1
|
Collins A, Foghsgaard S, Druce E, Margani V, Mejia O, O'Leary S. The Effect of Electrode Position on Behavioral and Electrophysiologic Measurements in Perimodiolar Cochlear Implants. Otol Neurotol 2024; 45:238-244. [PMID: 38238914 DOI: 10.1097/mao.0000000000004080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
BACKGROUND The shape and position of cochlear implant electrodes could potentially influence speech perception, as this determines the proximity of implant electrodes to the spiral ganglion. However, the literature to date reveals no consistent association between speech perception and either the proximity of electrode to the medial cochlear wall or the depth of insertion. These relationships were explored in a group of implant recipients receiving the same precurved electrode. METHODS This was a retrospective study of adults who underwent cochlear implantation with Cochlear Ltd.'s Slim Perimodiolar electrode at the Royal Victorian Eye and Ear Hospital between 2015 and 2018 (n = 52). Postoperative images were obtained using cone beam computed tomography (CBCT) and analyzed by multi-planar reconstruction to identify the position of the electrode contacts within the cochlea, including estimates of the proximity of the electrodes to the medial cochlear wall or modiolus and the angular depth of insertion. Consonant-vowel-consonant (CVC) monosyllabic phonemes were determined preoperatively, and at 3 and 12 months postoperatively. Electrically evoked compound action potential (ECAP) thresholds and impedance were measured from the implant array immediately after implantation. The relationships between electrode position and speech perception, electrode impedance, and ECAP threshold were an analyzed by Pearson correlation. RESULTS Age had a negative impact on speech perception at 3 months but not 12 months. None of the electrode-wide measures of proximity between electrode contacts and the modiolus, nor measures of proximity to the medial cochlear wall, nor the angular depth of insertion of the most apical electrode correlated with speech perception. However, there was a moderate correlation between speech perception and the position of the most basal electrode contacts; poorer speech perception was associated with a greater distance to the modiolus. ECAP thresholds were inversely related to the distance between electrode contacts and the modiolus, but there was no clear association between this distance and impedance. CONCLUSIONS Speech perception was significantly affected by the proximity of the most basal electrodes to the modiolus, suggesting that positioning of these electrodes may be important for optimizing speech perception. ECAP thresholds might provide an indication of this proximity, allowing for its optimization during surgery.
Collapse
Affiliation(s)
- Aaron Collins
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| | - Søren Foghsgaard
- Department of Otorhinolaryngology Head & Neck Surgery and Audiology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Edgar Druce
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| | - Valerio Margani
- Department of Neuroscience, Mental Health, and Sense Organs (NEMOS), Sant' Andrea University Hospital, Sapienza University, Rome, Italy
| | - Olivia Mejia
- sENTro Head and Neck Clinic, Manila, Philippines
| | | |
Collapse
|
2
|
Mussoi BS, Woodson E, Sydlowski S. Intraoperative Electrically Evoked Compound Action Potential Growth and Maximum Amplitudes in Hearing Preservation Cochlear Implant Recipients. Otol Neurotol 2023; 44:e216-e222. [PMID: 36946363 DOI: 10.1097/mao.0000000000003829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Electrically evoked compound action potentials (eCAPs) obtained from cochlear implant (CI) recipients reflect responsiveness of the auditory nerve to electrical stimulation. The recent use of atraumatic electrode arrays and expansion of CI candidacy to listeners with greater residual hearing may lead to increased clinical utility of intraoperative eCAP recordings. OBJECTIVES To examine the effect of electrode array (slim modiolar versus slim straight) on suprathreshold intraoperative eCAP recordings in hearing preservation CI recipients. A secondary goal was to examine potential clinical applications of intraoperative eCAPs for predicting immediate hearing preservation and speech perception outcomes. METHODS Retrospective study of 113 adult hearing preservation CI candidates implanted from 2015 to 2019 with either a slim modiolar or slim straight electrode array. Intraoperative eCAP growth functions and maximum amplitudes were obtained at several intracochlear electrodes and examined as a function of implanted array and hearing preservation status, while controlling for electrode impedance. RESULTS From basal to apical electrodes, progressively larger eCAP amplitudes and steeper slopes were recorded. Steeper eCAP slopes at apical electrodes were also seen for recipients of the slim modiolar array (versus slim straight). Suprathreshold eCAP responses did not differ as a function of hearing preservation and were not associated with speech recognition. CONCLUSIONS More robust eCAP responses were obtained from apical electrodes, which is consistent with better low-frequency thresholds in hearing preservation recipients. This effect was compounded by type of electrode array. Results also suggest that intraoperative, suprathreshold eCAPs cannot be used to predict the success of hearing preservation surgery or performance with the CI.
