1
|
Oduro D, Baafi E, Opoku-Agyeman P, Adams T, Okai AA, Bruku S, Kyei S, Banahene P, Danso-Coffie C, Boafo E, Yeboah R, Futagbi G, Duah-Quashie NO. Enteric parasites Cyclospora cayetanensis and Cryptosporidium hominis in domestic and wildlife animals in Ghana. Parasit Vectors 2024; 17:199. [PMID: 38698452 PMCID: PMC11064306 DOI: 10.1186/s13071-024-06225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Enteric parasitic infections remain a major public health problem globally. Cryptosporidium spp., Cyclospora spp. and Giardia spp. are parasites that cause diarrhea in the general populations of both developed and developing countries. Information from molecular genetic studies on the speciation of these parasites and on the role of animals as vectors in disease transmission is lacking in Ghana. This study therefore investigated these diarrhea-causing parasites in humans, domestic rats and wildlife animals in Ghana using molecular tools. METHODS Fecal samples were collected from asymptomatic school children aged 9-12 years living around the Shai Hills Resource Reserve (tourist site), from wildlife (zebras, kobs, baboons, ostriches, bush rats and bush bucks) at the same site, from warthogs at the Mole National Park (tourist site) and from rats at the Madina Market (a popular vegetable market in Accra, Ghana. The 18S rRNA gene (18S rRNA) and 60-kDa glycoprotein gene (gp60) for Cryptosporidium spp., the glutamate dehydrogenase gene (gdh) for Giardia spp. and the 18S rDNA for Cyclospora spp. were analyzed in all samples by PCR and Sanger sequencing as markers of speciation and genetic diversity. RESULTS The parasite species identified in the fecal samples collected from humans and animals included the Cryptosporidium species C. hominis, C. muris, C. parvum, C. tyzzeri, C. meleagridis and C. andersoni; the Cyclopora species C. cayetanensis; and the Gardia species, G. lamblia and G. muris. For Cryptosporidium, the presence of the gp60 gene confirmed the finding of C. parvum (41%, 35/85 samples) and C. hominis (29%, 27/85 samples) in animal samples. Cyclospora cayetanensis was found in animal samples for the first time in Ghana. Only one human sample (5%, 1/20) but the majority of animal samples (58%, 51/88) had all three parasite species in the samples tested. CONCLUSIONS Based on these results of fecal sample testing for parasites, we conclude that animals and human share species of the three genera (Cryptosporidium, Cyclospora, Giardia), with the parasitic species mostly found in animals also found in human samples, and vice-versa. The presence of enteric parasites as mixed infections in asymptomatic humans and animal species indicates that they are reservoirs of infections. This is the first study to report the presence of C. cayetanensis and C. hominis in animals from Ghana. Our findings highlight the need for a detailed description of these parasites using high-throughput genetic tools to further understand these parasites and the neglected tropical diseases they cause in Ghana where such information is scanty.
