1
|
Tuo Y, Peng S, Li Y, Dang J, Feng Z, Ding L, Du S, Liu X, Wang L. Quinoa protein and its hydrolysate improve the fatigue resistance of mice: a potential mechanism to relieve oxidative stress and inflammation and improve energy metabolism. J Nutr Biochem 2025; 139:109863. [PMID: 39952621 DOI: 10.1016/j.jnutbio.2025.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Fatigue is commonly marked by reduced endurance and impaired function, often linked to overexertion and chronic conditions. Quinoa (Chenopodium quinoa Willd.), with its rich amino acids and resilience to harsh conditions, offers a novel strategy for combating fatigue. This study explored the antifatigue effects of quinoa protein (QPro) and its hydrolysate (QPH) in weight-loaded swimming mice. After 4 weeks of oral administration, QPro and QPH significantly prolonged swimming duration, reduced serum fatigue biomarkers (lactic acid, urea nitrogen, lactate dehydrogenase, creatine kinase), and elevated glycogen reserves in the liver and muscle. RT-qPCR analysis indicated that QPH activated hepatic gluconeogenesis via G6Pase and PEPCK signaling and enhanced mitochondrial function through PGC-1α/NRF1/TFAM signaling in muscle. Additionally, QPro and QPH boosted antioxidant defenses by improving antioxidant enzyme activity, reducing malondialdehyde through the Nrf2/HO-1 pathway, and suppressing inflammation by reducing TNF-α and IL-6 levels. Network pharmacology identified 31 key targets involved in energy metabolism and inflammation, providing novel insights into the molecular mechanisms underlying the antifatigue properties of quinoa peptides. These findings highlight the potential of QPro and QPH as natural and bioactive ingredients in functional foods for enhancing endurance and mitigating fatigue.
Collapse
Affiliation(s)
- Yuanrong Tuo
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Siwang Peng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yiju Li
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Jiamin Dang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Zhi Feng
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Long Ding
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China.
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China; Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Liying Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China; Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Xie C, Duan H, Liu R, Si H, Yao X, He W. Study on Interaction Between 5-(4 Methoxyphenyl)-1-Phenyl-1H-1,2,3-Triazole with High-Abundant Blood Proteins and Identification of Low-Abundant Proteins by Serum Proteomics. J Sep Sci 2025; 48:e70083. [PMID: 39846340 DOI: 10.1002/jssc.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
A comprehensive strategy, including spectroscopic, molecular simulation, proteomics, and bioinformatics techniques, was employed to investigate a novel triazole, 5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole, its interactions with high-abundance blood proteins, and identification of low-abundance proteins. The binding constants and thermodynamic parameters of the triazole to two high-abundance blood globular proteins, human serum albumin, and human immunoglobulin G (HIgG), were obtained by spectroscopic techniques and computational chemistry. The two-dimensional gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed to isolate and identify differentially expressed low-abundance proteins in human blood serum samples following exposure to the triazole. The results indicated that there is strong binding of the triazole to human serum albumin/HIgG and hydrophobic interaction plays a main role in the system. There were 21 highly expressed proteins identified from blood serum samples intervened by the triazole. By bioinformatics analysis, one of the differential proteins, kininogen-1 protein, was to explore the mechanism of action of 5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole intervention on the kallikrein-kinin signaling pathways related to HeLa cervical cancer cells. The triazole displayed antiproliferative activity and significantly altered a kallikrein-10 expression, suggesting a possible antitumor mechanism involving the kallikrein-kinin system. These research findings provide scientific insights for further development and application of the 1,2,3-triazole compound. The study highlights the potential of the compound as a multifunctional pharmaceutical agent, particularly in cancer therapies, and lays the foundation for its future clinical applications in targeting drug-protein interactions.