Collapse
Affiliation(s)
- Bruna S Mussoi
- Speech Pathology and Audiology, Kent State University, Kent, Kaiser Permanente Southern California, San Diego, CA
| | - Erika Woodson
- Head and Neck Institute, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
3
|
Van de Heyning P, Roland P, Lassaletta L, Agrawal S, Atlas M, Baumgartner WD, Brown K, Caversaccio M, Dazert S, Gstoettner W, Hagen R, Hagr A, Jablonski GE, Kameswaran M, Kuzovkov V, Leinung M, Li Y, Loth A, Magele A, Mlynski R, Mueller J, Parnes L, Radeloff A, Raine C, Rajan G, Schmutzhard J, Skarzynski H, Skarzynski PH, Sprinzl G, Staecker H, Stöver T, Tavora-Viera D, Topsakal V, Usami SI, Van Rompaey V, Weiss NM, Wimmer W, Zernotti M, Gavilan J. Suitable Electrode Choice for Robotic-Assisted Cochlear Implant Surgery: A Systematic Literature Review of Manual Electrode Insertion Adverse Events. Front Surg 2022; 9:823219. [PMID: 35402479 PMCID: PMC8987358 DOI: 10.3389/fsurg.2022.823219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/09/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Objective The cochlear implant (CI) electrode insertion process is a key step in CI surgery. One of the aims of advances in robotic-assisted CI surgery (RACIS) is to realize better cochlear structure preservation and to precisely control insertion. The aim of this literature review is to gain insight into electrode selection for RACIS by acquiring a thorough knowledge of electrode insertion and related complications from classic CI surgery involving a manual electrode insertion process. Methods A systematic electronic search of the literature was carried out using PubMed, Scopus, Cochrane, and Web of Science to find relevant literature on electrode tip fold over (ETFO), electrode scalar deviation (ESD), and electrode migration (EM) from both pre-shaped and straight electrode types. Results A total of 82 studies that include 8,603 ears implanted with a CI, i.e., pre-shaped (4,869) and straight electrodes (3,734), were evaluated. The rate of ETFO (25 studies, 2,335 ears), ESD (39 studies, 3,073 ears), and EM (18 studies, 3,195 ears) was determined. An incidence rate (±95% CI) of 5.38% (4.4-6.6%) of ETFO, 28.6% (26.6-30.6%) of ESD, and 0.53% (0.2-1.1%) of EM is associated with pre-shaped electrodes, whereas with straight electrodes it was 0.51% (0.1-1.3%), 11% (9.2-13.0%), and 3.2% (2.5-3.95%), respectively. The differences between the pre-shaped and straight electrode types are highly significant (p < 0.001). Laboratory experiments show evidence that robotic insertions of electrodes are less traumatic than manual insertions. The influence of round window (RW) vs. cochleostomy (Coch) was not assessed. Conclusion Considering the current electrode designs available and the reported incidence of insertion complications, the use of straight electrodes in RACIS and conventional CI surgery (and manual insertion) appears to be less traumatic to intracochlear structures compared with pre-shaped electrodes. However, EM of straight electrodes should be anticipated. RACIS has the potential to reduce these complications.