Collapse
Affiliation(s)
- Daniel Oduro
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Esther Baafi
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Philip Opoku-Agyeman
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Tryphena Adams
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Akweley Abena Okai
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Selassie Bruku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Sandra Kyei
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Phillip Banahene
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Caleb Danso-Coffie
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Boafo
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Rhoda Yeboah
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Godfred Futagbi
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
2
|
Ma L, Jian Y, Wang G, Cai Q, Wang G, Li X, Zhang X, Karanis P. The Prevalence of Cryptosporidium spp. and Giardia duodenalis in Marmota himalayana (Rodentia: Sciuridae) in the Qinghai Tibetan Plateau area, China. IRANIAN JOURNAL OF PARASITOLOGY 2024; 19:162-170. [PMID: 39011525 PMCID: PMC11246204 DOI: 10.18502/ijpa.v19i2.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/20/2024] [Indexed: 07/17/2024]
Abstract
Background Cryptosporidium and Giardia are well-known important intestinal zoonotic pathogens that can infect various hosts and cause diarrhoeal diseases. We aimed to determine the epidemiological prevalence and molecular characterization of Cryptosporidium and Giardia species in Himalayan marmot (Marmota himalayana, class Marmota) in the Qinghai Tibetan Plateau Area of Qinghai Province, Northwest China. Methods Overall, 243 Himalayan marmot fecal samples were collected in 2017 and in 2019 and a two-step nested PCR technique was performed to amplify the fragments of the SSU rRNA gene of Cryptosporidium and 18S ribosomal RNA gene of Giardia. Molecular characterization of Cryptosporidium was performed with the primary primers NDIAGF2 and N-DIAGR2, the secondary primers CPB-DIAGF and CPB-DIAGR. Similarly, molecular characterization of Giardia was used the first primers Gia2029 and Gia2150c, the secondary primers RH11 and RH4. The positive PCR products were sequenced and the sequences were processed by Clustal Omega and BLAST. Phylogenetic analysis was achieved by NJ method in MEGA. Results The infection rate of Cryptosporidium spp. and G. duodenalis was 4.9% (12/243) and 0.8% (2/243) in M. himalayana, respectively. Cryptosporidium spp. are characterized as novel genotypes Cryptosporidium marmot genotype I (n=3) and Cryptosporidium marmot genotype II (n=9); G. duodenalis assemblage A (n=2) was found in M. himalayana. Conclusion This is the first report of Cryptosporidium spp. and G. duodenalis infections in M. himalayana in Qinghai of Northwest China. The results indicate the existence of Cryptosporidium species and G. duodenalis infections that may have a potential public health significance.
Collapse
Affiliation(s)
- Liqing Ma
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Xining, 810016, P. R. China
| | - Yingna Jian
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Xining, 810016, P. R. China
| | - Guanghua Wang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Xining, 810016, P. R. China
| | - Qigang Cai
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Xining, 810016, P. R. China
| | - Geping Wang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Xining, 810016, P. R. China
| | - Xiuping Li
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Xining, 810016, P. R. China
| | - Xueyong Zhang
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Xining, 810016, P. R. China
| | - Panagiotis Karanis
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research for Prevention and Control, Xining, 810016, P. R. China
- Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Cologne, Germany
- University of Nicosia Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, Nicosia, Cyprus
| |
Collapse
|
3
|
Xu J, Liu H, Jiang Y, Jing H, Cao J, Yin J, Li T, Sun Y, Shen Y, Wang X. Genotyping and subtyping of Cryptosporidium spp. and Giardia duodenalis isolates from two wild rodent species in Gansu Province, China. Sci Rep 2022; 12:12178. [PMID: 35842437 PMCID: PMC9288474 DOI: 10.1038/s41598-022-16196-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
Cryptosporidium spp. and Giardia duodenalis are commonly detected intestinal protozoa species in humans and animals, contributing to global gastroenteritis spread. The present study examined the prevalence and zoonotic potential of Cryptosporidium spp. and G. duodenalis in Himalayan marmots and Alashan ground squirrels in China's Qinghai-Tibetan Plateau area (QTPA) for the first time. Four hundred ninety-eight intestinal content samples were collected from five counties of QTPA of Gansu province, China.
All samples were examined for Cryptosporidium spp. and G. duodenalis by PCR amplification. The resultant data were statistically analyzed by chi-square, Fisher's test and Bonferroni correction using SPSS software 25. 0. Cryptosporidium positive samples were further subtyped through analysis of the 60-kDa glycoprotein (gp60) gene sequence. A total of 11 and 8 samples were positive for Cryptosporidium spp. and G. duodenalis, respectively. Prevalence of Cryptosporidium spp. and G. duodenalis were 2.5% (10/399) and 1.5% (6/399) in Himalayan marmots, 1.0% (1/99) and 2.0% (2/99) in Alashan ground squirrels, respectively. Sequence analysis confirmed the presence of C. rubeyi (n = 2), ground squirrel genotype II (n = 7), chipmunk genotype V (n = 1) and horse genotype (n = 1). The horse genotype was further subtyped as novel subtype VIbA10. G. duodenalis zoonotic assemblages A (n = 1), B (n = 6), E (n = 1) were identified in the present study. This is the first study to identify Cryptosporidium spp. and G. duodenalis in Himalayan marmots and Alashan ground squirrels, suggesting the potential zoonotic transmission of the two pathogens in QTPA.
