1
|
Fengxia W, Chengying S, Fangwen C, Jinyun C, Pengfei Y, Baode S. Quercetin nanocrystals stabilized by glycyrrhizic acid for liver targeted drug delivery:Impact of glycyrrhizic acid concentrations. Pharm Dev Technol 2025:1-12. [PMID: 40279160 DOI: 10.1080/10837450.2025.2498370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 04/26/2025]
Abstract
The purpose of this study was to investigate the impact of glycyrrhizic acid (GL) concentrations on in vitro and in vivo behavior of quercetin (QT) nanocrystals stabilized by GL (QT-NCs/GL), with a particular focus on its influence on liver targeted drug delivery. QT-NCs/GL with similar particle size around 200 nm were successfully prepared by media milling technique using different concentrations of GL, which were 10%, 20% and 40% (w/w) of the QT. The impact of GL concentrations on morphology, crystalline state, solubility, drug release, as well as pharmacokinetic behavior and liver distribution of QT-NCs/GL following intravenous administration were investigated. An oval and short rod nanoparticles were observed for all QT-NCs/GL by scanning electron microscope. X-ray powder diffraction results showed all QT-NCs/GL remained in crystalline state, but a reduced crystallinity was found with increase of GL concentrations. All QT-NCs/GL exhibited significant solubility increase and drug release improvement of QT as compared to raw QT. There was no significant difference in the plasma concentration-time curve and pharmacokinetic parameters of QT after intravenous of all QT-NCs/GL, except that the AUC0∼t of QT-NCs/GL-10% was significantly higher than that of QT-NCs/GL-20%. All QT-NCs/GL exhibited rapidly distribution of QT to liver with the maximum QT concentration more than 750 μg/g at 5 min after intravenous administration, and the AUC0∼t of QT for three formulations in liver were significant difference with the following order: QT-NCs/GL-40% > QT-NCs/GL-20% > QT-NCs/GL-10%. It could be concluded that different GL concentrations exhibited significant influence on liver targeted delivery of QT-NCs/GL, and more GL used in QT-NCs/GL may contribute more liver distribution of QT.
Collapse
Affiliation(s)
- Wang Fengxia
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330004, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China
| | - Shen Chengying
- Department of Pharmacy, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Chen Fangwen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330004, China
| | - Cao Jinyun
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yue Pengfei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330004, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China
| | - Shen Baode
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330004, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China
| |
Collapse
|
2
|
Rathod AG, Tiwari P, Shaily J, Tiwari S. Stabilizing effect of quercetin upon bovine serum albumin as a model protein. Colloids Surf B Biointerfaces 2025; 252:114663. [PMID: 40184722 DOI: 10.1016/j.colsurfb.2025.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Quercetin (QCT), an emerging class of flavonoid known for antioxidant and anti-inflammatory activities, has been studied for its protein stabilizing effect. After demonstrating ethanol (EtOH) - induced structural changes in bovine serum albumin (BSA), the stabilizing effect of QCT was studied using fluorescence, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic techniques. Morphological changes were examined using atomic force microscopy (AFM). EtOH triggered blue shift in fluorescence spectra of BSA and its intensity increased at higher percentage of alcohol. A reversal in this trend was recorded in the presence of QCT. This was interpreted as anti-amyloidogenic effect emanating from the binding of QCT to hydrophobic pockets of BSA. The value of binding constant (1.25 x 106 M-1; 298 K) is suggestive of strong binding affinity of QCT for BSA. The mode of QCT-induced fluorescence quenching was found to be mixed in nature. CD spectra showed that the protein conformation was altered and traces of alpha helix disappeared in the presence of EtOH. Contrarily, disruptive effect of EtOH was not visible upon incorporating QCT. This was further verifiable form the thermal CD data, which showed an upshift in the denaturation temperature of BSA. The data of thioflavin T assay and AFM further substantiated the protective effect of QCT.