Collapse
Affiliation(s)
- Paul Van de Heyning
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Peter Roland
- Department of Otolaryngology, Head & Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Luis Lassaletta
- Hospital Universitario La Paz, Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Marcus Atlas
- Ear Sciences Institute Australia, Lions Hearing Clinic, Perth, WA, Australia
| | | | - Kevin Brown
- UNC Ear and Hearing Center at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Marco Caversaccio
- Department for ENT, Head and Neck Surgery, Bern University Hospital, Bern, Switzerland
| | - Stefan Dazert
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth University Hospital Bochum, Bochum, Germany
| | | | - Rudolf Hagen
- Würzburg ENT University Hospital, Würzburg, Germany
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Greg Eigner Jablonski
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Otorhinolaryngology & Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | - Vladislav Kuzovkov
- St. Petersburg ENT and Speech Research Institute, St. Petersburg, Russia
| | - Martin Leinung
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Yongxin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Andreas Loth
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Astrid Magele
- Ear, Nose and Throat Department, University Clinic St. Poelten, Karl Landsteiner Private University, St. Poelten, Austria
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery, “Otto Körner” Rostock University Medical Center, Rostock, Germany
| | - Joachim Mueller
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde, Ludwig-Maximilians-Universitat Munchen, Munchen, Germany
| | - Lorne Parnes
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Andreas Radeloff
- Division of Oto-Rhino-Laryngology, Evangelisches Krankenhaus Oldenburg, Research Center of Neurosensory Sciences, University Oldenburg, Oldenburg, Germany
| | - Chris Raine
- Bradford Royal Infirmary Yorkshire Auditory Implant Center, Bradford, United Kingdom
| | - Gunesh Rajan
- Department of Otolaryngology, Head and Neck Surgery, Luzerner Kantonsspital, Luzern, Medical Sciences Department of Health Sciences and Medicine. University of Lucerne, Luzern, Switzerland. Otolaryngology, Head & Neck Surgery, Medical School University of Western Australia, Perth, WA, Australia
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Henryk Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Kajetany, Poland
| | - Piotr H. Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center of the Institute of Physiology and Pathology of Hearing, Kajetany, Poland
| | - Georg Sprinzl
- Ear, Nose and Throat Department, University Clinic St. Poelten, Karl Landsteiner Private University, St. Poelten, Austria
| | - Hinrich Staecker
- Kansas University Center for Hearing and Balance Disorders, Kansas City, KS, United States
| | - Timo Stöver
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Vedat Topsakal
- Department of ENT HNS, University Hospital Brussels, Brussels, Belgium
| | - Shin-Ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, Nagano, Japan
| | - Vincent Van Rompaey
- Department of Otorhinolaryngology Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Nora M. Weiss
- Department of Otorhinolaryngology-Head and Neck Surgery, Ruhr-University Bochum, St. Elisabeth University Hospital Bochum, Bochum, Germany
| | - Wilhelm Wimmer
- Department for ENT, Head and Neck Surgery, Bern University Hospital, Bern, Switzerland
| | - Mario Zernotti
- Catholic University of Córdoba and National University of Córdoba, Córdoba, Argentina
| | - Javier Gavilan
- Hospital Universitario La Paz, Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
4
|
Helal RA, Jacob R, Elshinnawy MA, Othman AI, Al-Dhamari IM, Paulus DW, Abdelaziz TT. Cone-beam CT versus Multidetector CT in Postoperative Cochlear Implant Imaging: Evaluation of Image Quality and Radiation Dose. AJNR Am J Neuroradiol 2021; 42:362-367. [PMID: 33414229 DOI: 10.3174/ajnr.a6894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/15/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Cone-beam CT is being increasingly used in head and neck imaging. We compared cone-beam CT with multidetector CT to assess postoperative implant placement and delineate finer anatomic structures, image quality, and radiation dose used. MATERIALS AND METHODS This retrospective multicenter study included 51 patients with cochlear implants and postoperative imaging via temporal bone cone-beam CT (n = 32 ears) or multidetector CT (n = 19 ears) between 2012 and 2017. We evaluated the visualization quality of single electrode contacts, the scalar position of the electrodes, cochlear walls, mastoid facial canal, metallic artifacts (using a 4-level visual score), and the ability to measure the insertion angle of the electrodes. The signal-to-noise ratio and radiation dose were also evaluated. RESULTS Cone-beam CT was more sensitive for visualizing the scalar position of the electrodes (P = .046), cochlear outer wall (P = .001), single electrode contacts (P < .001), and osseous spiral lamina (P = .004) and had fewer metallic artifacts (P < .001). However, there were no significant differences between both methods in visualization of the modiolus (P = .37), cochlear inner wall (P > .99), and mastoid facial canal wall (P = .07) and the ability to measure the insertion angle of the electrodes (P > .99). The conebeam CT group had significantly lower dose-length product (P < .001), but multidetector CT showed a higher signal-to-noise ratio in both bone and air (P = .22 and P = .001). CONCLUSIONS Cone-beam CT in patients with cochlear implants provides images with higher spatial resolution and fewer metallic artifacts than multidetector CT at a relatively lower radiation dose.
