1
|
Zhao Z, Feng X, Zhao Y, Song Z, Zhang R, Zhang K, He Y, Chen G, Zhang J, Wang W. Gelatin/Poly (Lactic-Co-Glycolic Acid)/Attapulgite Composite Scaffold Equipped with Teriparatide Microspheres for Osteogenesis in vitro and in vivo. Int J Nanomedicine 2025; 20:581-604. [PMID: 39839456 PMCID: PMC11747967 DOI: 10.2147/ijn.s495204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Background Given the risks associated with autologous bone transplantation and the limitations of allogeneic bone transplantation, scaffolds in bone tissue engineering that incorporate bioactive peptides are highly recommended. Teriparatide (TPTD) plays a significant role in bone defect repair, although achieving controlled release of TPTD within a bone tissue engineering scaffold remains challenging. This work reports a new approach for treatment of teriparatide using a water-in-oil-in-water (w/o/w) microspheres be equipped on gelatin (GEL)/Poly lactic-glycolic acid (PLGA)/attapulgite (ATP) scaffold. Methods In this study, TPTD microspheres were prepared by the water-in-oil-in-water (w/o/w) double emulsion technique and GEL/PLGA/ATP composite scaffolds with different setups were prepared by salt leaching method. Both microspheres and scaffolds underwent physicochemical characterization. Mouse bone mesenchymal stem cells (BMSCs) were co-cultured with extracts from the microspheres and scaffolds to evaluate cell proliferation and osteogenesis. Four weeks post-implantation, the effectiveness of the scaffolds containing microspheres for repairing skull defects in mice was assessed. Results Both TPTD microspheres and the GEL/PLGA/ATP scaffold significantly enhanced the proliferation and osteogenic differentiation of BMSCs. Markers of osteoblast activity, including COL1, RUNX2, OCN, and OPN, were markedly up-regulated. Further, micro-CT, histological, and immunohistochemical analyses revealed extensive new bone formation on the scaffold. Conclusion The GEL/PLGA/ATP composite scaffold, equipped with TPTD microspheres, demonstrates significant potential for use in bone tissue engineering, providing an effective option for bone regeneration and repair in clinical applications.
Collapse
Affiliation(s)
- Zhenrui Zhao
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaofei Feng
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yuhao Zhao
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Zhengdong Song
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Ruihao Zhang
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Kui Zhang
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Yixiang He
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Guoliang Chen
- Department of Orthopedics, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Jing Zhang
- Department of Orthopedics, Anlu People’s Hospital, Anlu, People’s Republic of China
| | - Wenji Wang
- Department of Orthopedics, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
2
|
Chen H, Su X, Luo Y, Liao Y, Wang F, Huang L, Fan A, Li J, Yue P. Natural-derived porous nanocarriers for the delivery of essential oils. Chin J Nat Med 2024; 22:1117-1133. [PMID: 39725512 DOI: 10.1016/s1875-5364(24)60731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Indexed: 12/28/2024]
Abstract
Essential oils (EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light, heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs. Porous nanoclays are natural clay minerals with a layered structure. They possess unique structural characteristics such as large pore size, regular distribution, and tunable particle size, which are extensively utilized in drug delivery, adsorption separation, reaction catalysis, and other fields. Natural-derived porous nanoclays have garnered considerable attention for the encapsulation and delivery of EOs. This review comprehensively summarizes the structure, types, and properties of natural-derived porous nanoclays, focusing on the structural characteristics of porous nanoclays such as montmorillonite, palygorskite, halloysite, kaolinite, vermiculite, and natural zeolite. It also examines research advances in their delivery of EOs and explores engineering strategies to enhance the delivery of EOs by natural-derived porous nanoclays. Finally, various applications of natural-derived porous nanoclays for EOs in antibacterial, food preservation, repellent, and insecticide aspects are presented, providing a reference for the development and application of EOs.
Collapse
Affiliation(s)
- Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yijuan Luo
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Aiguo Fan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Li
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang 330077, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China.
