodegradable nanofibers against melanoma and breast cancer. DISCOVER NANO 2024; 19:27. [PMID: 38353827 PMCID: PMC10866856 DOI: 10.1186/s11671-024-03962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Chemoresistance and severe toxicities represent major drawbacks of chemotherapy. Natural extracts, including the essential oils of Pistacia lentiscus (PLEO), exhibit substantial anticancer and anti-inflammatory activities where different cancers are reported to dramatically recess following targeting with PLEO. PLEO has promising antimicrobial, anticancer, and anti-inflammatory properties. However, the therapeutic properties of PLEO are restricted by limited stability, bioavailability, and targeting ability. PLEO nanoformulation can maximize their physicochemical and therapeutic properties, overcoming their shortcomings. Hence, PLEO was extracted and its chemical composition was determined by GC-MS. PLEO and 5-Fluorouracil (5FU) were electrospun into poly-ε-caprolactone nanofibers (PCL-NFs), of 290.71 nm to 680.95 nm diameter, to investigate their anticancer and potential synergistic activities against triple-negative breast cancer cells (MDA-MB-231), human adenocarcinoma breast cancer cells (MCF-7), and human skin melanoma cell line (A375). The prepared nanofibers (NFs) showed enhanced thermal stability and remarkable physical integrity and tensile strength. Biodegradability studies showed prolonged stability over 42 days, supporting the NFs use as a localized therapy of breast tissues (postmastectomy) or melanoma. Release studies revealed sustainable release behaviors over 168 h, with higher released amounts of 5FU and PLEO at pH 5.4, indicating higher targeting abilities towards cancer tissues. NFs loaded with PLEO showed strong antioxidant properties. Finally, NFs loaded with either PLEO or 5FU depicted greater anticancer activities compared to free compounds. The highest anticancer activities were observed with NFs co-loaded with PLEO and 5FU. The developed 5FU-PLEO-PCL-NFs hold potential as a local treatment of breast cancer tissues (post-mastectomy) and melanoma to minimize their possible recurrence.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt.
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, Germany.
| |
Collapse
|
8
|
Gürtler AL, Rades T, Heinz A. Electrospun fibers for the treatment of skin diseases. J Control Release 2023; 363:621-640. [PMID: 37820983 DOI: 10.1016/j.jconrel.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Skin diseases are among the most common diseases in the global population and with the growth of the aging population, they represent an increasing burden to healthcare systems worldwide. Even though they are rarely life-threatening, the suffering for those affected is high due to the visibility and physical discomfort related to these diseases. Typical symptoms of skin diseases include an inflamed, swollen or itchy skin, and therefore, there is a high demand for effective therapy options. In recent years, electrospinning has attracted considerable interest in the field of drug delivery. The technique allows producing multifunctional drug-loaded fibrous patches from various natural and synthetic polymers with fiber diameters in the nano- and micrometer range, suitable for the treatment of a wide variety of skin diseases. The great potential of electrospun fiber patches not only lies in their tunable drug release properties and the possibility to entrap a variety of therapeutic compounds, but they also provide physical and mechanical protection to the impaired skin area, exhibit a high surface area, allow gas exchange, absorb exudate due to their porous structure and are cytocompatible and biodegradable. In the case of wound healing, cell adhesion is promoted due to the resemblance of the electrospun fibers to the structure of the native extracellular matrix. This review gives an overview of the potential applications of electrospun fibers in skin therapy. In addition to the treatment of bacterial, diabetic and burn wounds, focus is placed on inflammatory diseases such as atopic dermatitis and psoriasis, and therapeutic options for the treatment of skin cancer, acne vulgaris and herpes labialis are discussed. While we aim to emphasize the great potential of electrospun fiber patches for the treatment of skin diseases with this review paper, we also highlight challenges and limitations of current research in the field.