Collapse
Affiliation(s)
- R A Helal
- From the Radiodiagnosis Department (R.A.H., M.A.E., A.I.O., T.T.A.), Ain Shams University, Cairo, Egypt
| | - R Jacob
- HNOplus (R.J.), Höhr-Grenzhausen, Germany
| | - M A Elshinnawy
- From the Radiodiagnosis Department (R.A.H., M.A.E., A.I.O., T.T.A.), Ain Shams University, Cairo, Egypt
| | - A I Othman
- From the Radiodiagnosis Department (R.A.H., M.A.E., A.I.O., T.T.A.), Ain Shams University, Cairo, Egypt
| | - I M Al-Dhamari
- Institute for computational visualistics (I.M.A.-D., D.W.P.), Koblenz University, Koblenz, Germany
| | - D W Paulus
- Institute for computational visualistics (I.M.A.-D., D.W.P.), Koblenz University, Koblenz, Germany
| | - T T Abdelaziz
- From the Radiodiagnosis Department (R.A.H., M.A.E., A.I.O., T.T.A.), Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Schvartz-Leyzac KC, Holden TA, Zwolan TA, Arts HA, Firszt JB, Buswinka CJ, Pfingst BE. Effects of Electrode Location on Estimates of Neural Health in Humans with Cochlear Implants. J Assoc Res Otolaryngol 2020; 21:259-275. [PMID: 32342256 PMCID: PMC7392989 DOI: 10.1007/s10162-020-00749-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/24/2020] [Indexed: 01/06/2023] Open
Abstract
There are a number of psychophysical and electrophysiological measures that are correlated with SGN density in animal models, and these same measures can be performed in humans with cochlear implants (CIs). Thus, these measures are potentially applicable in humans for estimating the condition of the neural population (so called "neural health" or "cochlear health") at individual sites along the electrode array and possibly adjusting the stimulation strategy in the CI sound processor accordingly. Some measures used to estimate neural health in animals have included the electrically evoked compound potential (ECAP), psychophysical detection thresholds, and multipulse integration (MPI). With regard to ECAP measures, it has been shown that the change in the ECAP response as a function of increasing the stimulus interphase gap ("IPG Effect") also reflects neural density in implanted animals. These animal studies have typically been conducted using preparations in which the electrode was in a fixed position with respect to the neural population, whereas in human cochlear implant users, the position of individual electrodes varies widely within an electrode array and also across subjects. The current study evaluated the effects of electrode location in the implanted cochlea (specifically medial-lateral location) on various electrophysiological and psychophysical measures in eleven human subjects. The results demonstrated that some measures of interest, specifically ECAP thresholds, psychophysical detection thresholds, and ECAP amplitude-growth function (AGF) linear slope, were significantly related to the distances between the electrode and mid-modiolar axis (MMA). These same measures were less strongly related or not significantly related to the electrode to medial wall (MW) distance. In contrast, neither the IPG Effect for the ECAP AGF slope or threshold, nor the MPI slopes were significantly related to MMA or MW distance from the electrodes. These results suggest that "within-channel" estimates of neural health such as the IPG Effect and MPI slope might be more suitable for estimating nerve condition in humans for clinical application since they appear to be relatively independent of electrode position.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
- Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI, 48108, USA.
