1
|
Hu W, Li M, Feng Y, Wang X, Yang S, Gao Y, Jiang D, Lan X. Molecular Imaging for Biomimetic Nanomedicine in Cancer Therapy: Current Insights and Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10231-10245. [PMID: 39878693 DOI: 10.1021/acsami.4c19720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies. We also briefly discuss current applications of molecular imaging in synergistic cancer therapies and future perspectives. Finally, we offer insights into the potential of integrating biomimetic nanomedicine with molecular imaging for clinical translation.
Collapse
Affiliation(s)
- Wenzhu Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xingyi Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Shaowen Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| |
Collapse
|
2
|
Wang R, Qin Y, Jiang X, Bai H, Liu Y, Gao X, Zhao L. Cell membrane biomimetic magnetic fluorescent bifunctional nanoplatform for drug lead discovery. Anal Chim Acta 2025; 1338:343583. [PMID: 39832854 DOI: 10.1016/j.aca.2024.343583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/18/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUD Biomimetic nanoplatforms based on membrane coating strategies have received increasing attention in the field of medical research. However, it cannot perform biomedical imaging screening, which is essential for real-time identification. As a rich source of new drug discovery, traditional Chinese medicine (TCM) has made important contributions to the treatment of many diseases. RESULLT Therefore, a magnetic fluorescent bifunctional nanomaterial was developed for screening the active ingredients in Fuzi. The magnetic fluorescence nanoparticles Fe3O4@GO@RhB synthesized by one-step synthesis showed low toxicity, excellent fluorescence properties and fast magnetic separation. After coating the magnetic nanoparticle with cell membrane, the screening procedure was optimized with positive drug verapamil hydrochloride. Under the optimal conditions, the active ingredients in aconite were screened, and the three active ingredients were identified as benzoyl-mesaconine, benzoyl-aconine and benzoyl-hypacoitine by UPLC-MS/MS. In addition, in situ imaging technique was used to further verify the proliferative activity of the screened active ingredients. SIGNIFICANCE The magnetic fluorescence bifunctional nanoplatform for cell membrane bionic screening combined with in situ imaging technology established in this paper not only can rapidly and effectively target screening and separation of active ingredients in TCM, but also provides a new platform for bioimaging screening.
Collapse
Affiliation(s)
- Runuo Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Yi Qin
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Xu Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Hezheng Bai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Yang Liu
- Liaoning University of Traditional Chinese Medicine, Chongshan East Road 79, Shenyang, 110032, PR China
| | - Xun Gao
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu Province, 222001, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
3
|
Habeeb M, Vengateswaran HT, Tripathi AK, Kumbhar ST, You HW, Hariyadi. Enhancing biomedical imaging: the role of nanoparticle-based contrast agents. Biomed Microdevices 2024; 26:42. [PMID: 39441423 DOI: 10.1007/s10544-024-00725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/25/2024]
Abstract
Biomedical imaging plays a critical role in early detection, precise diagnosis, treatment planning, and monitoring responses, but traditional methods encounter challenges such as limited sensitivity, specificity, and inability to monitor therapeutic responses due to factors like short circulation half-life and potential toxicity. Nanoparticles are revolutionizing biomedical imaging as contrast agents across modalities like computed tomography (CT), optical, magnetic resonance imaging (MRI), and ultrasound, exploiting unique attributes such as those of metal-based, polymeric, and lipid nanoparticles. They shield imaging agents from immune clearance, extending circulation time, and enhancing bioavailability at tumor sites. This results in improved imaging sensitivity. The study highlights advancements in multifunctional nanoparticles for targeted imaging, tackling concerns regarding toxicity and biocompatibility. Critically evaluating conventional contrast agents, emphasizes the shortcomings that nanoparticles aim to overcome. This review provides insight into the current status of nanoparticle-based contrast agents, illuminating their potential to reshape therapeutic monitoring and precision diagnostics.