Collapse
Affiliation(s)
- Anna-Lena Gürtler
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Olchowik-Grabarek E, Czerkas K, Matchanov AD, Esanov RS, Matchanov UD, Zamaraeva M, Sekowski S. Antibacterial and Antihemolytic Activity of New Biomaterial Based on Glycyrrhizic Acid and Quercetin (GAQ) against Staphylococcus aureus. J Funct Biomater 2023; 14:368. [PMID: 37504863 PMCID: PMC10381813 DOI: 10.3390/jfb14070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The goal of this study is to obtain and characterize the complex of quercetin with glycyrrhizic acid, which is known to serve as a drug delivery system. Quercetin is a flavonoid with a wide range of biological activities, including an antimicrobial effect. However, quercetin instability and low bioavailability that limits its use in medical practice makes it necessary to look for new nanoformulations of it. The formation of the GAQ complex (2:1) was confirmed by using UV and FT-IR spectroscopies. It was found that the GAQ exhibited antimicrobial and antihemolytical activities against S. aureus bacteria and its main virulent factor-α-hemolysin. The IC50 value for the antihemolytical effect of GAQ was 1.923 ± 0.255 µg/mL. Using a fluorescence method, we also showed that the GAQ bound tightly to the toxin that appears to underlie its antihemolytic activity. In addition, another mechanism of the antihemolytic activity of the GAQ against α-hemolysin was shown, namely, its ability to increase the rigidity of the outer layer of the erythrocyte membrane and thus inhibit the incorporation of α-hemolysin into the target cells, increasing their resistance to the toxin. Both of these effects of GAQ were observed at concentrations below the MIC value for S. aureus growth, indicating the potential of the complex as an antivirulence agent.
Collapse
Affiliation(s)
- Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Krzysztof Czerkas
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | | | - Rahmat Sulton Esanov
- Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100143, Uzbekistan
- National University of Uzbekistan, Tashkent 700174, Uzbekistan
| | | | - Maria Zamaraeva
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 15-254 Bialystok, Poland
| |
Collapse
|
10
|
Kim JE, Han H, Xu Y, Lee MH, Lee HJ. Efficacy of FRO on Acne Vulgaris Pathogenesis. Pharmaceutics 2023; 15:1885. [PMID: 37514071 PMCID: PMC10384752 DOI: 10.3390/pharmaceutics15071885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Acne vulgaris is a common skin disease characterized by increased sebum production, inflammation, and Cutibacterium acnes (CA: formerly Propionibacterium acnes) hyperproliferation in pilosebaceous follicles. This study evaluated the efficacy of FRO, a formula composed of fermented Rhus verniciflua Stokes and Orostachys japonicus, against acne pathogenesis via antimicrobial assessment and an in vitro analysis. Stimulated model cells treated with hormones, CA, or lipopolysaccharide (LPS) were designed based on the characteristics of acne pathogenesis, including inflammation and sebum hypersecretion. High-performance liquid chromatography, disc diffusion, MTS, and western blotting assays were used to examine potential anti-acne effects. FRO was determined to contain phenolics such as gallic acid, fisetin, quercetin, and kaempferol. FRO exerted antimicrobial activity against CA and inhibited reactive oxygen species production that was otherwise increased by LPS or CA in HaCaT cells. Additionally, FRO exerted anti-inflammatory effects by inhibiting iNOS, TNF-α, IL-6, p-STAT-3, and p-NF-κB, which were previously upregulated by LPS or CA in THP-1 and HaCaT cells. FRO inhibited lipogenesis induced by steroid hormones and CA by decreasing FAS and SREBP-1 levels in sebocytes. Additionally, FRO down-regulated the androgen receptor, 5α-reductase, SREBP-1, and FAS levels, which were upregulated by steroid hormone in LNCaP cells. Taken together, our findings suggest that FRO alleviates acne by inhibiting the growth of CA, inflammation, and excess sebum and could be used for functional cosmetics or acne treatments.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hengmin Han
- Department of Cancer Preventive Material Development, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdamun-gu, Seoul 02447, Republic of Korea
| | - Yinzhu Xu
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Ho Lee
- Department of Food Science & Services, Eulji University, Seongnam 13135, Republic of Korea
| | - Hyo-Jeong Lee
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Cancer Preventive Material Development, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdamun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Raina N, Rani R, Thakur VK, Gupta M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS OMEGA 2023; 8:19145-19167. [PMID: 37305231 PMCID: PMC10249123 DOI: 10.1021/acsomega.2c08016] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 06/13/2023]
Abstract
