1
|
Diekmann I, Krücken J, Kuzmina TA, Bredtmann CM, Louro M, Kharchenko VA, Tzelos T, Matthews JB, Madeira de Carvalho LM, von Samson-Himmelstjerna G. Comparative phylogenetic and sequence identity analysis of internal transcribed spacer 2 and cytochrome c oxidase subunit I as DNA barcode markers for the most common equine Strongylidae species. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 129:105729. [PMID: 39955017 DOI: 10.1016/j.meegid.2025.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Morphologically, 64 strongylid species have been described in equines. Co-infections are common, with up to 29 species reported in a single horse. Morphological identification of these species is time consuming and requires expert knowledge due to their similar appearance. Therefore, non-invasive identification methods are needed. DNA barcoding offers a rapid and reliable tool for species identification and the discovery of cryptic species for these most common parasitic nematodes of equines. In total, 269 cytochrome c oxidase subunit I (COI) gene and 312 internal transcribed spacer 2 (ITS-2) sequences from 27 equine Strongylidae species, including sequences from two uncharacterised species, Coronocyclus sagittatus and Triodontophorus tenuicollis, were generated and combined with COI and ITS-2 sequences data from six Cyathostominae species from previous studies. This study represents a comprehensive DNA barcoding analysis of 22 Cyathostominae and six Strongylinae species using mitochondrial COI gene and ITS-2 sequences. Maximum likelihood phylogenetic trees were constructed and the intra- and interspecific genetic distances for both markers were compared. Analysis revealed complex phylogenetic relationships. Para- and polyphyletic relationships were observed among most genera within Strongylinae and Cyathostominae. This challenges current morphological classifications. Although both markers showed overlapping pairwise identities in intra- and inter-species comparisons, COI had higher discriminatory power than ITS-2. Expanding the COI and ITS-2 reference database, including the first sequences for Coronocyclus sagittatus and Triodontophorus tenuicollis, improve a reliable species identification and advanced studies on Strongylinae and Cyathostominae diversity using barcoding and metabarcoding.
Collapse
Affiliation(s)
- Irina Diekmann
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| | - Tetiana A Kuzmina
- I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine; Institute of Parasitology, Slovak Academy of Sciences, Kosice, Slovakia.
| | - Christina M Bredtmann
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - Mariana Louro
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Vitaliy A Kharchenko
- I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Thomas Tzelos
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK.
| | | | - Luís M Madeira de Carvalho
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany; Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Malsa J, Boudesocque-Delaye L, Wimel L, Auclair-Ronzaud J, Dumont B, Mach N, Reigner F, Guégnard F, Chereau A, Serreau D, Théry-Koné I, Sallé G, Fleurance G. Chicory (Cichorium intybus) reduces cyathostomin egg excretion and larval development in grazing horses. Int J Parasitol Drugs Drug Resist 2024; 24:100523. [PMID: 38368671 PMCID: PMC10884488 DOI: 10.1016/j.ijpddr.2024.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/20/2024]
Abstract
Cyathostomins are the most prevalent parasitic nematodes of grazing horses. They are responsible for colic and diarrhea in their hosts. After several decades of exposure to synthetic anthelmintics, they have evolved to become resistant to most compounds. In addition, the drug-associated environmental side-effects question their use in the field. Alternative control strategies, like bioactive forages, are needed to face these challenges. Among these, chicory (Cichorium intybus, Puna II cultivar (cv.)) is known to convey anthelmintic compounds and may control cyathostomins in grazing horses. To challenge this hypothesis, we measured fecal egg counts and the rate of larval development in 20 naturally infected young saddle horses (2-year-old) grazing either (i) a pasture sown with chicory (n = 10) or (ii) a mesophile grassland (n = 10) at the same stocking rate (2.4 livestock unit (LU)/ha). The grazing period lasted 45 days to prevent horse reinfection. Horses in the chicory group mostly grazed chicory (89% of the bites), while those of the control group grazed mainly grasses (73%). Cyathostomins egg excretion decreased in both groups throughout the experiment. Accounting for this trajectory, the fecal egg count reduction (FECR) measured in individuals grazing chicory relative to control individuals increased from 72.9% at day 16 to 85.5% at the end of the study. In addition, larval development in feces from horses grazed on chicory was reduced by more than 60% from d31 compared to control individuals. Using a metabarcoding approach, we also evidenced a significant decrease in cyathostomin species abundance in horses grazing chicory. Chicory extract enriched in sesquiterpenes lactones was tested on two cyathostomins isolates. The estimated IC50 was high (1 and 3.4 mg/ml) and varied according to the pyrantel sensitivity status of the worm isolate. We conclude that the grazing of chicory (cv. Puna II) by horses is a promising strategy for reducing cyathostomin egg excretion and larval development that may contribute to lower the reliance on synthetic anthelmintics. The underpinning modes of action remain to be explored further.