Collapse
Affiliation(s)
- Cong Xie
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, China
| | - Hongye Duan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
| | - Rongqiang Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, Qingdao, China
| | - Xiaojun Yao
- College of Chemical and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Wenying He
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China
| |
Collapse
|
3
|
Li X, Wang P, Wang Q, Wang D, Wang S, Wang Y, Zhu W, Wang W, Kong C, Lu S, Chen X. Bone morphogenetic proteins, DNA methylation, and gut microbiota interaction in lumbar disc degeneration: A multi-omics Mendelian randomization study. JOR Spine 2024; 7:e70027. [PMID: 39713086 PMCID: PMC11659950 DOI: 10.1002/jsp2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 11/17/2024] [Indexed: 12/24/2024] Open
Abstract
Background Lumbar disc degeneration (LDD) is a ubiquitous finding in low back pain. Many different etiology factors may explain the LDD process, such as bone morphogenetic proteins (BMPs), DNA methylation, and gut microbiota. Until recently the mechanisms underlying the LDD process have been elusive. Methods BMP-related genes were extracted from the GeneCards database. The LDD transcriptome dataset was obtained from the Gene Expression Omnibus. We used linear regression and meta-analysis to screen and integrate the differentially expressed genes associated with BMPs in LDD. Genome-wide association studies (GWASs) of LDD were from FinnGen and UKBB. The expression quantitative trait loci (eQTLs) and DNA methylation quantitative trait loci from the blood were identified via the summary data-based Mendelian randomization (SMR) method, and the possible blood BMP genes and their regulatory elements associated with the risk of LDD were prioritized. Intestinal eQTLs and fecal microbial QTLs (mbQTLs) were integrated, and the potential interactions between BMP gene expression in host intestinal tissue and the gut microbiota were revealed through SMR and colocalization analysis. The GWAS catalog (GCST90246169) was used to validate SMR results. Results A meta-analysis of five datasets revealed that 113 BMP genes were differentially expressed between LDD and control tissues. Seven genes were selected as candidate pathogenic genes of LDD via the three-step SMR method: CREB1, BMP6, PTCH1, GLI1, MEG3, GALNS, and NF1. SMR analysis also revealed five possible gut genes: HFE, MET, MAPK3, NPC1, and GDF5. The correlation between the gut microbiota and BMP gene expression in intestinal tissues was verified by eQTL-mbQTL colocalization. Conclusion This multi-omics study revealed that the BMP genes associated with LDD are regulated by DNA methylation. There are genetic differences between gut gene expression and the gut microbiota. These findings provide evidence for new therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiang‐Yu Li
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Peng‐Yun Wang
- Department of OrthopedicsZibo Central HospitalZiboShandongChina
| | - Qi‐Jun Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Dong‐Fan Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shuai‐Kang Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Yu Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wei‐Guo Zhu
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wei Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Chao Kong
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shi‐Bao Lu
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Xiao‐Long Chen
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
4
|
Balkrishna A, Sharma Y, Dabas S, Arya V, Dabas A. Molecular Mechanism of Cynodon dactylon Phytosterols Targeting MAPK3 and PARP1 to Combat Epithelial Ovarian Cancer: A Multifaceted Computational Approach. Cell Biochem Biophys 2024; 82:2625-2650. [PMID: 38961033 DOI: 10.1007/s12013-024-01375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Epithelial Ovarian Cancer (EOC) presents a global health concern, necessitating the development of innovative therapeutic strategies to combat its impact. This study was employed to investigate the unexplored therapeutic efficacy of Cynodon dactylon phytochemicals against EOC using a multifaceted computational approach. A total of 19 out of 89 rigorously curated phytochemicals were assessed as potential drug targets via ADMET profiling, while protein-protein interaction analysis scrutinized the top 20 hub genes among 264 disease targets, revealing their involvement in cancer-related pathways and underscoring their significance in EOC pathogenesis. In molecular docking, Stigmasterol acetate showed the highest binding affinity (-10.9 kcal/mol) with Poly [ADP-ribose] polymerase-1 (PDB: 1UK1), while Arundoin and Beta-Sitosterol exhibited strong affinities (-10.4 kcal/mol and -10.1 kcal/mol, respectively); additionally, Beta-Sitosterol interacting with Mitogen-activated protein kinase 3 (PDB: 4QTB) showed a binding affinity of -10.1 kcal/mol, forming 2 hydrogen bonds and a total of 10 bonds with 10 residues. Molecular dynamics simulations exhibited the significant structural stability of the Beta-Sitosterol-4QTB complex with superior binding free energy (-36.61 kcal/mol) among the three complexes. This study identified C. dactylon phytosterols, particularly Beta-Sitosterol, as effective in targeting MAPK3 and PARP1 to combat EOC, laying the groundwork for further experimental validation and drug development efforts.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, 249405, Uttarakhand, India
| | - Yoganshi Sharma
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Shakshi Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India
- University of Patanjali, Patanjali Yogpeeth, Haridwar, 249405, Uttarakhand, India
| | - Anurag Dabas
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, Uttarakhand, India.