- Department of Otolaryngology, Medical University of South Carolina, 135 Rutledge Ave, MSC 550, Charleston, SC, 29425, USA.
| | - Timothy A Holden
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Teresa A Zwolan
- Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI, 48108, USA
| | - H Alexander Arts
- Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI, 48108, USA
| | - Jill B Firszt
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher J Buswinka
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| |
Collapse
|
6
|
Ishiyama A, Risi F, Boyd P. Potential insertion complications with cochlear implant electrodes. Cochlear Implants Int 2020; 21:206-219. [PMID: 32079506 DOI: 10.1080/14670100.2020.1730066] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: The aim of this discussion paper and literature review was to estimate the incidence of a variety of complications associated with the surgical placement of cochlear implant (CI) electrode arrays and to discuss the implications and management of sub-optimal electrode placement. Results: A review of the peer-reviewed literature suggests that the incidence of incomplete electrode insertion and kinking is more prevalent in straight arrays and not more than about 2% in CI recipients with normal cochlear anatomy/patency. Incidence of tip fold-over is greater with perimodiolar arrays but also occurs with straight arrays and is typically less than 5%. Conversely, electrode migration is more common with straight arrays, and high rates (up to 46%) have been reported in some studies. Scalar translocations have also been reported for both perimodiolar and straight arrays. Higher rates have been reported for stylet-based perimodiolar electrodes inserted via cochleostomy (up to 56%), but with much lower rates (<10%) with both sheath-based perimodiolar arrays and lateral wall arrays. Electrode positioning complications represent a significant proportion of perioperative CI complications and compromise the level of benefit from the device. Careful surgical planning and appropriate pre- and intraoperative imaging can reduce the likelihood and impact of electrode positioning complications. There is also evidence that newer array designs are less prone to certain complications, particularly scalar translocation. Conclusions: It is important that implanting surgeons are aware of the impact of sub-optimal electrode placement and the steps that can be taken to avoid, identify and manage such complications.
Collapse
Affiliation(s)
- Akira Ishiyama
- Rehabilitation Center, 1000 Veteran Ave., Los Angeles, CA, USA
| | - Frank Risi
- Clinical Affairs, Cochlear Ltd, Macquarie University, Sydney, Australia
| | - Paul Boyd
- Clinical Affairs, Cochlear Ltd, Macquarie University, Sydney, Australia
| |
Collapse
|
7
|
Evaluation of Intracochlear Position of a Slim Modiolar Electrode Array, by Using Different Radiological Analyses. Otol Neurotol 2019; 40:S10-S17. [PMID: 31225817 DOI: 10.1097/mao.0000000000002213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The radiological analysis following a cochlear implantation offers insight into the audiological outcomes of cochlear implant recipients. The wrapping factor (WF) is the most common radiological analysis measuring the modiolar position and depth of insertion of an electrode array. New measurements like the intracochlear position index (ICPI) or the homogeneity factor (HF) can offer more accurate information regarding the electrode's intracochlear position. We have also studied a new method to calculate the WF, by normalizing it with a new methodology (WFn). OBJECTIVES To analyze and compare the results of the WF, ICPI, HF, and WFn obtained using a cone beam computer tomography (CBCT) with the histological analysis on temporal bone. MATERIAL A perimodiolar electrode array (Nucleus Slim CI532) was inserted in three temporal bones. A perfect insertion was performed in the first temporal bone, according to the correct specifications. In the second specimen, a slightly over-inserted electrode was analyzed and in the third specimen a completely over-inserted electrode array was studied. METHOD A CBCT was performed following the implantations and then, a histological analysis with slices perpendicular to the cochlea axis (modiolus). Each measurement was made 10 times by 10 experts (radiologist and otologist) with a total amount of 600 measurements (100 for each data, 3 CBCT and 3 histology). A t test statistical analysis was performed to compare the measurements between CBCT and histology. RESULTS It was observed that the ICPI and the HF correctly identify the three different insertions. Regarding the WF no significant difference in the two over-inserted specimens was found. The ICPI was the only measurement that shows no statistical difference between the CBCT and the histology, so it was considered the most accurate method. Finally, the WF shows a statistical difference between the CBCT and the histology in all cases, indicating the poor value of the radiological method. The WFn analysis includes the modiolar wall length in the measurement. This improves the final result as it reduces the error induced by the size of the cochlea. CONCLUSION The ICPI and the HF provide better radiological information than the WF, regarding the intracochlear position of the electrode array. The most relevant difference is that the ICPI, HF, and WFn include modiolar and lateral wall dimensions, thereby using the diameter of the cochlear duct for the analysis.