Collapse
Affiliation(s)
- Joshua Malsa
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France.
| | | | - Laurence Wimel
- Institut Français Du Cheval et de L'équitation, Plateau Technique de Chamberet, Chamberet, France
| | - Juliette Auclair-Ronzaud
- Institut Français Du Cheval et de L'équitation, Plateau Technique de Chamberet, Chamberet, France
| | - Bertrand Dumont
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR 1213 Herbivores, Saint-Genès-Champanelle, France
| | - Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, Cedex 3, 31076, France
| | - Fabrice Reigner
- INRAE, Unité Expérimentale de Physiologie Animale de L'Orfrasière, Nouzilly, France
| | - Fabrice Guégnard
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Angélique Chereau
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Delphine Serreau
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Isabelle Théry-Koné
- Université de Tours, EA 7502 Synthèse et Isolement de Molécules Bioactives, Tours, France
| | - Guillaume Sallé
- INRAE, Université de Tours, UMR 1282 Infectiologie et Santé Publique, Nouzilly, France
| | - Géraldine Fleurance
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR 1213 Herbivores, Saint-Genès-Champanelle, France; Institut Français Du Cheval et de L'équitation, Pôle Développement, Innovation et Recherche, Saint-Genès-Champanelle, France
| |
Collapse
|
3
|
Jia H, Gao S, Tang L, Fu Y, Xiong Y, Ente M, Mubalake S, Shao C, Li K, Hu D, Zhang D. First report of four rare strongylid species infecting endangered Przewalski's horses (Equus ferus przewalskii) in Xinjiang, China. Parasit Vectors 2023; 16:385. [PMID: 37880749 PMCID: PMC10601325 DOI: 10.1186/s13071-023-05993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The Przewalski's horse (Equus ferus przewalskii) is the only surviving wild horse species in the world. A significant population of Przewalski's horses resides in Xinjiang, China. Parasitosis poses a considerable threat to the conservation of this endangered species. Yet, there is limited information on the nematode parasites that infect these species. To deepen our understanding of parasitic fauna affecting wild horses, we identified the intestinal nematodes of Przewalski's horses in Xinjiang and added new barcode sequences to a public database. METHODS Between 2018 and 2021, nematodes were collected from 104 dewormed Przewalski's horses in Xinjiang. Each nematode was morphologically identified to the species level, and selected species underwent DNA extraction. The extracted DNA was used for molecular identification through the internal transcribed spacer 2 (ITS2) genetic marker. RESULTS A total of 3758 strongylids were identified. To the best of our knowledge, this is the first study to identify four specific parasitic nematodes (Oesophagodontus robustus, Bidentostomum ivashkini, Skrjabinodentus caragandicus, Petrovinema skrjabini) and to obtain the ITS2 genetic marker for P. skrjabini. CONCLUSIONS The ITS2 genetic marker for P. skrjabini enriches our understanding of the genetic characteristics of this species and expands the body of knowledge on parasitic nematodes. Our findings extend the known host range of four strongylid species, thereby improving our understanding of the relationship between Przewalski's horses and strongylids. This, in turn, aids in the enhanced conservation of this endangered species. This study introduces new instances of parasitic infections in wild animals and offers the DNA sequence of P. skrjabini as a valuable resource for molecular techniques in nematode diagnosis among wildlife.
Collapse
Affiliation(s)
- Huiping Jia
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Sijia Gao
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Liping Tang
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yajun Fu
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yu Xiong
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Make Ente
- Xinjiang Research Centre for Breeding Przewalski's Horse, Xinjiang, China
| | | | - Changliang Shao
- Xinjiang Kalamaili Mountain Ungulate Nature Reserve Management Center, Xinjiang, China
| | - Kai Li
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Defu Hu
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Dong Zhang
- School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Molecular diagnostics for gastrointestinal helminths in equids: Past, present and future. Vet Parasitol 2023; 313:109851. [PMID: 36521296 DOI: 10.1016/j.vetpar.2022.109851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This review is aimed to (i) appraise the literature on the use of molecular techniques for the detection, quantification and differentiation of gastrointestinal helminths (GIH) of equids, (ii) identify the knowledge gaps and, (iii) discuss diagnostic prospects in equine parasitology. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews, we retrieved 54 studies (horses: 50/54; donkeys and zebras: 4/54) from four databases. Polymerase chain reaction (PCR) was employed in all of the studies whereas PCR amplicons were sequenced in only 18 of them. Other techniques used (including modifications of PCR) were reverse line blot, quantitative (q)PCR, restriction fragment length polymorphism, nested-PCR, PCR-directed next-generation sequencing, Southern blotting, single strand conformation polymorphism, PCR-enzyme linked immunosorbent assay, matrix-assisted laser desorption/ionisation-time of flight and random amplification of polymorphic DNA. Most of the studies (53/54) used nuclear ribosomal RNA (including the internal transcribed spacers, intergenic spacer, 5.8 S, 18 S, 28 S and 12 S) as target loci while cytochrome c oxidase subunit 1 and random genomic regions were targeted in only three and one studies, respectively. Overall, to date, the majority of molecular studies have focused on the diagnosis and identification of GIHs of equids (i.e. species of Anoplocephala, Craterostomum, cyathostomins, Oesophagodontus, Parascaris, Strongylus, Strongyloides and Triodontophorus), with a recent shift towards investigations on anthelmintic resistance and the use of high-throughput nemabiome metabarcoding. With the increasing reports of anthelmintic resistance in equid GIHs, it is crucial to develop and apply techniques such as advanced metabarcoding for surveillance of parasite populations in order to gain detailed insights into their diversity and sustainable control. To the best of our knowledge, this is the first systematic review that evaluates molecular investigations published on the diagnosis and quantification of equid GIHs and provides useful insights into important knowledge gaps and future research directions in equid molecular parasitology.