| |
Collapse
|
5
|
Yu J, Song H, Zhou L, Wang S, Liu X, Liu L, Ma Y, Li L, Wen S, Luo Y, Zhang X, Li W, Niu X. (-)-Epicatechin gallate prevented atherosclerosis by reducing abnormal proliferation of VSMCs and oxidative stress of AML 12 cells. Cell Signal 2024; 121:111276. [PMID: 38936786 DOI: 10.1016/j.cellsig.2024.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
(-)-Epicatechin gallate (ECG) is beneficial to the treatment of cardiovascular diseases (CVDs), especially atherosclerosis (AS) through antioxidant stress, but there is a lack of detailed mechanism research. In this study, the therapeutic target of ECG was determined by crossing the drug target and disease target of CVDs and AS. The combination ability of ECG with important targets was verified by Discovery Studio software. The abnormal proliferation of vascular smooth muscle cells (VSMCs) induced by Ang-II and the oxidative damage of AML 12 induced by H2O2 were established to verify the reliability of ECG intervention on the target protein. A total of 120 ECG targets for the treatment of CVDs-AS were predicted by network pharmacology. The results of molecular docking showed that ECG has strong binding force with VEGFA, MMP-9, CASP3 and MMP-2 domains. In vitro experiments confirmed that ECG significantly reduced the expression of VEGFA, MMP-9, CASP3 and MMP-2 in Ang-II-induced VSMCs, and also blocked the abnormal proliferation, oxidative stress and inflammatory reaction of VSMCs by inhibiting the phosphorylation of PI3K signaling pathway. At the same time, ECG also interfered with H2O2-induced oxidative damage of AML 12 cells, decreased the expression of ROS and MDA and cell foaming, and increased the activities of antioxidant enzymes such as SOD, thus playing a protective role.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lingyi Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lingli Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Sha Wen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yuzhi Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
6
|
Lv F, Li X, Wang Z, Wang X, Liu J. Identification and validation of Rab GTPases RAB13 as biomarkers for peritoneal metastasis and immune cell infiltration in colorectal cancer patients. Front Immunol 2024; 15:1403008. [PMID: 39192986 PMCID: PMC11347351 DOI: 10.3389/fimmu.2024.1403008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Background As one of the most common cancer, colorectal cancer (CRC) is with high morbidity and mortality. Peritoneal metastasis (PM) is a fatal state of CRC, and few patients may benefit from traditional therapies. There is a complex interaction between PM and immune cell infiltration. Therefore, we aimed to determine biomarkers associated with colorectal cancer peritoneal metastasis (CRCPM) and their relationship with immune cell infiltration. Methods By informatic analysis, differently expressed genes (DEGs) were selected and hub genes were screened out. RAB13, one of the hub genes, was identificated from public databases and validated in CRC tissues. The ESTIMATE, CEBERSORT and TIMER algorithms were applied to analyze the correlation between RAB13 and immune infiltration in CRC. RAB13's expression in different cells were analyzed at the single-cell level in scRNA-Seq. The Gene Set Enrichment Analysis (GSEA) was performed for RAB13 enrichment and further confirmed. Using oncoPredict algorithm, RAB13's impact on drug sensitivity was evaluated. Results High RAB13 expression was identified in public databases and led to a poor prognosis. RAB13 was found to be positively correlated with the macrophages and other immune cells infiltration and from scRNA-Seq, RAB13 was found to be located in CRC cells and macrophages. GSEA revealed that high RAB13 expression enriched in a various of biological signaling, and oncoPredict algorithm showed that RAB13 expression was correlated with paclitaxel sensitivity. Conclusion Our study indicated clinical role of RAB13 in CRC-PM, suggesting its potential as a therapeutic target in the future.
Collapse
Affiliation(s)
- Fei Lv
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoqi Li
- Oncology Department III, People’s Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Zhe Wang
- Department of Digestive Diseases 1, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Xiaobo Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Zhou J, Cui R, Lin L. A Systematic Review of the Application of Computational Technology in Microtia. J Craniofac Surg 2024; 35:1214-1218. [PMID: 38710037 DOI: 10.1097/scs.0000000000010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 05/08/2024] Open
Abstract
Microtia is a congenital and morphological anomaly of one or both ears, which results from a confluence of genetic and external environmental factors. Up to now, extensive research has explored the potential utilization of computational methodologies in microtia and has obtained promising results. Thus, the authors reviewed the achievements and shortcomings of the research mentioned previously, from the aspects of artificial intelligence, computer-aided design and surgery, computed tomography, medical and biological data mining, and reality-related technology, including virtual reality and augmented reality. Hoping to offer novel concepts and inspire further studies within this field.