Skin, the largest organ in humans, is an efficient route for the delivery of drugs as it circumvents several disadvantages of the oral and parenteral routes. These advantages of skin have fascinated researchers in recent decades. Drug delivery via a topical route includes moving the drug from a topical product to a locally targeted region with dermal circulation throughout the body and deeper tissues. Still, due to the skin's barrier function, delivery through the skin can be difficult. Drug delivery to the skin using conventional formulations with micronized active components, for instance, lotions, gels, ointments, and creams, results in poor penetration. The use of nanoparticulate carriers is one of the promising strategies, as it provides efficient delivery of drugs through the skin and overcomes the disadvantage of traditional formulations. Nanoformulations with smaller particle sizes contribute to improved permeability of therapeutic agents, targeting, stability, and retention, making nanoformulations ideal for drug delivery through a topical route. Achieving sustained release and preserving a localized effect utilizing nanocarriers can result in the effective treatment of numerous infections or skin disorders. This article aims to evaluate and discuss the most recent developments of nanocarriers as therapeutic agent vehicles for skin conditions with patent technology and a market overview that will give future directions for research. As topical drug delivery systems have shown great preclinical results for skin problems, for future research directions, we anticipate including in-depth studies of nanocarrier behavior in various customized treatments to take into account the phenotypic variability of the disease.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Radha Rani
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, SRUC (Scotland’s Rural College), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Madhu Gupta
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp
Vihar, New Delhi 110017, India
| |
Collapse
|
12
|
Tomar Y, Pandit N, Priya S, Singhvi G. Evolving Trends in Nanofibers for Topical Delivery of Therapeutics in Skin Disorders. ACS OMEGA 2023; 8:18340-18357. [PMID: 37273582 PMCID: PMC10233693 DOI: 10.1021/acsomega.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Nanotechnology has yielded nanostructure-based drug delivery approaches, among which nanofibers have been explored and researched for the potential topical delivery of therapeutics. Nanofibers are filaments or thread-like structures in the nanometer size range that are fabricated using various polymers, such as natural or synthetic polymers or their combination. The size or diameter of the nanofibers depends upon the polymers, the techniques of preparation, and the design specification. The four major processing techniques, phase separation, self-assembly, template synthesis, and electrospinning, are most commonly used for the fabrication of nanofibers. Nanofibers have a unique structure that needs a multimethod approach to study their morphology and characterization parameters. They are gaining attention as drug delivery carriers, and the substantially vast surface area of the skin makes it a potentially promising strategy for topical drug products for various skin disorders such as psoriasis, skin cancers, skin wounds, bacterial and fungal infections, etc. However, the large-scale production of nanofibers with desired properties remains challenging, as the widely used electrospinning processes have certain limitations, such as poor yield, use of high voltage, and difficulty in achieving in situ nanofiber deposition on various substrates. This review highlights the insights into fabrication strategies, applications, recent clinical trials, and patents of nanofibers for different skin disorders in detail. Additionally, it discusses case studies of its effective utilization in the treatment of various skin disorders for a better understanding for readers.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Pandit
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
13
|
Salim SA, Badawi NM, El-Moslamy SH, Kamoun EA, Daihom BA. Novel long-acting brimonidine tartrate loaded-PCL/PVP nanofibers for versatile biomedical applications: fabrication, characterization and antimicrobial evaluation. RSC Adv 2023; 13:14943-14957. [PMID: 37200698 PMCID: PMC10186146 DOI: 10.1039/d3ra02244g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The global state of antibiotic resistance highlights the necessity for new drugs that can treat a wide range of microbial infections. Drug repurposing has several advantages, including lower costs and improved safety compared to developing a new compound. The aim of the current study is to evaluate the repurposed antimicrobial activity of Brimonidine tartrate (BT), a well-known antiglaucoma drug, and to potentiate its antimicrobial effect by using electrospun nanofibrous scaffolds. BT-loaded nanofibers were fabricated in different drug concentrations (1.5, 3, 6, and 9%) via the electrospinning technique using two biopolymers (PCL and PVP). Then, the prepared nanofibers were characterized by SEM, XRD, FTIR, swelling ratio, and in vitro drug release. Afterward, the antimicrobial activities of the prepared nanofibers were investigated in vitro using different methods against several human pathogens and compared to the free BT. The results showed that all nanofibers were prepared successfully with a smooth surface. The diameters of nanofibers were reduced after loading of BT compared to the unloaded ones. In addition, scaffolds showed controlled-drug release profiles that were maintained for more than 7 days. The in vitro antimicrobial assessments revealed good activities for all scaffolds against most of the investigated human pathogens, particularly the one prepared with 9% BT which showed superiority in the antimicrobial effect over other scaffolds. To conclude, our findings proved the capability of nanofibers in loading BT and improving its repurposed antimicrobial efficacy. Therefore, it could be a promising carrier for BT to be used in combating numerous human pathogens.