Collapse
Affiliation(s)
- Amit G Rathod
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Priyanka Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Jatin Shaily
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh 226002, India.
| |
Collapse
|
3
|
Samantaray A, Pradhan D, Nayak NR, Chawla S, Behera B, Mohanty L, Bisoyi SK, Gandhi S. Nanoquercetin based nanoformulations for triple negative breast cancer therapy and its role in overcoming drug resistance. Discov Oncol 2024; 15:452. [PMID: 39287822 PMCID: PMC11408462 DOI: 10.1007/s12672-024-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a highly aggressive and treatment-resistant subtype of breast cancer, lacking the expression of estrogen, progesterone, and HER2 receptors. Conventional chemotherapy remains the primary treatment option, but its efficacy is often compromised by the development of drug resistance. Nanoquercetin has garnered the attention of researchers due to its potential in combating cancer. This antioxidant exhibits significant efficacy against various types of cancer, including blood, breast, pancreatic, prostate, colon, and oral cancers. Functioning as a potential anti-cancer agent, nanoquercetin impedes the development and proliferation of cancer cells, induces apoptosis and autophagy, and prevents cancer cell invasion and metastasis. Numerous processes, such as the inhibition of pathways linked to angiogenesis, inflammation, and cell survival, are responsible for these anticancer actions. Moreover, it shields DNA from degradation caused by radiation and other carcinogens. The cost-effectiveness of current cancer treatments remains a significant challenge in healthcare, imposing a substantial economic burden on societies worldwide. Preclinical studies and early-phase clinical trials indicate that nanoquercetin-based therapies could offer a significant advancement in the management of TNBC, providing a foundation for future research and clinical application in overcoming drug resistance and improving patient outcomes. This article examines the latest data on nanoquercetin's potent anti-cancer properties and interprets the accumulated research findings within the framework of preventive, predictive, and personalized (3P) medicine.
Collapse
Affiliation(s)
- Adyasa Samantaray
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Debasish Pradhan
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India.
| | - Nalini Ranjan Nayak
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Khurda, Odisha, India
| | - Bandana Behera
- Faculty of Pharmacy, C.V.Raman Global University, Bhubaneswar, India
| | - Lalatendu Mohanty
- Department of Pharmaceutical Sciences, HNB Garhwal University, Uttarakhand, India
| | - Saroj Kanta Bisoyi
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Sabnam Gandhi
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Toor J, Agrawal S, Birajdar MR, Tiwari P, Tiwari S. A nonionic microemulsion co-loaded with atorvastatin and quercetin: Simultaneous spectroscopic analysis and payload release kinetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124237. [PMID: 38579427 DOI: 10.1016/j.saa.2024.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
In this study, we have co-loadedatorvastatin (ATR) and quercetin (QCT) in a nonionic microemulsion. After developing a derivative ratio spectrophotometric technique for simultaneous analysis of ATR and QCT, pseudoternary phase diagram was constructed utilizing1:4 d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and ethanol as surfactant and cosurfactant, respectively. Oleic acid was used as oil phase. Structural characterization of the formulation was carried out along a water dilution line created in monophasic region. Characterizations at these dilution points were performed using dynamic light scattering and polarized light microscopy. The average hydrodynamic size of the optimized formulation was found to be 18.9 nm and it did not change upon loading of ATR and QCT. In vitro release was assessed for the formulations loaded with different ratios of ATR and QCT, and the data were fitted to different mathematical models. Interestingly, we noticed differences in release kinetics during changes in dose ratios, particularly for QCT. Higuchi kinetics, observed at equal dose, shifted to Korsmeyer-Peppas model at higher QCT-ATR ratio (2:1 and 4:1). This difference is attributable to the ability of QCT molecules of overwhelming the interface at higher concentrations. Altogether, our observations highlight that the ratio of payloads should be selected carefully in order to avoid unpredictable release patterns.