Collapse
Affiliation(s)
- Jingyang Zhou
- Ear Reconstruction Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | |
Collapse
|
8
|
Yang R, Fu Y, Li C, Chen Y, He A, Jiang X, Ma J, Zhang T. Profiling of Long Non-Coding RNAs in Auricular Cartilage of Patients with Isolated Microtia. Genet Test Mol Biomarkers 2024; 28:50-58. [PMID: 38416666 DOI: 10.1089/gtmb.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Introduction: Microtia is the second most common maxillofacial birth defect worldwide. However, the involvement of long non-coding RNAs (lncRNAs) in isolated microtia is not well understood. This study aimed at identifying lncRNAs that regulate the expression of genes associated with isolated microtia. Methods: We used our microarray data to analyze the expression pattern of lncRNA in the auricular cartilage tissues from 10 patients diagnosed with isolated microtia, alongside 15 control subjects. Five lncRNAs were chosen for validation using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: We identified 4651 differentially expressed lncRNAs in the auricular cartilage from patients with isolated microtia. By Gene Ontology/Kyoto Encyclopedia of Genes and Genomes pathway (GO/KEGG) analysis, we identified 27 differentially expressed genes enriched in pathways associated with microtia. In addition, we predicted 9 differentially expressed genes as potential cis-acting targets of 12 differentially expressed lncRNAs. Our findings by qRT-PCR demonstrate significantly elevated expression levels of ZFAS1 and DAB1-AS1, whereas ADIRF-AS1, HOTAIRM1, and EPB41L4A-AS1 exhibited significantly reduced expression levels in the auricular cartilage tissues of patients with isolated microtia. Conclusions: Our study sheds light on the potential involvement of lncRNAs in microtia and provides a basis for further investigation into their functional roles and underlying mechanisms.
Collapse
Affiliation(s)
- Run Yang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yaoyao Fu
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Chenlong Li
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Yin Chen
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Aijuan He
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Xin Jiang
- Medical Laboratory of Nantong Zhongke, Department of Bioinformatics, Nantong, Jiangsu, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Tianyu Zhang
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Li T, Wang W, Guo Q, Li J, Tang T, Wang Y, Liu D, Yang K, Li J, Deng K, Wang F, Li H, Wu Z, Guo J, Guo D, Shi Y, Zou J, Sun J, Zhang X, Yang M. Rosemary (Rosmarinus officinalis L.) hydrosol based on serotonergic synapse for insomnia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116984. [PMID: 37532071 DOI: 10.1016/j.jep.2023.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosemary (Rosmarinus officinalis L.) has been widely used as a traditional remedy for insomnia, depression and anxiety in China and Western countries. Modern pharmacological studies have shown that rosemary has important applications in neurological disorders. However, the mechanism of action of rosemary hydrosol in the treatment of insomnia is not known. AIMS OF THE STUDY Insomnia is closely linked to anxiety and depression, and its pathogenesis is related to biology, psychology, and sociology. Rosemary is a natural plant that has been used to treat insomnia and depression and has good biological activity, but its material basis and mechanism for the treatment of insomnia are not clear. Here, we report on the role of aqueous extracts of rosemary in the treatment of insomnia. MATERIALS AND METHODS The study was based on network pharmacology, using a combination of RNA-sequencing, "quantity-effect" weighting coefficients, and pharmacodynamic experiments. DL-4-chlorophenylalanine (PCPA) was intraperitoneally injected into SD rats to replicate the insomnia model with a blank, model, diazepam, and rosemary hydrosol low-, medium-, and high-dose groups were set up for the experiment. The key pathways in the treatment of insomnia with rosemary hydrosol were analyzed by molecular docking, open field assay, ELISA, western-Blot, Rt-PCR, and immunohistochemical assay. RESULTS Rosemary hydrosol was analyzed by GC-MS to identify 19 components. 