Collapse
Affiliation(s)
- Samar A Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Shahira H El-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg El-Arab City Alexandria 21934 Egypt
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) Alexandria 21934 Egypt
- Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Baher A Daihom
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University Cairo Egypt
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin 78712 USA
| |
Collapse
|
14
|
Seo G, Kim K. Exploring the mechanism of action of Hedyotis diffusa Willd on acne using network analysis. Medicine (Baltimore) 2023; 102:e33323. [PMID: 36961163 PMCID: PMC10037416 DOI: 10.1097/md.0000000000033323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023] Open
Abstract
In this study, we used a network pharmacological method to explore the active ingredients of Hedyotis diffusa Willd (HDW) in the treatment of acne and elucidated the physiological mechanisms in the human body in which they are involved. We identified the active compounds of HDW that are expected to act effectively in the human body using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform and extracted potential interacting proteins for each active compound using the Swiss Target Prediction platform. Next, we analyzed the potential mechanisms of action of the protein targets shared by HDW and each standard drug on acne and assessed the possibility of spontaneous occurrence of the binding between proteins and active compounds through the molecular docking process. Seven active compounds were selected according to the oral bioavailability and drug-likeness criteria of the Traditional Chinese Medicine Systems Pharmacology database and analysis platform. Subsequently, 300 protein targets were collected from the Swiss Target Prediction. Using the Search Tool for the Retrieval of Interacting Genes/Proteins database, a protein-protein interaction network was constructed by analyzing the relationship between HDW, acne, and each standard drug. By analyzing the gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway, the "positive regulation of lipid metabolic process" was found to be the most involved pathway shared by HDW, acne, and isotretinoin. An analysis of the protein targets shared by the antibiotic agents with HDW and acne found that "cholesterol storage" in tetracycline, "icosacoid transport" in azithromycin, "steroid hydroxylase activity" in erythromycin, "positive regulation of leukocyte tethering or rolling" in clindamycin, "response to UV-A" in minocycline, "steroid 11-beta-monooxygenase activity" in doxycycline, and "neutrophil-mediated immunity" in trimethoprim were the most involved. Virtual molecular docking analysis showed that all proteins spontaneously bound to their corresponding active compounds. Our analysis suggests that HDW can, directly and indirectly, suppress sebum secretion and exert antiinflammatory effects on acne. Further, HDW may regulate free radicals and suppress apoptosis. Therefore, HDW can be used as an alternative or supplement to standard drugs for acne treatment in patients who cannot use standard treatments due to side effects.
Collapse
Affiliation(s)
- Gwangyeel Seo
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, Graduate School of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otolaryngology and Dermatology of Korean Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
15
|
Elhesaisy NA, Swidan SA, Tawfiq RA, El-Nabarawi MA, Teaima MH. Fabrication and characterization of anti-rosacea 3D nanofibrous customized sheet masks as a novel scaffold for repurposed use of spironolactone with pre-clinical studies. Int J Pharm 2023; 636:122816. [PMID: 36907278 DOI: 10.1016/j.ijpharm.2023.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023]
Abstract
The repurposed oral use of spironolactone (SP) as an anti-rosacea drug faces many challenges that hinder its efficacy and compliance. In this study, a topically applied nanofibers (NFs) scaffold was evaluated as a promising nanocarrier that enhances SP activity and avoids the friction routine that exaggerates rosacea patients' inflamed, sensitive skin. SP-loaded poly-vinylpyrrolidone (40% PVP) nanofibers (SP-PVP NFs) were electrospun. Scanning electron microscopy showed that SP-PVP NFs have a smooth homogenous surface with a diameter of about 426.60 nm. Wettability, solid state, and mechanical properties of NFs were evaluated. Encapsulation efficiency and drug loading were 96.34% ± 1.20 and 11.89% ± 0.15, respectively. The in vitro release study showed a higher amount of SP released over pure SP with a controlled release pattern. Ex vivo results showed that the permeated amount of SP from SP-PVP NFs sheets was 4.1 times greater than that of pure SP gel. A higher percentage of SP was retained in different skin layers. Moreover, the in vivo anti-rosacea efficacy of SP-PVP NFs using croton oil challenge showed a significant reduction in erythema score compared to the pure SP. The stability and safety of NFs mats were proved, indicating that SP-PVP NFs are promising carriers of SP.