| |
Collapse
|
3
|
Liu X, Cao L, Jiang C, Wang H, Zhang X, Liu Q, Li H, Tang Y, Feng Y. Fabrication of multifunctional hybrid pigment for color cosmetics based on chitosan-modified palygorskite and sappanwood extract. Int J Biol Macromol 2024; 279:135259. [PMID: 39233175 DOI: 10.1016/j.ijbiomac.2024.135259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Consumer perception and market demand have driven the replacement of synthetic colorants with naturally derived alternatives in the cosmetic industry. This study describes a facile way to prepare durable inorganic-organic hybrid pigment with advanced biocompatibility, antibacterial and hydrophobic properties tailored for color cosmetics by initial modification of palygorskite with chitosan to anchor sappanwood dye extract and subsequently coating with amino-modified silicone oil (ASO). The hybrid pigments were characterized by transmittance electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the Brunauer-Emmett-Teller method. The results indicated that the sappanwood dye was loaded on chitosan-modified palygorskite via hydrogen bonding and electrostatic interaction. Furthermore, the chitosan-palygorskite/sappanwood hybrid pigment exhibited enhanced biocompatibility and color stability on exposure to different heating temperatures and UVA radiation after subsequent hydrophobic modification with amino-modified silicone oil. Moreover, facial foundation cosmetics based on the chitosan-palygorskite/sappanwood@ASO composites exhibited excellent brightening and skin color corrective effect on human volunteers without any adverse response. And no significant difference was observed in 12 out of 14 sensory evaluation indexes in the comparison of this hybrid pigment-based makeup with two commercially available products. This study provides a new route to stabilize natural botanical colorant for cosmetic use by chitosan-modified clay minerals.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chao Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Wang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Liu
- Beijing EWISH Testing Technology Co., Ltd, Beijing 100142, China
| | - Huiyu Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Bastos CM, Rocha F, Patinha C, Marinho-Reis P. Characterization of percutaneous absorption of calcium, magnesium, and potentially toxic elements in two tailored sulfurous therapeutic peloids: a comprehensive in vitro pilot study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1061-1072. [PMID: 38427095 PMCID: PMC11108904 DOI: 10.1007/s00484-024-02644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Pelotherapy treatments in thermal spas, which utilize peloids composed of clay minerals mixed with saltwater or mineral-medicinal water, can have various effects on spa users, ranging from therapeutic to potential adverse reactions. Despite the widespread use of peloids, comprehensive information on the penetration and permeation of essential and potentially toxic elements into deeper layers of the skin during pelotherapy is limited. Understanding the concentrations of these elements is crucial for evaluating therapeutic benefits and ensuring safety. This study investigates the in vitro availability and absorption of calcium, magnesium, and potentially toxic elements in two peloids, considering their formulation matrix. To replicate the pelotherapy methodology, an in vitro permeation experiment was conducted using a vertical diffusion chamber (Franz cells) and a biological system with human skin membranes from five Caucasian women, age range between 25 and 51 years. The experiment involved heating the peloids to 45℃. The results emphasize the possible transport properties of chemical elements in peloids, providing valuable information related to potential therapeutic efficacy and safety considerations. Despite no apparent differences between peloids' chemical composition, the method identified permeation variations among chemical elements. The methodology employed in this study adheres to the guidelines outlined by OECD for analyzing skin absorption through an in vitro approach. Furthermore, it aligns with the associated OECD guidance document for conducting skin absorption studies. The replicability of this methodology not only facilitates the analysis of peloids pre-formulation but also provides a robust means to evaluate the effectiveness of therapeutic elements during topical administration, particularly those with potential toxicity concerns.
Collapse
Affiliation(s)
- Carla Marina Bastos
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, Aveiro, 3810-193, Portugal.
- Exatronic, Aveiro, Lda. 3800-373, Portugal.
| | - Fernando Rocha
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Patinha
- Department of Geosciences, GeoBioTec Research Centre, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Paula Marinho-Reis
- Institute of Earth Sciences (ICT), Pole of the University of Minho, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
5
|
Huang S, Wang X, Zhang B, Xia L, Chen Y, Li G. Room-temperature fabrication of fluorinated covalent organic polymer @ Attapulgite composite for in-syringe membrane solid-phase extraction and analysis of domoic acid in aquatic products. J Chromatogr A 2024; 1721:464849. [PMID: 38564930 DOI: 10.1016/j.chroma.2024.464849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
A novel fluorinated covalent organic polymer @ attapulgite composite (F-COP@ATP) was prepared at room temperature for in-syringe membrane solid-phase extraction (SM-SPE) of domoic acid (DA) in aquatic products. Natural ore ATP has the advantages of low cost, good mechanical strength and abundant hydroxyl group on its surface, and in-situ modified F-COP layer can provide abundant adsorption sites. F-COP@ATP combining the advantages of F-COP and ATP, becomes an ideal adsorbent for DA extracting. Moreover, a high-throughput sample preparation strategy was carried out by using the F-COP@ATP membrane as syringe filter and assembling syringes with a ten-channel injection pump. In addition, the experimental factors were optimized, such as pH of extract, amount of adsorbent, velocity of extraction and desorption, type and volume of desorption solvent. The DA analytical method was established by SM-SPE-HPLC/tandem mass spectrometry. The method had a wide linear range with low limit of detection (0.344 ng/kg) and low limit of quantification (1.14 ng/kg). F-COP@ATP membrane can be reused more than five times. The method realized the analysis of DA in scallop and razor clam samples, which shows its application prospect in practical analysis. This study provided an efficient, low-energy and mild idea for preparing other reusable natural mineral ATP-based composite materials for separation and enrichment, which reduces the experimental cost and is closer to environmental protection and green chemistry to a certain extent.