Collapse
Affiliation(s)
- Jastarn Toor
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Mayuri R Birajdar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Priyanka Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Chu HW, Chen WJ, Liu KH, Mao JY, Harroun SG, Unnikrishnan B, Lin HJ, Ma YH, Chang HT, Huang CC. Carbonization of quercetin into nanogels: a leap in anticoagulant development. J Mater Chem B 2024; 12:5391-5404. [PMID: 38716492 DOI: 10.1039/d4tb00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Quercetin, a flavonoid abundantly found in onions, fruits, and vegetables, is recognized for its pharmacological potential, especially for its anticoagulant properties that work by inhibiting thrombin and coagulation factor Xa. However, its clinical application is limited due to poor water solubility and bioavailability. To address these limitations, we engineered carbonized nanogels derived from quercetin (CNGsQur) using controlled pyrolysis and polymerization techniques. This led to substantial improvements in its anticoagulation efficacy, water solubility, and biocompatibility. We generated a range of CNGsQur by subjecting quercetin to varying pyrolytic temperatures and then assessed their anticoagulation capacities both in vitro and in vivo. Coagulation metrics, including thrombin clotting time (TCT), activated partial thromboplastin time (aPTT), and prothrombin time (PT), along with a rat tail bleeding assay, were utilized to gauge the efficacy. CNGsQur showed a pronounced extension of coagulation time compared to uncarbonized quercetin. Specifically, CNGsQur synthesized at 270 °C (CNGsQur270) exhibited the most significant enhancement in TCT, with a binding affinity to thrombin exceeding 400 times that of quercetin. Moreover, variants synthesized at 310 °C (CNGsQur310) and 290 °C (CNGsQur290) showed the most substantial delays in PT and aPTT, respectively. Our findings indicate that the degree of carbonization significantly influences the transformation of quercetin into various CNGsQur forms, each affecting distinct coagulation pathways. Additionally, both intravenous and oral administrations of CNGsQur were found to extend rat tail bleeding times by up to fivefold. Our studies also demonstrate that CNGsQur270 effectively delays and even prevents FeCl3-induced vascular occlusion in a dose-dependent manner in mice. Thus, controlled pyrolysis offers an innovative approach for generating quercetin-derived CNGs with enhanced anticoagulation properties and water solubility, revealing the potential for synthesizing self-functional carbonized nanomaterials from other flavonoids for diverse biomedical applications.
Collapse
Affiliation(s)
- Han-Wei Chu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wan-Jyun Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Ko-Hsin Liu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Scott G Harroun
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Dai Y, Guo Y, Tang W, Chen D, Xue L, Chen Y, Guo Y, Wei S, Wu M, Dai J, Wang S. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases. J Nanobiotechnology 2024; 22:252. [PMID: 38750509 PMCID: PMC11097501 DOI: 10.1186/s12951-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable healthcare burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nanomaterials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses the challenges and prospects for their applications.
Collapse
Affiliation(s)
- Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yifan Guo
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Mishra M, Agrawal S, Bahadur P, Tiwari S. Effect of stoichiometry upon the characteristics of quercetin-arginine cocrystals formulated through solution crystallization. Drug Dev Ind Pharm 2024; 50:163-172. [PMID: 38226968 DOI: 10.1080/03639045.2024.2306281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
OBJECTIVE The aim of this study is to demonstrate the effect of stoichiometry upon characteristics of quercetin-arginine (QCT-Arg) cocrystals. SIGNIFICANCE Quercetin (QCT) is a most abundant flavonoid in vegetables and fruits and has been widely used as an antioxidant. However, its oral bioavailability remains low due to poor aqueous solubility. We illustrate that QCT-Arg cocrystals formulated through an optimized stoichiometry can be a useful approach for its solubilization. METHOD Cocrystals were prepared using solvent evaporation method. Characterizations were performed through microscopic, spectroscopic, and thermal techniques. The stoichiometry was confirmed from the binary phase diagram which was prepared using thermograms derived from differential scanning calorimetric experiments. RESULT Cocrystal formation was accompanied by the conversion of isotropic phase into anisotropic one. Thread-like cocrystals were formed, regardless of QCT-Arg stoichiometry and solvent's polarity. Spectral analyses suggested that cocrystal structure was held together by hydrogen bonding between QCT and Arg. We ruled out the existence of eutectic mixture based on the observation of two eutectic points in the binary phase diagram. CONCLUSION Morphology of cocrystals remained unaffected by the solvent type, stoichiometry and the presence of surfactant. We noticed that the cocrystals could improve the aqueous solubility of QCT.