Collapse
Affiliation(s)
- Jie Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Huaiqi Jing
- National Institute of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China.,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Teng Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Yeting Sun
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China.,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China.,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China.,National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, 200025, China. .,NHC Key Laboratory of Parasite and Vector Biology, Shanghai, 200025, China. .,WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, China. .,National Center for International Research on Tropical Diseases, Shanghai, 200025, China. .,School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xin Wang
- National Institute of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
4
|
Pane S, Putignani L. Cryptosporidium: Still Open Scenarios. Pathogens 2022; 11:pathogens11050515. [PMID: 35631036 PMCID: PMC9143492 DOI: 10.3390/pathogens11050515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptosporidiosis is increasingly identified as a leading cause of childhood diarrhea and malnutrition in both low-income and high-income countries. The strong impact on public health in epidemic scenarios makes it increasingly essential to identify the sources of infection and understand the transmission routes in order to apply the right prevention or treatment protocols. The objective of this literature review was to present an overview of the current state of human cryptosporidiosis, reviewing risk factors, discussing advances in the drug treatment and epidemiology, and emphasizing the need to identify a government system for reporting diagnosed cases, hitherto undervalued.
Collapse
Affiliation(s)
- Stefania Pane
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, 00146 Rome, Italy;
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
5
|
Zhang K, Fu Y, Li J, Zhang L. Public health and ecological significance of rodents in Cryptosporidium infections. One Health 2022; 14:100364. [PMID: 34984218 PMCID: PMC8692995 DOI: 10.1016/j.onehlt.2021.100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Cryptosporidium is one of the most important genera of intestinal zoonotic pathogens that cause diarrhea in both humans and animals. Rodents are common and important hosts or carriers of pathogens with public health importance, and rodents play an important role in the ecology of zoonotic transmission. The overall worldwide prevalence of Cryptosporidium spp. in rodents is 19.8% (4589/23142). Twenty-five known Cryptosporidium species and 43 genotypes have been identified, and C. parvum is the dominant species in rodents worldwide. Rodents transfer pathogens to humans by the direct route or by serving as intermediate hosts transmitting the pathogens to other animals. We review the epidemiology, diversity, and transmission routes of Cryptosporidium spp. in rodents. The main purpose of this review is to highlight Cryptosporidium infection in rodents and its transmission, associated risk factors, and prevention; in addition, we assess the public health and ecological significance of Cryptosporidium infections from the One Health perspective. Review of the epidemiology and diversity of Cryptosporidium in rodents. The overall worldwide prevalence is 19.8% (4589/23142), C. parvum is the dominant species. Public health and ecological significance of rodent-borne Cryptosporidium at “One Health” perspective.