1579 differential genes were obtained by RNA-Seq analysis, 533 targets for rosemary hydrosol and 2705 targets for insomnia, and 29 key targets were obtained by intersection. The KEGG results were ranked by "quantity-effect" weighting coefficients, resulting in serotonergic synapse was the key pathway for the treatment of insomnia with rosemary hydrosol. Molecular docking results showed that 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, 3-methyl-4-isopropylphenol, caryophyllene, and citronellol of rosemary hydrosol acted synergistically to achieve a therapeutic effect on insomnia. Caryophyllene acts on the HTR1A target by upregulating 5-HT1AR, leading to increased 5-HT release, and upregulation of ADCY5, cAMP, PKA and GABAA at serotonergic synapses; citronellol upregulated ADCY5 and 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, and 3-methyl-4-isopropylphenol up-regulated GABAA to improve insomnia symptoms. In open-field experiments, ELISA kits (5-HT, GABA, and DA), Western-blotting, Rt-PCR and immunohistochemical assay experiments, insomnia rats in the low-, medium- and high-dose groups of rosemary hydrosol showed different degrees of improvement compared with the model group. CONCLUSIONS It was shown that rosemary hydrosol may exert its therapeutic effects on insomnia through serotonergic synapses by combining RNA-Seq, "quantity-effect" weighting coefficients network pharmacology and pharmacodynamic experiments. We have provided a preliminary theoretical study for the development of rosemary hydrosol additive into a beverage for the treatment of insomnia, but it needs to be studied in depth. This study was conducted in rats and the results have limitations and may not apply to humans.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Wenfei Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Qiuting Guo
- Xianyang Vocational Technical College, Xianyang, 712000, Shaanxi, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Ding Liu
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Kai Yang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jiayi Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Kaixue Deng
- Shaanxi Jianchi Biological Pharmaceutical Co., Ltd, Xianyang, 712000, Shaanxi, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jianbo Guo
- Shaanxi Province Food and Drug Safety Monitoring Key Laboratory, Shaanxi Institute of Food and Drug Control, Xi'an, 710000, Shaanxi, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
10
|
You H, Song S, Liu D, Ren T, Yin SJ, Wu P, Mao J. Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:59-72. [PMID: 38154965 PMCID: PMC10762491 DOI: 10.4196/kjpp.2024.28.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.
Collapse
Affiliation(s)
- Hankun You
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Siyuan Song
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Deren Liu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Tongsen Ren
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Song Jiang Yin
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Peng Wu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| | - Jun Mao
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China
- Department of Orthopedics, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China
| |
Collapse
|
11
|
Wang Y, Zhao X, Xiao M, Lin X, Chen Q, Qin S, Ti H, Yang Z. Network pharmacology associated anti-influenza mechanism research of Qingjie-Tuire Granule via STAT1/3 signaling pathway. Heliyon 2023; 9:e14649. [PMID: 37101493 PMCID: PMC10123184 DOI: 10.1016/j.heliyon.2023.e14649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Qingjie-Tuire (QT) granule was approved for clinical use and its combination was reported to treat influenza infection. To explore its active component and mechanism, the components of QT granule were retrieved from UPLC-UC-Q-TOF/MS analysis. The genes corresponding to the targets were retrieved using GeneCards and TTD database. The herb-compound-target network was constructed by Cytoscape. The target protein-protein interaction network was built using STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of QT granule to IAV were performed for further study. The regulation to different signaling transduction events and cytokine/chemokine expression of QT granule was evaluated using Western blotting and real-time qPCR. Totally, 47 compounds were identified and effect of QT granule on cell STAT1/3 signaling pathways was confirmed by A549 cell model. The efficiency of QT granule on host cell contributes to its clinical application and mechanism research.