Collapse
Affiliation(s)
- Mahima Mishra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| | - Pratap Bahadur
- Chemistry Department, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Truzzi E, Bertelli D, Bilia AR, Vanti G, Maretti E, Leo E. Combination of Nanodelivery Systems and Constituents Derived from Novel Foods: A Comprehensive Review. Pharmaceutics 2023; 15:2614. [PMID: 38004592 PMCID: PMC10674267 DOI: 10.3390/pharmaceutics15112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Novel Food is a new category of food, regulated by the European Union Directive No. 2015/2283. This latter norm defines a food as "Novel" if it was not used "for human consumption to a significant degree within the Union before the date of entry into force of that regulation, namely 15 May 1997". Recently, Novel Foods have received increased interest from researchers worldwide. In this sense, the key areas of interest are the discovery of new benefits for human health and the exploitation of these novel sources of materials in new fields of application. An emerging area in the pharmaceutical and medicinal fields is nanotechnology, which deals with the development of new delivery systems at a nanometric scale. In this context, this review aims to summarize the recent advances on the design and characterization of nanodelivery systems based on materials belonging to the Novel Food list, as well as on nanoceutical products formulated for delivering compounds derived from Novel Foods. Additionally, the safety hazard of using nanoparticles in food products, i.e., food supplements, has been discussed in view of the current European regulation, which considers nanomaterials as Novel Foods.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Anna Rita Bilia
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Giulia Vanti
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; (A.R.B.); (G.V.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| | - Eliana Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
| |
Collapse
|
9
|
Shamim MA, Manna S, Dwivedi P, Swami MK, Sahoo S, Shukla R, Srivastav S, Thaper K, Saravanan A, Anil A, Varthya SB, Singh S, Shamim MA, Satapathy P, Chattu SK, Chattu VK, Padhi BK, Sah R. Minocycline in depression not responding to first-line therapy: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35937. [PMID: 37960804 PMCID: PMC10637431 DOI: 10.1097/md.0000000000035937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Major depressive disorder is often resistant to first-line treatment, with around 30% failing to respond to traditional therapy. Treatment-resistant depression results in prolonged hospitalization and healthcare costs. Anti-inflammatory drugs have shown promising results in depression not responding to initial therapy. Minocycline has anti-inflammatory properties and crosses the blood-brain barrier. It has demonstrated varied results in several randomized controlled trials (RCTs). METHODS We assessed the efficacy of minocycline compared to placebo in depression not responding to one first-line antidepressant via a systematic review and meta-analysis. We performed a comprehensive literature search across PubMed, Cochrane, and Scopus for RCTs. We visualized the results using forest plots and drapery plots. We assessed and explored heterogeneity using I2, prediction interval, and meta-regression. Then, we rated the certainty of the evidence. RESULTS Four RCTs revealed a non-significant difference in depression severity [-3.93; 95% CI: -16.14 to 8.28], rate of response [1.15; 0.33-4.01], and rate of remission [0.94; 0.44-2.01]. However, the reduction in depression severity is significant at a trend of P < .1. The high between-study heterogeneity (I2 = 78%) for depression severity could be answered by meta-regression (P = .02) for the duration of therapy. CONCLUSION There is no significant difference with minocycline compared to placebo for depression not responding to first-line antidepressant therapy. However, the treatment response varies with treatment duration and patients' neuroinflammatory state. Thus, larger and longer RCTs, especially in diverse disease subgroups, are needed for further insight. This is needed to allow greater precision medicine in depression and avoid elevated healthcare expenditure associated with hit-and-trial regimens. REGISTRATION CRD42023398476 (PROSPERO).