Collapse
Affiliation(s)
- Nahla A Elhesaisy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt; Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, Cairo, Egypt
| | - Shady A Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt; The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt.
| | - Rasha A Tawfiq
- The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
16
|
Exploring the Synergistic Effect of Bergamot Essential Oil with Spironolactone Loaded Nano-Phytosomes for Treatment of Acne Vulgaris: In Vitro Optimization, In Silico Studies, and Clinical Evaluation. Pharmaceuticals (Basel) 2023; 16:ph16010128. [PMID: 36678625 PMCID: PMC9862695 DOI: 10.3390/ph16010128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The foremost target of the current work was to formulate and optimize a novel bergamot essential oil (BEO) loaded nano-phytosomes (NPs) and then combine it with spironolactone (SP) in order to clinically compare the efficiency of both formulations against acne vulgaris. The BEO-loaded NPs formulations were fabricated by the thin-film hydration and optimized by 32 factorial design. NPs' assessments were conducted by measuring entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). In addition, the selected BEO-NPs formulation was further combined with SP and then examined for morphology employing transmission electron microscopy and three months storage stability. Both BEO-loaded NPs selected formula and its combination with SP (BEO-NPs-SP) were investigated clinically for their effect against acne vulgaris after an appropriate in silico study. The optimum BEO-NPs-SP showed PS of 300.40 ± 22.56 nm, PDI of 0.571 ± 0.16, EE% of 87.89 ± 4.14%, and an acceptable ZP value of -29.7 ± 1.54 mV. Molecular modeling simulations showed the beneficial role of BEO constituents as supportive/connecting platforms for favored anchoring of SP on the Phosphatidylcholine (PC) interface. Clinical studies revealed significant improvement in the therapeutic response of BEO-loaded NPs that were combined with SP over BEO-NPs alone. In conclusion, the results proved the ability to utilize NPs as a successful nanovesicle for topical BEO delivery as well as the superior synergistic effect when combined with SP in combating acne vulgaris.
Collapse
|
17
|
Aleemardani M, Solouk A, Akbari S, Moeini M. A hydrogel-fiber-hydrogel composite scaffold based on silk fibroin with the dual-delivery of oxygen and quercetin. Biotechnol Bioeng 2023; 120:297-311. [PMID: 36224726 DOI: 10.1002/bit.28259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/04/2022] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
Supplying sufficient oxygen within the scaffolds is one of the essential hindrances in tissue engineering that can be resolved by oxygen-generating biomaterials (OGBs). Two main issues related to OGBs are controlling oxygenation and reactive oxygen species (ROS). To address these concerns, we developed a composite scaffold entailing three layers (hydrogel-electrospun fibers-hydrogel) with antioxidant and antibacterial properties. The fibers, the middle layer, reinforced the composite structure, enhancing the mechanical strength from 4.27 ± 0.15 to 8.27 ± 0.25 kPa; also, this layer is made of calcium peroxide and silk fibroin (SF) through electrospinning, which enables oxygen delivery. The first and third layers are physical SF hydrogels to control oxygen release, containing quercetin (Q), a nonenzymatic antioxidant. This composite scaffold resulted in almost more than 40 mmHg of oxygen release for at least 13 days, and compared with similar studies is in a high range. Here, Q was used for the first time for an OGB to scavenge the possible ROS. Q delivery not only led to antioxidant activity but also stabilized oxygen release and enhanced cell viability. Based on the given results, this composite scaffold can be introduced as a safe and controllable oxygen supplier, which is promising for tissue engineering applications, particularly for bone.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, UK
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Moeini
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
18
|
Tsioptsias C, Tsivintzelis I. On the Thermodynamic Thermal Properties of Quercetin and Similar Pharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196630. [PMID: 36235166 PMCID: PMC9571029 DOI: 10.3390/molecules27196630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Abstract
The thermodynamic properties of pharmaceuticals are of major importance since they are involved in drug design, processing, optimization and modelling. In this study, a long-standing confusion regarding the thermodynamic properties of flavonoids and similar pharmaceuticals is recognized and clarified. As a case study, the thermal behavior of quercetin is examined with various techniques. It is shown that quercetin does not exhibit glass transition nor a melting point, but on the contrary, it does exhibit various thermochemical transitions (structural relaxation occurring simultaneously with decomposition). Inevitably, the physical meaning of the reported experimental values of the thermodynamic properties, such as the heat of fusion and heat capacity, are questioned. The discussion for this behavior is focused on the weakening of the chemical bonds. The interpretations along with the literature data suggest that the thermochemical transition might be exhibited by various flavonoids and other similar pharmaceuticals, and is related to the difficulty in the prediction/modelling of their melting point.