Collapse
|
12
|
Shu-Di-Huang and Gan-Cao Herb Pair Restored the Differentiation Potentials of Mesenchymal Stem Progenitors in Treating Osteoporosis via Downregulation of NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7795527. [PMID: 34950216 PMCID: PMC8692010 DOI: 10.1155/2021/7795527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
Background Shu-Di-Huang (Radix Rehmanniae Praeparata, RR) and Gan-Cao (liquorice, L) are frequently used traditional Chinese herb pair in treating osteoporosis (OP). However, the exact mechanism of the RR and L herb pair (RR-L) remains unclear. To explore the efficacy and possible mechanisms of RR-L in treating OP, in silico, in vitro, and in vivo experiments were conducted in the current study. Methods In silico, potential therapeutic target genes and active chemical compounds of RR-L herb pair were predicted and constructed into a network. In vivo, 30 Sprague Dawley rats were divided into 3 groups, including the sham group, the OP model group, and the RR-L-treated OP group. Micro-CT and pathological sections were conducted to validate the therapeutic effects of RR-L in treating OP. MSCs of rats were isolated and cultured in vitro to validate the mesenchymal stem cells (MSCs) related phenotype changes, including Alizarin red staining, Oil red staining, and immunofluorescence. In vitro, cell proliferation analysis, Alizarin red staining, Oil red staining, immunofluorescence of NF-κB, and protein expression of PPARγ, RUNX2, OCN, and p65 were conducted on MSCs to explore the RR-L containing serum in vitro. Also, activator and inhibitor of NF-κB signaling pathway were introduced to determine the possible mechanism of RR-L in the treatment of OP via enhancing MSCs proliferation and differentiation. Results In silico, 168 chemical compounds with a property of oral bioavailability ≥30% and drug-likeness ≥0.18 were recognized as potentially active compounds in RR-L and 249 genes were found to be the targets of which. Among them, 120 genes were found to be therapeutic genes of RR-L in treating OP and KEGG and GO analysis of which demonstrated that RR-L involves in lipid metabolism and multiple inflammation-related signaling pathways. In vivo, ovariectomy- (OVX-) induced OP phenotypes in Sprague Dawley rats include bone mineral density and microarchitecture damaging, abnormal bone metabolism, upregulation of inflammation markers, and damaged differentiation potential of MSCs. Treatment of RR-L reversed the trend and restored the differentiation potential of MSCs. In vitro, RR-L containing serum promoted the osteogenic differentiation and suppressed adipogenic differentiation of MSCs via downregulation of the NF-κB signaling pathway. Also, RR-L containing serum inhibited the tumor necrosis factor-α (TNF-α) induced activation of the NF-κB signaling pathway. On the opposite, the addition of the NF-κB specific inhibitor significantly reduced the effect of RR-L on MSCs. Conclusions In the current study, network pharmacology prediction and experimental validation elucidated that the RR-L herb pair restored damaged MSC differentiation potential via the NF-κB signaling pathway; this could be the possible mechanism of RR-L in treating OP. This finding provides an alternative option in OP therapy.
Collapse
|
13
|
Jiang JS, Zhang Y, Luo Y, Ru Y, Luo Y, Fei XY, Song JK, Ding XJ, Zhang Z, Yang D, Yin SY, Zhang HP, Liu TY, Li B, Kuai L. The Identification of the Biomarkers of Sheng-Ji Hua-Yu Formula Treated Diabetic Wound Healing Using Modular Pharmacology. Front Pharmacol 2021; 12:726158. [PMID: 34867329 PMCID: PMC8636748 DOI: 10.3389/fphar.2021.726158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Sheng-Ji Hua-Yu (SJHY) formula has been proved to reduce the severity of diabetic wound healing without significant adverse events in our previous clinical trials. However, based on multi-target characteristics, the regulatory network among herbs, ingredients, and hub genes remains to be elucidated. The current study aims to identify the biomarkers of the SJHY formula for the treatment of diabetic wound healing. First, a network of components and targets for the SJHY formula was constructed using network pharmacology. Second, the ClusterONE algorithm was used to build a modular network and identify hub genes along with kernel pathways. Third, we verified the kernel targets by molecular docking to select hub genes. In addition, the biomarkers of the SJHY formula were validated by animal experiments in a diabetic wound healing mice model. The results revealed that the SJHY formula downregulated the mRNA expression of Cxcr4, Oprd1, and Htr2a, while upregulated Adrb2, Drd, Drd4, and Hrh1. Besides, the SJHY formula upregulated the kernel pathways, neuroactive ligand-receptor interaction, and cAMP signaling pathway in the skin tissue homogenate of the diabetic wound healing mice model. In summary, this study identified the potential targets and kernel pathways, providing additional evidence for the clinical application of the SJHY formula for the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ru
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yue Luo
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Xiao-Jie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhan Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dan Yang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hui-Ping Zhang
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Tai-Yi Liu