Collapse
|
8
|
Dhanasingh A, Jolly C. Review on cochlear implant electrode array tip fold-over and scalar deviation. J Otol 2019; 14:94-100. [PMID: 31467506 PMCID: PMC6712287 DOI: 10.1016/j.joto.2019.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Determine the occurrence rate of cochlear implant (CI) electrode tip fold-over and electrode scalar deviation as reported in patient cases with different commercial electrode types. Data-sources PubMed search for identifying peer-reviewed articles published till 2018 on CI electrode tip fold-over and scalar deviation. Key-words for searching were “Cochlear electrode tip fold-over”, “Cochlear electrode scalar position” and “Cochlear electrode scalar location”. Articles-selection Only if electrode related issues were investigated in patient cases. 38 articles met the inclusion-criteria. Results 13 articles on electrode tip fold-over issue covering 3177 implanted ears, out of which 50 ears were identified with electrode tip fold-over with an occurrence rate of 1.57%. Out of 50 ears, 43 were implanted with pre-curved electrodes and the remaining 7 with lateral-wall electrodes. One article reported on both tip fold-over and scalar deviation. 26 articles reported on the electrode scalar deviation covering an overall number of 2046 ears out of which, 458 were identified with electrode scalar deviation at a rate of 22.38%. After removing the studies that did not report on the number of electrodes per electrode type, it was 1324 ears implanted with pre-curved electrode and 507 ears with lateral-wall electrode. Out of 1324 pre-curved electrode implanted ears, 424 were reported with scalar deviation making an occurrence rate of 32%. Out of 507 lateral-wall electrode implanted ears, 43 were associated with scalar deviation at an occurrence rate of 6.7%. Conclusion This literature review revealing the fact of higher rate of electrode insertion trauma associated with pre-curved electrode type irrespective of CI brand is one step closer to obsolete it from the clinical practice in the interest of patient's cochlear health.
Collapse
Affiliation(s)
| | - Claude Jolly
- MED-EL Medical Electronics GmbH, Innsbruck, Austria
| |
Collapse
|
9
|
Hey M, Wesarg T, Mewes A, Helbig S, Hornung J, Lenarz T, Briggs R, Marx M, Ramos A, Stöver T, Escudé B, James CJ, Aschendorff A. Objective, audiological and quality of life measures with the CI532 slim modiolar electrode. Cochlear Implants Int 2018; 20:80-90. [DOI: 10.1080/14670100.2018.1544684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Matthias Hey
- Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | | | | | - Silke Helbig
- Klinikum der J. W. Goethe-Universität, Frankfurt, Germany
| | | | | | | | - Mathieu Marx
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Angel Ramos
- Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas, Spain
| | - Timo Stöver
- Klinikum der J. W. Goethe-Universität, Frankfurt, Germany
| | | | - Chris J. James
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Cochlear France SAS, Toulouse, France
| | | |
Collapse
|
10
|
Christov F, Gluth MB, Lahti SJ, Ludwig S, Hans S, Holtmann LC, Lang S, Arweiler-Harbeck D. Electric compound action potentials (ECAPs) and impedances in an open and closed operative site during cochlear implantation. Cochlear Implants Int 2018; 20:23-30. [PMID: 30350745 DOI: 10.1080/14670100.2018.1534667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION In patients undergoing cochlear implantation, intraoperative measures of impedance and electrically evoked compound action potentials (ECAPs) are used to confirm device integrity and electrode array position. However, these electrophysiological parameters have been shown to decrease over time, with a small decrement observable as early as 24 h post implantation and becoming more apparent after 6 months. Whether the intraoperatively measured impedances and ECAPs recorded immediately after electrode insertion versus later in the operation or in an open versus closed operative site vary has not been documented. Such variation in measurement procedure may affect the ultimate operative outcome. PATIENTS AND METHODS Between February and October 2016, 38 patients received a cochlear