Collapse
|
19
|
Zhang M, Chen X, Zhang Y, Zhao X, Zhao J, Wang X. The potential of functionalized dressing releasing flavonoids facilitates scar-free healing. Front Med (Lausanne) 2022; 9:978120. [PMID: 36262272 PMCID: PMC9573991 DOI: 10.3389/fmed.2022.978120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Scars are pathological marks left after an injury heals that inflict physical and psychological harm, especially the great threat to development and aesthetics posed by oral and maxillofacial scars. The differential expression of genes such as transforming growth factor-β, local adherent plaque kinase, and yes-related transcriptional regulators at infancy or the oral mucosa is thought to be the reason of scarless regenerative capacity after tissue defects. Currently, tissue engineering products for defect repair frequently overlook the management of postoperative scars, and inhibitors of important genes alone have negative consequences for the organism. Natural flavonoids have hemostatic, anti-inflammatory, antioxidant, and antibacterial properties, which promote wound healing and have anti-scar properties by interfering with the transmission of key signaling pathways involved in scar formation. The combination of flavonoid-rich drug dressings provides a platform for clinical translation of compounds that aid in drug disintegration, prolonged release, and targeted delivery. Therefore, we present a review of the mechanisms and effects of flavonoids in promoting scar-free regeneration and the application of flavonoid-laden dressings.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiaohang Chen
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Yuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Xiangyu Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China
| | - Jing Zhao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,Jing Zhao,
| | - Xing Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, China,*Correspondence: Xing Wang,
| |
Collapse
|
20
|
Partheniadis I, Stathakis G, Tsalavouti D, Heinämäki J, Nikolakakis I. Essential Oil—Loaded Nanofibers for Pharmaceutical and Biomedical Applications: A Systematic Mini-Review. Pharmaceutics 2022; 14:pharmaceutics14091799. [PMID: 36145548 PMCID: PMC9504405 DOI: 10.3390/pharmaceutics14091799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Essential oils (EOs) have been widely exploited for their biological properties (mainly as antimicrobials) in the food industry. Encapsulation of EOs has opened the way to the utilization of EOs in the pharmaceutical and biomedical fields. Electrospinning (ES) has proved a convenient and versatile method for the encapsulation of EOs into multifunctional nanofibers. Within the last five years (2017–2022), many research articles have been published reporting the use of ES for the fabrication of essential oil—loaded nanofibers (EONFs). The objective of the present mini-review article is to elucidate the potential of EONFs in the pharmaceutical and biomedical fields and to highlight their advantages over traditional polymeric films. An overview of the conventional ES and coaxial ES technologies for the preparation of EONFs is also included. Even though EONFs are promising systems for the delivery of EOs, gaps in the literature can be recognized (e.g., stability studies) emphasizing that more research work is needed in this field to fully unravel the potential of EONFs.
Collapse
Affiliation(s)
- Ioannis Partheniadis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310-997649
| | - Georgios Stathakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Tsalavouti
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Tsioptsias C, Foukas GRP, Papaioannou SM, Tzimpilis E, Tsivintzelis I. On the Thermochemical Transition Depression of Cellulose Acetate Composite Membranes. Polymers (Basel) 2022; 14:polym14163434. [PMID: 36015691 PMCID: PMC9416459 DOI: 10.3390/polym14163434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gallic acid (GA) and quercetin (QU) are two important bioactive molecules with increased biomedical interest. Cellulose acetate (CA) is a polymer derived from cellulose and is used in various applications. In this work, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) were used to study the thermal behavior of electrospun CA membranes loaded with quercetin or gallic acid. It was found that gallic acid and quercetin depress the thermochemical transition (simultaneous softening and decomposition) of CA, in a mechanism similar to that of the glass transition depression of amorphous polymers by plasticizers. The extensive hydrogen bonding, besides the well-known effect of constraining polymer's softening by keeping macromolecules close to each other, has a secondary effect on the thermochemical transition, i.e., it weakens chemical bonds and, inevitably, facilitates decomposition. This second effect of hydrogen bonding can provide an explanation for an unexpected observation of this study: CA membranes loaded with quercetin or gallic acid soften at lower temperatures; however, at the same time, they decompose to a higher extent than pure CA. Besides optimization of CA processing, the fundamental understanding of the thermochemical transition depression could lead to the design of more sustainable processes for biomass recycling and conversion.
Collapse
|
22
|
Novel topical drug delivery systems in acne management: Molecular mechanisms and role of targeted delivery systems for better therapeutic outcomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022; 27:molecules27144491. [PMID: 35889363 PMCID: PMC9323352 DOI: 10.3390/molecules27144491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.
Collapse
|