Collapse
Affiliation(s)
- Mohammad Habeeb
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| | - Hariharan Thirumalai Vengateswaran
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| | - Arpan Kumar Tripathi
- Department of Pharmacology. KIPS, Shri Shankaracharya Professional University Bhilai, Chhattisgarh, 490020, India
| | - Smita Tukaram Kumbhar
- Department of Pharmaceutical Chemistry, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, Maharashtra, 423603, India
| | - Huay Woon You
- Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Hariyadi
- Department of Electrical Engineering, Muhammadiyah University of West Sumatera, Kota Padang, 26181, Indonesia
| |
Collapse
|
4
|
Tikhonov A, Kachanov A, Yudaeva A, Danilik O, Ponomareva N, Karandashov I, Kostyusheva A, Zamyatnin AA, Parodi A, Chulanov V, Brezgin S, Kostyushev D. Biomimetic Nanoparticles for Basic Drug Delivery. Pharmaceutics 2024; 16:1306. [PMID: 39458635 PMCID: PMC11510494 DOI: 10.3390/pharmaceutics16101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Biomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies. This manuscript is grounded in the fundamentals of biomimetic technologies, offering a comprehensive overview and analytical perspective on the preparation and functionalization of BMNPs, which include cell membrane-coated nanoparticles (CMCNPs), artificial cell-derived vesicles (ACDVs), and fully synthetic vesicles (fSVs). This review examines both "top-down" and "bottom-up" approaches for nanoparticle preparation, with a particular focus on techniques such as cell membrane coating, cargo loading, and microfluidic fabrication. Additionally, it addresses the technological challenges and potential solutions associated with the large-scale production and clinical application of BMNPs and related technologies.
Collapse
Affiliation(s)
- Andrey Tikhonov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
5
|
Gautam S, Singh N, Marwaha D, Rai N, Sharma M, Tiwari P, Singh S, Kumar Bakshi A, Kumar A, Agarwal N, Prakash Shukla R, Ranjan Mishra P. Celastrol-loaded polymeric mixed micelles shows improved antitumor efficacy in 4 T1 bearing xenograft mouse model through spatial targeting. Int J Pharm 2024; 659:124234. [PMID: 38763310 DOI: 10.1016/j.ijpharm.2024.124234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
In this study, we have proposed a novel approach that combines hyaluronic acid (HA), folic acid (FA), and celastrol (CLS) within a polymeric micelle system (CLS-HF/MLs), offering a dual-action strategy against breast cancer. Polymeric mixed micelles were prepared through the thin-film hydration method, and comprehensive quality control parameters were established, encompassing particle size, polydispersity index, zeta potential, surface morphology, encapsulation efficiency, drug content, in vitro drug release, and storage stability assessment. The average particle size of CLS-HF/MLs micelles was found to be 120 nm and their drug loading and encapsulation efficiencies were 15.9 % and 89.52 %, respectively. The in vitro release data showed that the CLS-HF/MLs targeted mixed micelles displayed a prolonged release profile compared to the free drug. Additionally, the stability of the developed polymeric mixed micelles was maintained for up to 8 weeks of storage in terms of particle size and drug content. Furthermore, both flow cytometry and confocal laser scanning microscopy studies indicated a significant enhancement in the cellular uptake efficiency and cytotoxicity of CLS-HF/MLs mixed micelles against MCF-7 cell line. In terms of pharmacokinetic analysis, the half-life and AUC values of CLS-HF/MLs mixed micelles were found to be approximately 4.71- and 7.36-folds higher than the values of free drug (CLS), respectively. The CLS-HF/MLs micelles exhibited remarkable antitumor efficacy (almost complete ablation of the 4 T1-cell bearing tumor xenografts mouse model) due to the dual receptor (CD44 and folate) targeting effects with minimal side effects. When considering the cumulative findings of our present research, it becomes evident that mixed micelles designed for chemotherapy offer a promising and potentially effective therapeutic avenue for the treatment of breast cancer.
Collapse
Affiliation(s)
- Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Sanjay Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ankit Kumar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Neha Agarwal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
6
|
Fernández-Borbolla A, García-Hevia L, Fanarraga ML. Cell Membrane-Coated Nanoparticles for Precision Medicine: A Comprehensive Review of Coating Techniques for Tissue-Specific Therapeutics. Int J Mol Sci 2024; 25:2071. [PMID: 38396747 PMCID: PMC10889273 DOI: 10.3390/ijms25042071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoencapsulation has become a recent advancement in drug delivery, enhancing stability, bioavailability, and enabling controlled, targeted substance delivery to specific cells or tissues. However, traditional nanoparticle delivery faces challenges such as a short circulation time and immune recognition. To tackle these issues, cell membrane-coated nanoparticles have been suggested as a practical alternative. The production process involves three main stages: cell lysis and membrane fragmentation, membrane isolation, and nanoparticle coating. Cell membranes are typically fragmented using hypotonic lysis with homogenization or sonication. Subsequent membrane fragments are isolated through multiple centrifugation steps. Coating nanoparticles can be achieved through extrusion, sonication, or a combination of both methods. Notably, this analysis reveals the absence of a universally applicable method for nanoparticle coating, as the three stages differ significantly in their procedures. This review explores current developments and approaches to cell membrane-coated nanoparticles, highlighting their potential as an effective alternative for targeted drug delivery and various therapeutic applications.
Collapse
Affiliation(s)
- Andrés Fernández-Borbolla
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Lorena García-Hevia
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Mónica L. Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|