implant (Cochlear®), with half receiving a CI 522 device and the other half receiving a CI 512 device. These patients were distributed into three groups. In the first (group A; n = 21), the impedance and threshold neural response telemetry (tNRT) measures were taken before (M1) and after cutaneous suture (M2), whereas in the second group (group B; n = 11) they were taken twice in the open operative site, once at the time of electrode insertion (M1) and then again 10 min later (M2). The last group (group C; n = 6) was measured only once after a 10 min waiting time before closing the operative site. RESULTS tNRTs of both group A and B were significantly higher at M1 than measured at M2. The magnitude of change in tNRT did vary significantly by group (P = .027) with group A having a bigger decrease than group B. For impedances there was evidence for a significant difference in M2 between the three groups (P = .012), with group C having significantly higher values compared to group A and B. CONCLUSION Intraoperative tNRT measures change significantly over time, including within the first 10 min of implantation. One underlying etiology of this phenomenon for tNRTs seems to be the condition of the surgical site whereas changes of impedances can be best explained by the 'electrochemical cleaning' theory associated with the first stimulation of the electrode. However, for both impedances and tNRTs there also is an important impact of time as well as of acute perioperative changes in electrical conductivity.
Collapse
Affiliation(s)
- F Christov
- a Department of Otolaryngology, Head and Neck Surgery , University Hospital Essen , Essen , Germany.,b Section of Otolaryngology-Head & Neck Surgery , University of Chicago Medicine , Illinois , USA
| | - M B Gluth
- b Section of Otolaryngology-Head & Neck Surgery , University of Chicago Medicine , Illinois , USA
| | - S J Lahti
- c Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - S Ludwig
- a Department of Otolaryngology, Head and Neck Surgery , University Hospital Essen , Essen , Germany
| | - S Hans
- a Department of Otolaryngology, Head and Neck Surgery , University Hospital Essen , Essen , Germany
| | - L C Holtmann
- a Department of Otolaryngology, Head and Neck Surgery , University Hospital Essen , Essen , Germany
| | - S Lang
- a Department of Otolaryngology, Head and Neck Surgery , University Hospital Essen , Essen , Germany
| | - D Arweiler-Harbeck
- a Department of Otolaryngology, Head and Neck Surgery , University Hospital Essen , Essen , Germany
| |
Collapse
|
11
|
Almosnino G, Anne S, Schwartz SR. Use of Neural Response Telemetry for Pediatric Cochlear Implants: Current Practice. Ann Otol Rhinol Laryngol 2018; 127:367-372. [PMID: 29649894 DOI: 10.1177/0003489418767692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Evaluate usage trends of neural response telemetry (NRT) in cochlear implant centers across the nation and assess reported benefits of intraoperative NRT for pediatric cochlear implant recipients. STUDY DESIGN Survey. STUDY PARTICIPANTS All US cochlear implant centers (n = 110). METHODS A 15-question multiple-choice survey was distributed electronically to all centers. The survey captured demographic information of all centers, practice patterns surrounding the use of NRT, and the extent to which intraoperative NRT is of benefit. RESULTS Thirty-two invited participants (29%) completed the survey. A majority of participants reported practicing in an academic center (66%), followed by a hospital setting (19%) and private practice (16%). Seventy-two percent of survey participants reported using NRT for pediatric cochlear implant recipients. Sixty-three percent felt it improved the ability to program at initial activation, and 50% of participants felt that NRT improves satisfaction at initial activation. CONCLUSION This study suggests that a majority of surgeons use intraoperative NRT for pediatric cochlear implantation as an additional measure to ensure appropriate electrode placement and improve device activation. Larger studies are needed to better establish the relationship between intraoperative NRT and postoperative outcomes and justify the additional costs associated with intraoperative NRT.