Collapse
Affiliation(s)
- Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqian Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223001, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Maneetong S, Thuadaij P. Bio-clay: Antioxidant-rich and stable for body mud scrubs. Heliyon 2024; 10:e29122. [PMID: 38601526 PMCID: PMC11004215 DOI: 10.1016/j.heliyon.2024.e29122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Clay is naturally occurring and poses a low risk. It is distinguished by mineral composition and ability to adsorb plant colorants and phytochemicals effectively. This study aimed to enhance the stability of bio-clay by preparing body mud scrubs through a solid-state reaction, combining volcanic clay with herbal plants, including Bougainvillea spp., Pandanus amaryllifolius Roxb., and Curcuma longa L. (bio-clay). The characterization of purification clay revealed strong stability within its mineral composition. The optimum condition for sampling was 4 °C, which reserved the total phenolic content (TPC), 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. A high Trolox equivalent antioxidant capacity (TEAC; mg TEAC/g sample) and low half-maximal inhibitory concentration (IC50) indicated excellent antioxidant activity. Over a storage period of 28 d, the Bougainvillea spp., Curcuma longa L., purified clay + Bougainvillea spp., and purified clay + Curcuma longa L. samples retained their stability. Their TPC, % scavenging, TEAC, and IC50 showed dominant antioxidant activity, stable active phenolic compounds, and the maintenance of extensive amounts. This compound is widely applied as a unique cosmetic ingredient.
Collapse
Affiliation(s)
- Sarunya Maneetong
- Division of Chemistry (Analytical Chemistry), Faculty of Science, Buriram Rajabhat University, Buriram, 31000, Thailand
| | - Pattaranun Thuadaij
- Division of Chemistry (Materials Science), Faculty of Science, Buriram Rajabhat University, Buriram, 31000, Thailand
| |
Collapse
|
7
|
Huang L, Zhang D, Bu N, Zhong Y, Tan P, Lin H, Pang J, Mu R. Pullulan nanofibrous films incorporated with W/O emulsions via microfluidic solution blow spinning technology. Int J Biol Macromol 2024; 263:130437. [PMID: 38412935 DOI: 10.1016/j.ijbiomac.2024.130437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
In this work, pullulan (PUL) nanofibrous films incorporated with water-in-oil emulsions (PE) were prepared by microfluidic blowing spinning (MBS). The microstructures of nanofibers were characterized by scanning electron microscopy (SEM), fourier transform infrared (FT-IR), and X-ray diffraction (XRD). With the addition of W/O emulsions, the thermal stability, mechanical, and water barrier properties of PUL nanofibers were improved. Increases in emulsion content significantly affected the antioxidant and antimicrobial properties of nanofibrous films. ABTS and DPPH free radical scavenging rates increased from 10.26 % and 8.57 % to 60.66 % and 57.54 %, respectively. The inhibition zone of PE nanofibers against E. coli and S. aureus increased from 11.00 to 20.00 and from 15.67 to 21.17 mm, respectively. In addition, we investigated the freshness effectiveness of PE nanofibrous films on fresh-cut apples. PE nanofibrous films significantly maintained the firmness, and reduced the weight loss and browning index of the fresh-cut apple, throughout the 4 days of storage. Thus, the PE nanofibrous films exhibited good potential to prolong the shelf life of fresh-cut fruit and promote the development of active food packaging.