Collapse
|
5
|
Courtot É, Boisseau M, Dhorne-Pollet S, Serreau D, Gesbert A, Reigner F, Basiaga M, Kuzmina T, Lluch J, Annonay G, Kuchly C, Diekmann I, Krücken J, von Samson-Himmelstjerna G, Mach N, Sallé G. Comparison of two molecular barcodes for the study of equine strongylid communities with amplicon sequencing. PeerJ 2023; 11:e15124. [PMID: 37070089 PMCID: PMC10105562 DOI: 10.7717/peerj.15124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
Basic knowledge on the biology and epidemiology of equine strongylid species still needs to be improved to contribute to the design of better parasite control strategies. Nemabiome metabarcoding is a convenient tool to quantify and identify species in bulk samples that could overcome the hurdle that cyathostomin morphological identification represents. To date, this approach has relied on the internal transcribed spacer 2 (ITS-2) of the ribosomal RNA gene, with a limited investigation of its predictive performance for cyathostomin communities. Using DNA pools of single cyathostomin worms, this study aimed to provide the first elements to compare performances of the ITS-2 and a cytochrome c oxidase subunit I (COI) barcode newly developed in this study. Barcode predictive abilities were compared across various mock community compositions of two, five and 11 individuals from distinct species. The amplification bias of each barcode was estimated. Results were also compared between various types of biological samples, i.e., eggs, infective larvae or adults. Bioinformatic parameters were chosen to yield the closest representation of the cyathostomin community for each barcode, underscoring the need for communities of known composition for metabarcoding purposes. Overall, the proposed COI barcode was suboptimal relative to the ITS-2 rDNA region, because of PCR amplification biases, reduced sensitivity and higher divergence from the expected community composition. Metabarcoding yielded consistent community composition across the three sample types. However, imperfect correlations were found between relative abundances from infective larvae and other life-stages for Cylicostephanus species using the ITS-2 barcode. While the results remain limited by the considered biological material, they suggest that additional improvements are needed for both the ITS-2 and COI barcodes.
Collapse
Affiliation(s)
- Élise Courtot
- Animal Health, UMR1282 Infectiologie et Santé Publique, INRAE, Nouzilly, France
| | - Michel Boisseau
- Animal Health, UMR1282 Infectiologie et Santé Publique, INRAE, Nouzilly, France
- Animal Health, UMR1225 IHAP, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | | | - Delphine Serreau
- Animal Health, UMR1282 Infectiologie et Santé Publique, INRAE, Nouzilly, France
| | - Amandine Gesbert
- Animal Physiology, UEPAO, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Nouzilly, France
| | - Fabrice Reigner
- Animal Physiology, UEPAO, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Nouzilly, France
| | | | - Tetiana Kuzmina
- Schmalhausen Institute of Zoology NAS of Ukraine, Kyiv, Ukraine
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Jérôme Lluch
- GeT-PlaGe, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | - Gwenolah Annonay
- GeT-PlaGe, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | - Claire Kuchly
- GeT-PlaGe, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | - Irina Diekmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Nuria Mach
- Animal Health, UMR1225 IHAP, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Toulouse, France
| | - Guillaume Sallé
- Animal Health, UMR1282 Infectiologie et Santé Publique, INRAE, Nouzilly, France
| |
Collapse
|
6
|
Effect of sainfoin ( Onobrychis viciifolia) on cyathostomin eggs excretion, larval development, larval community structure, and efficacy of ivermectin treatment in horses. Parasitology 2022; 149:1439-1449. [PMID: 35929352 PMCID: PMC10090777 DOI: 10.1017/s0031182022000853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alternative strategies to chemical anthelmintics are needed for the sustainable control of equine strongylids. Bioactive forages like sainfoin (Onobrychis viciifolia) could contribute to reducing drug use, with the first hints of in vitro activity against cyathostomin free-living stages observed in the past. We analysed the effect of a sainfoin-rich diet on cyathostomin population and the efficacy of oral ivermectin treatment. Two groups of 10 naturally infected horses were enrolled in a 78-day experimental trial. Following a 1-week adaptation period, they were either fed with dehydrated sainfoin pellets (70% of their diet dry matter) or with alfalfa pellets (control group) for 21-days. No difference was found between the average fecal egg counts (FECs) of the two groups, but a significantly