Collapse
Affiliation(s)
| | | | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
- Centre of Excellence for Tribal Health, All India Institute of Medical Sciences, Jodhpur, India
| | - Mukesh Kumar Swami
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur, India
| | - Swapnajeet Sahoo
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravindra Shukla
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, Jodhpur, India
| | - Shival Srivastav
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Kashish Thaper
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur, India
| | - Aswini Saravanan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhishek Anil
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Shoban Babu Varthya
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Surjit Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Muhammad Aasim Shamim
- Department of Hospital Administration, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prakisini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Soosanna Kumary Chattu
- Center for Evidence-Based Research, Global Health Research and Innovations Canada Inc. (GHRIC), Toronto, ON, Canada
| | - Vijay Kumar Chattu
- ReSTORE Lab, Department of Occupational Science & Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technological Sciences, Saveetha University, Chennai, India
- Department of Community Medicine, Faculty of Medicine, Datta Meghe Institute of Medical Sciences, Wardha, India
| | - Bijaya K. Padhi
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu, Nepal
- Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
10
|
Shah MZUH, Shrivastva VK, Mir MA, Sheikh WM, Ganie MA, Rather GA, Shafi M, Bashir SM, Ansari MA, Al-Jafary MA, Al-Qhtani MH, Homeida AM, Al-Suhaimi EA. Effect of quercetin on steroidogenesis and folliculogenesis in ovary of mice with experimentally-induced polycystic ovarian syndrome. Front Endocrinol (Lausanne) 2023; 14:1153289. [PMID: 37670876 PMCID: PMC10476101 DOI: 10.3389/fendo.2023.1153289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Polycystic Ovary syndrome (PCOS) affects the health of many women around theworld. Apart from fundamental metabolic problems connected to PCOS, focus of our study is on the role of quercetin on genes relevant to steroidogenesis and folliculogenesis. METHODS Eighteen mature parkes strain mice (4-5 weeks old) weighing18-21 g were randomly divided into three groups of six each as follows: Group I serves as the control and was given water and a regular chow diet ad lib for 66 days; group II was given oral gavage administration of letrozole (LETZ) (6 mg/kgbw) for 21 days to induce PCOS and was left untreated for 45 days; For three weeks, Group III received oral gavage dose of LETZ (6 mg/kg), after which it received Quercetin (QUER) (125 mg/kg bw orally daily) for 45 days. RESULTS In our study we observed that mice with PCOS had irregular estrous cycle with increased LH/FSH ratio, decreased estrogen level and decline in expression of Kitl, Bmp1, Cyp11a1, Cyp19a1, Ar, lhr, Fshr and Esr1 in ovary. Moreover, we observed increase in the expression of CYP17a1, as well as increase in cholesterol, triglycerides, testosterone, vascular endothelial growth factor VEGF and insulin levels. All these changes were reversed after the administration of quercetin in PCOS mice. DISCUSSION Quercetin treatment reversed the molecular, functional and morphological abnormalities brought on due to letrozole in pathological and physiological setting, particularly the issues of reproduction connected to PCOS. Quercetin doesn't act locally only but it acts systematically as it works on Pituitary (LH/FSH)- Ovary (gonad hormones) axis. the Side effects of Quercetin have to be targeted in future researches. Quercetin may act as a promising candidate for medical management of human PCOS.