Collapse
Affiliation(s)
- Liying Huang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Di Zhang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Nitong Bu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuanbo Zhong
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Pingping Tan
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huanglong Lin
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Pang
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ruojun Mu
- Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
8
|
Huang X, Hu B, Zhang X, Fan P, Chen Z, Wang S. Recent advances in the application of clay-containing hydrogels for hemostasis and wound healing. Expert Opin Drug Deliv 2024; 21:457-477. [PMID: 38467560 DOI: 10.1080/17425247.2024.2329641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Immediate control of bleeding and anti-infection play important roles in wound management. Multiple organ dysfunction syndrome and death may occur if persistent bleeding, hemodynamic instability, and hypoxemia are not addressed. The combination of clay and hydrogel provides a new outlet for wound hemostasis. In this review, the current research progress of hydrogel/clay composite hemostatic agents was reviewed. AREAS COVERED This paper summarizes the characteristics of several kinds of clay including kaolinite, montmorillonite, laponite, sepiolite, and palygorskite. The advantages and disadvantages of its application in hemostasis were also summarized. Future directions for the application of hydrogel/clay composite hemostatic agents are presented. EXPERT OPINION Clay can activate the endogenous hemostatic pathway by increasing blood cell concentration and promoting plasma absorption to accelerate the hemostasis. Clay is antimicrobial due to the slow release of metal ions and has a rich surface charge with a high affinity for proteins and cells to promote tissue repair. Hydrogels have some properties such as good biocompatibility, strong adhesion, high stretchability, and good self-healing. Despite promising advances, hydrogel/clay composite hemostasis remains a limitation. Therefore, more evidence is needed to further elucidate the risk factors and therapeutic effects of hydrogel/clay in hemostasis and wound healing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Xinyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
9
|
Nomicisio C, Ruggeri M, Bianchi E, Vigani B, Valentino C, Aguzzi C, Viseras C, Rossi S, Sandri G. Natural and Synthetic Clay Minerals in the Pharmaceutical and Biomedical Fields. Pharmaceutics 2023; 15:pharmaceutics15051368. [PMID: 37242610 DOI: 10.3390/pharmaceutics15051368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Clay minerals are historically among the most used materials with a wide variety of applications. In pharmaceutical and biomedical fields, their healing properties have always been known and used in pelotherapy and therefore attractive for their potential. In recent decades, the research has therefore focused on the systematic investigation of these properties. This review aims to describe the most relevant and recent uses of clays in the pharmaceutical and biomedical field, especially for drug delivery and tissue engineering purposes. Clay minerals, which are biocompatible and non-toxic materials, can act as carriers for active ingredients while controlling their release and increasing their bioavailability. Moreover, the combination of clays and polymers is useful as it can improve the mechanical and thermal properties of polymers, as well as induce cell adhesion and proliferation. Different types of clays, both of natural (such as montmorillonite and halloysite) and synthetic origin (layered double hydroxides and zeolites), were considered in order to compare them and to assess their advantages and different uses.
Collapse
Affiliation(s)
- Cristian Nomicisio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Cesar Viseras
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
10
|
Peng L, Zhang XF, Guo DY, Zhai BT, Wang M, Zou JB, Shi YJ. Pickering emulsion technology based on the concept of “the combination of medicine and adjuvant” to enhance the oxidation stability of volatile oils in solid preparations—taking Lingzhu Pulvis as an example. RSC Adv 2022; 12:27453-27462. [PMID: 36276001 PMCID: PMC9513534 DOI: 10.1039/d2ra04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
The antioxidant properties of the volatile oil of Acorus calamus in Lingzhu Pulvis may be enhanced by the introduction of Pickering emulsion technology based on the concept of “the combination of medicine and adjuvant”. The characterization of each drinking tablet of Lingzhu Pulvis was conducted to determine the stabilizer. The optimal stabilizer concentration, oil–water ratio and preparation method of the Pickering emulsion were then determined and analyzed using NIR. The contents of malondialdehyde and peroxide in the volatile oils of each group were compared at different AIBA concentrations. The trends of the components were then analyzed by GC-MS. The pearl powder was screened as the stabilizer of the Pickering emulsion; the pearl powder concentration of 0.065 g mL−1 and the oil–water ratio of 9 : 11 were found to be the optimal emulsion formation conditions, and the high-pressure homogenization method was the optimal preparation method. The NIR analysis showed that the volatile oil was wrapped by the pearl powder and no new chemical structure formed in the Pickering emulsion. The Pickering emulsions had lower oxidation levels than the crude oil groups at AIBA concentrations of 5, 10, and 15 mg mL−1. The results of the GC-MS analysis showed that the antioxidant properties of the volatile components were significantly higher in the Pickering emulsion group compared to the crude oil group. Pickering emulsions can be used to enhance the antioxidant properties of volatile components in oil-containing solid formulations based on the concept of “the combination of medicine and adjuvant”. The antioxidant properties of the volatile oil of Acorus calamus in Lingzhu Pulvis may be enhanced by the introduction of Pickering emulsion technology based on the concept of “the combination of medicine and adjuvant”.![]()
Collapse
Affiliation(s)
- Lei Peng
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiao-Fei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Yan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Bing-Tao Zhai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Mei Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jun-Bo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ya-Jun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|