- Shanghai Applied Protein Technology Co., Ltd., Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Shanghai Skin Disease Hospital of Tongji University, Shanghai, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Qian Y, Shanbo M, Shaojie H, Long L, Yuhan C, Jin W, Shan M, Xiao-Peng S. Integrating bioinformatics with pharmacological evaluation for illustrating the action mechanism of herbal formula Jiao'e mixture in suppressing lung carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114513. [PMID: 34400263 DOI: 10.1016/j.jep.2021.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lung carcinoma (LC) is not only a kind of disease that seriously threatens human life but also an intractable problem in modern medicine. Jiao'e Mixture (JEM) is an innovative Chinese medicine formula with Chinese patent, which is composed of two herbal extracts with a specific ratio-zedoary turmeric oil and medicinal Zanthoxylum bungeanum Maxim(Z. bungeanum Maxim) seeds oil (ZMSO). Zedoary turmeric oil is extracted from dried rhizomes of Curcuma wenyujin Y.H.Chen et C. Ling, which has been reported have an anti-cancer effects. Medicinal ZMSO is a by-product of Z. bungeanum Maxim, refined from kernel shell separation, modern cold soaking and refining technology; JEM is used to treat Lung carcinoma (LC) patients in folk for many years. However, its therapeutic mechanisms for treating LC have not been fully explored. AIM OF THE STUDY The purpose of this study was to explore the therapeutic mechanisms of JEM for treating LC. MATERIALS AND METHODS The action mechanism of JEM in LC treatment was analysed by comprehensive network pharmacology approach combined with experimental validation (in vivo and in vitro). RESULTS Seventeen active compounds and 457 related targets were collected from the HERB, TCMSP, and Swiss Target Prediction platforms. Nine hundred and thirty-eight LC related targets were obtained from Gene Cards and OMIM databases. Finally, 140 overlapping targets were obtained, which representing the target of JEM in LC treatment. The pathway analysis showed that PI3K-AKT could be a potential pathway for JEM in LC treatment. In vivo results presented that JEM had a good effect in inhibiting the growth of LC tumour cells with high efficacy and low toxicity. In vitro experiments validated that JEM had inhibited LC cells' proliferation, migration and invasion, and had induced cell apoptosis mainly via PI3K/Akt signalling pathways. CONCLUSION The anti-LC activity of JEM might via regulating the PI3K-AKT signalling pathways.This study may provide further evidence for the potential use of JEM in LC treatment.
Collapse
Affiliation(s)
- Yang Qian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, China
| | - Ma Shanbo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Huang Shaojie
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Li Long
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Chen Yuhan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China; College of Pharmacy, Shaanxi University of Chinese Medicine, 712046, Xianyang, China
| | - Wang Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China
| | - Miao Shan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China.
| | - Shi Xiao-Peng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, 71000, Xi'an, China.
| |
Collapse
|
15
|
Lin Y, Song T, Ronde EM, Ma G, Cui H, Xu M. The important role of MDM2, RPL5, and TP53 in mycophenolic acid-induced cleft lip and palate. Medicine (Baltimore) 2021; 100:e26101. [PMID: 34032749 PMCID: PMC8154508 DOI: 10.1097/md.0000000000026101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Mycophenolate embryopathy (MPE) is a mycophenolic acid (MPA)-induced congenital malformation with distinctive symptoms. Cleft lip/palate (CLP) is one of the most common symptoms of MPE. The aim of this study was to screen and verify hub genes involved in MPA-induced CLP and to explore the potential molecular mechanisms underlying MPE.Overlapping genes related to MPA and CLP were obtained from the GeneCards database. These genes were further analyzed via bioinformatics. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results were visualized with the Cytoscape ClueGO plug-in. Gene protein-protein interaction (PPI) networks were constructed based on data obtained from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database.Overall, 58 genes related to MPA and CLP were identified. The genes most relevant to MPA-induced CLP included ABCB1, COL1A1, Rac1, TGFβ1, EDN1, and TP53, as well as the TP53-associated genes MDM2 and RPL5. GO analysis demonstrated gene enrichment regarding such terms as ear, mesenchymal, striated muscle, and ureteric development. KEGG analysis demonstrated gene enrichment in such pathways as the HIF-1 signaling pathway, glycosylphosphatidylinositol-anchor biosynthesis, the TNF signaling pathway, and hematopoietic stem cell development.Bioinformatic analysis was performed on the genes currently known to be associated with MPA-induced CLP pathogenesis. MPA-induced CLP is mediated by multiple ribosome stress related genes and pathways. MDM2, RPL5 and TP53 could be the main contributor in this pathogenesis, along with several other genes. ABCB1 polymorphism could be related to the probability of MPA-induced CLP.
Collapse
Affiliation(s)
- Yangyang Lin
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, The Netherlands
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning
| | - Tao Song
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Elsa M. Ronde
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Gang Ma
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning
| | - Huiqin Cui
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meng Xu
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| |
Collapse
|