Collapse
Affiliation(s)
- Galit Almosnino
- 1 Department of Otolaryngology/Head and Neck Surgery Section of Otology/Neurotology, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Samantha Anne
- 2 Department of Pediatric Otolaryngology, Head and Neck Institute, Cleveland Clinic, Ohio, USA
| | - Seth R Schwartz
- 1 Department of Otolaryngology/Head and Neck Surgery Section of Otology/Neurotology, Virginia Mason Medical Center, Seattle, Washington, USA
| |
Collapse
|
12
|
Imaging evaluation of electrode placement and effect on electrode discrimination on different cochlear implant electrode arrays. Eur Arch Otorhinolaryngol 2018; 275:1385-1394. [PMID: 29610960 DOI: 10.1007/s00405-018-4943-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/19/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of the present study is to evaluate the effect of electrode discrimination based on electrode to modiolus distance in different cochlear implant models, using image information to estimate the outcomes after an implantation on electrode discrimination METHODS: A descriptive prospective randomized study performed during 16 months. A psychoacoustic platform was used to evaluate patients' electrode discrimination capabilities of patients. For the acquisition of the images, a cone beam computed tomography was used to assess postcochlear implantation of electrodes' position. We considered two other new measurements: the intracochlear position index, which indicates how far is the electrode from the modiolar wall, and the homogeneity factor (HF), which provides us with information about the distance between the electrodes and the modiolus RESULTS: 21 postlingually deaf adults showing different CI models [CI522 (n = 7), CI512 (n = 7), and CI532 (n = 7)] that corresponded to the lateral and perimodiolar array electrodes. The average success rate of the CI522 group was 47%, of the CI512 group was 48%, and of the CI532 group was 77%. There is statistically significant difference between groups CI532-CI522 (p = 0.0033) and CI532-CI512 (p = 0.0027) CONCLUSION: The Nucleus CI532 offers a better perimodiolar placement. HF and IPI measurements provide information about the electrodes location inside the cochlea, being related to electrode discrimination.
Collapse
|
13
|
Sabban D, Parodi M, Blanchard M, Ettienne V, Rouillon I, Loundon N. Intra-cochlear electrode tip fold-over. Cochlear Implants Int 2018; 19:225-229. [PMID: 29363410 DOI: 10.1080/14670100.2018.1427823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cochlear implantation has been performed safely for over two decades but still has various minor and major complications. We report two cases of an unusual complication of electrode implantation: tip fold-over of the electrode array within the cochlea. Both cases required undergoing explantation and re-implantation. The frequent use of fine and pre-curved electrodes particularly with the use of an insertion tool necessitates routine postoperative radiological evaluation of the electrode array. Our cases demonstrate the benefit of systematic imaging including the possible use of the Cone Beam CT intraoperatively.
Collapse
Affiliation(s)
- Dalal Sabban
- a Department of Otolaryngology-Head and Neck Surgery , Hôpital Necker-Enfants-Malades , Paris , France
| | - Marine Parodi
- a Department of Otolaryngology-Head and Neck Surgery , Hôpital Necker-Enfants-Malades , Paris , France
| | - Marion Blanchard
- a Department of Otolaryngology-Head and Neck Surgery , Hôpital Necker-Enfants-Malades , Paris , France
| | - Veronique Ettienne
- a Department of Otolaryngology-Head and Neck Surgery , Hôpital Necker-Enfants-Malades , Paris , France
| | - Isabelle Rouillon
- a Department of Otolaryngology-Head and Neck Surgery , Hôpital Necker-Enfants-Malades , Paris , France
| | - Natalie Loundon
- a Department of Otolaryngology-Head and Neck Surgery , Hôpital Necker-Enfants-Malades , Paris , France
| |
Collapse
|