Collapse
Affiliation(s)
- Mohd Zahoor Ul Haq Shah
- Laboratory of Endocrinology, Department of Bioscience Barkatullah University Bhopal, Madhya Pradesh, India
| | - Vinoy Kumar Shrivastva
- Laboratory of Endocrinology, Department of Bioscience Barkatullah University Bhopal, Madhya Pradesh, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Mohd Ashraf Ganie
- Department of Endocrinology and Metabolism, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Gulzar Ahmed Rather
- Department of Biomedical Engineering Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Majid Shafi
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Meneerah A. Al-Jafary
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad H. Al-Qhtani
- Department of Paediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdalelgadir Musa Homeida
- Department of Environmental Health Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ebtesam A. Al-Suhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Wanjala Wafula K, Kiambi Mworia J, Piero Ngugi M. Phytochemical Screening and In Vitro Evaluation of the Antioxidant Potential of Dichloromethane Extracts of Strychnos henningsii Gilg. and Ficus sycomorus L. ScientificWorldJournal 2023. [DOI: 10.1155/2023/8494176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Medicinal plants are a rich source of antioxidants such as flavonoids, phenols, tannins, and alkaloids among others and are currently used as alternative and complementary drugs in the management of stress-related disorders. Strychnos henningsii and Ficus sycomorus have been traditionally used by the people of Mbeere, Embu county, Kenya, as medicine for the treatment of various oxidative stress-related disorders such as diabetes and rheumatism; however, no empirical data are available to authenticate the said claim. The aim of this study was to evaluate preliminary phytochemical screening and in vitro antioxidant activity of dichloromethane (DCM) leaf extract of S. henningsii and stem bark extract of F. sycomorus using DPPH, hydrogen peroxide, and ferric reducing power assays; total flavonoids and phenolic compounds were also determined by colorimetric assay and Folin–Ciocalteu reaction, respectively. Phytochemical screening showed that both extracts possessed saponins, flavonoids, phenols, steroids, alkaloids, and cardiac glycosides; however, terpenoids were found to be absent in S. henningsii. The total phenolic and flavonoid content of the DCM stem bark extract of F. sycomorus was lower than that of the leaf extract of S. henningsii. These extracts significantly exhibited strong antioxidant activities at different concentrations tested. The IC50 values of S. henningsii and F. sycomorus were 0.325 mg/ml and 0.330 mg/ml for hydrogen peroxide and 0.068 mg/ml and 0.062 mg/ml for DPPH, respectively. Both DCM leaf and stem bark extracts of S. henningsii and F. sycomorus were found to have strong ferric reducing power. Therefore, both extracts showed significant nonenzyme-based antioxidant activities. The two plants possess phytochemicals that have significant antioxidant properties.
Collapse
|
12
|
Paciello F, Ripoli C, Fetoni AR, Grassi C. Redox Imbalance as a Common Pathogenic Factor Linking Hearing Loss and Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12020332. [PMID: 36829891 PMCID: PMC9952092 DOI: 10.3390/antiox12020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Experimental and clinical data suggest a tight link between hearing and cognitive functions under both physiological and pathological conditions. Indeed, hearing perception requires high-level cognitive processes, and its alterations have been considered a risk factor for cognitive decline. Thus, identifying common pathogenic determinants of hearing loss and neurodegenerative disease is challenging. Here, we focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions. Oxidative stress plays a critical role in cochlear damage occurring during aging, as well as in that induced by exogenous factors, including noise. At the same time, increased oxidative stress in medio-temporal brain regions, including the hippocampus, is a hallmark of neurodegenerative disorders like Alzheimer's disease. As such, antioxidant therapy seems to be a promising approach to prevent and/or counteract both sensory and cognitive neurodegeneration. Here, we review experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases. A greater understanding of the pathophysiological mechanisms shared by these two diseased conditions will hopefully provide relevant information to develop innovative and effective therapeutic strategies.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630154966
| | - Anna Rita Fetoni
- Unit of Audiology, Department of Neuroscience, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|