Collapse
Affiliation(s)
- Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China.,International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, PR China
| | - Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China.,International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, PR China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China.,International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China.,International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, PR China
| |
Collapse
|
6
|
Chen J, Wang W, Lin Y, Sun L, Li N, Guo Y, Kvac M, Ryan U, Feng Y, Xiao L. Genetic characterizations of Cryptosporidium spp. from pet rodents indicate high zoonotic potential of pathogens from chinchillas. One Health 2021; 13:100269. [PMID: 34113708 PMCID: PMC8170418 DOI: 10.1016/j.onehlt.2021.100269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Cryptosporidium spp. are common protozoan pathogens in mammals. With pet rodents being integrated into modern life, the potential roles of them in transmitting parasites to humans need assessments. In the present study, we examined the occurrence of Cryptosporidium spp. in pet rodents in Guangdong, south China. A total of 697 fecal samples were collected from 11 species of rodents in seven pet shops, one pet market and one farm. Cryptosporidium spp. were identified by PCR analysis of the small subunit rRNA gene. An overall infection rate of 36.9% (257/697) was obtained, with infection rates varying from 9.3% in chinchillas, 52.3% in guinea pigs, 57.1% in squirrels, to 68.4% in cricetid animals. Nine Cryptosporidium species and genotypes were identified, including C. wrairi (in 129 guinea pigs), C. andersoni (in 34 hamsters), C. homai (in 32 guinea pigs), Cryptosporidium hamster genotype (in 30 hamsters), C. ubiquitum (in 24 chinchillas and squirrels), C. parvum (in 2 chinchillas), Cryptosporidium ferret genotype (in 2 chipmunks), C. muris (in 1 hamster and 1 guinea pig), and Cryptosporidium chipmunk genotype V (in 1 chinchilla and 1 chipmunk). Sequence analysis of the 60 kDa glycoprotein gene identified three subtype families of C. ubiquitum, including family XIId in 15 chinchillas, XIIa in 5 chinchillas, and a new subtype family (XIIi) in 1 squirrel. The identification of C. parvum and C. ubiquitum in pet rodents suggests that these animals, especially chinchillas, could serve as reservoirs of human-pathogenic Cryptosporidium spp. Hygiene should be practiced in the rear and care of these animals, and One Health measures should be developed to reduce the occurrence of zoonotic Cryptosporidium infections due to contact with pet rodents. Cryptosporidium spp. were prevalent in pet rodents in Guangdong, China. Nine Cryptosporidium species and genotypes were identified. Chinchillas were commonly infected with zoonotic C. ubiquitum. The XIId subtype family of C. ubiquitum has been imported into China together with chinchillas. One Health measures should be developed to control zoonotic cryptosporidiosi.
Collapse
Affiliation(s)
- Jia Chen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Weijian Wang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yu Lin
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianbei Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Martin Kvac
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
7
|
Li X, Atwill ER. Diverse Genotypes and Species of Cryptosporidium in Wild Rodent Species from the West Coast of the USA and Implications for Raw Produce Safety and Microbial Water Quality. Microorganisms 2021; 9:microorganisms9040867. [PMID: 33920594 PMCID: PMC8073747 DOI: 10.3390/microorganisms9040867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Cryptosporidium spp. are protozoan parasites that infect perhaps all vertebrate animals, with a subset of species and genotypes that function as food- and waterborne pathogens. The objective of this work was to collate the Cryptosporidium species and genotypes from common wild rodents on the west coast of the USA and update the information regarding the zoonotic potential of Cryptosporidium from these ubiquitous wild species. Representative sequences of the 18S rRNA gene for a unique set of Cryptosporidium isolates obtained from deer mice, house mice, mountain beavers, yellow-bellied marmot, long-tailed vole, California ground squirrels, Belding’s ground squirrels, and a golden-mantled ground squirrel in GenBank were selected for phylogenetic analysis. Phylogenetic and BLAST analysis indicated that 4 (18%) of the 22 unique Cryptosporidium sequences from these wild rodent species were 99.75% to 100% identical to known zoonotic species (C. parvum, C. ubiquitum, C. xiaoi), suggesting that a minority of these representative Cryptosporidium isolates could have a public health impact through food and waterborne routes of human exposure. These zoonotic isolates were shed by deer mice and a yellow-bellied marmot from California, and from a mountain beaver trapped in Oregon. In addition, the group of unique Cryptosporidium isolates from deer mice and ground dwelling squirrels exhibited considerable DNA diversity, with multiple isolates appearing to be either host-limited or distributed throughout the various clades within the phylogenetic tree representing the various Cryptosporidium species from host mammals. These results indicate that only a subset of the unique Cryptosporidium genotypes and species obtained from wild rodents on the US west coast are of public health concern; nevertheless, given the geographic ubiquity of many of these host species and often high density at critical locations like municipal watersheds or produce production fields, prudent pest control practices are warranted to minimize the risks of water- and foodborne transmission to humans.
Collapse
Affiliation(s)
- Xunde Li
- Western Institute for Food Safety and Security, University of California, Davis, CA 95616, USA;
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
8
|
Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:88-109. [PMID: 28560163 PMCID: PMC5439462 DOI: 10.1016/j.ijppaw.2015.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Collapse
|