lower increase in larval development rate was observed for the sainfoin group, at the end of the trial. Quantification of cyathostomin species abundances with an ITS-2-based metabarcoding approach revealed that the sainfoin diet did not affect the nemabiome structure compared to the control diet. Following oral ivermectin treatment of all horses on day 21, the drug concentration was lower in horses fed with sainfoin, and cyathostomin eggs reappeared earlier in that group. Our results demonstrated that short-term consumption of a sainfoin-rich diet does not decrease cyathostomin FEC but seems to slightly reduce larval development. Consumption of dehydrated sainfoin pellets also negatively affected ivermectin pharmacokinetics, underscoring the need to monitor horse feeding regimes when assessing ivermectin efficacy in the field.
Collapse
|
7
|
Titcomb GC, Pansu J, Hutchinson MC, Tombak KJ, Hansen CB, Baker CCM, Kartzinel TR, Young HS, Pringle RM. Large-herbivore nemabiomes: patterns of parasite diversity and sharing. Proc Biol Sci 2022; 289:20212702. [PMID: 35538775 PMCID: PMC9091847 DOI: 10.1098/rspb.2021.2702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Amidst global shifts in the distribution and abundance of wildlife and livestock, we have only a rudimentary understanding of ungulate parasite communities and parasite-sharing patterns. We used qPCR and DNA metabarcoding of fecal samples to characterize gastrointestinal nematode (Strongylida) community composition and sharing among 17 sympatric species of wild and domestic large mammalian herbivore in central Kenya. We tested a suite of hypothesis-driven predictions about the role of host traits and phylogenetic relatedness in describing parasite infections. Host species identity explained 27-53% of individual variation in parasite prevalence, richness, community composition and phylogenetic diversity. Host and parasite phylogenies were congruent, host gut morphology predicted parasite community composition and prevalence, and hosts with low evolutionary distinctiveness were centrally positioned in the parasite-sharing network. We found no evidence that host body size, social-group size or feeding height were correlated with parasite composition. Our results highlight the interwoven evolutionary and ecological histories of large herbivores and their gastrointestinal nematodes and suggest that host identity, phylogeny and gut architecture-a phylogenetically conserved trait related to parasite habitat-are the overriding influences on parasite communities. These findings have implications for wildlife management and conservation as wild herbivores are increasingly replaced by livestock.
Collapse
Affiliation(s)
- Georgia C. Titcomb
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA,Mpala Research Centre, Nanyuki, Kenya
| | - Johan Pansu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Matthew C. Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Kaia J. Tombak
- Mpala Research Centre, Nanyuki, Kenya,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,Department of Anthropology, Hunter College of the City University of New York, New York, NY, USA
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Christopher C. M. Baker
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,US Army ERDC Cold Regions Research and Engineering Laboratory, Hanover, NH, USA
| | - Tyler R. Kartzinel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA,Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA,Institute at Brown for Environment and Society, Brown University, Providence, RI, USA
| | - Hillary S. Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA,Mpala Research Centre, Nanyuki, Kenya
| | - Robert M. Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
8
|
Tombak KJ, Easterling LA, Martinez L, Seng MS, Wait LF, Rubenstein DI. Divergent water requirements partition exposure risk to parasites in wild equids. Ecol Evol 2022; 12:e8693. [PMID: 35342568 PMCID: PMC8928873 DOI: 10.1002/ece3.8693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
For grazing herbivores, dung density in feeding areas is an important determinant of exposure risk to fecal-orally transmitted parasites. When host species share the same parasite species, a nonrandom distribution of their cumulative dung density and/or nonrandom ranging and feeding behavior may skew exposure risk and the relative selection pressure parasites impose on each host. The arid-adapted Grevy's zebra (Equus grevyi) can range more widely than the water-dependent plains zebra (Equus quagga), with which it shares the same species of gastrointestinal nematodes. We studied how the spatial distribution of zebra dung relates to ranging and feeding behavior to assess parasite exposure risk in Grevy's and plains zebras at a site inhabited by both zebra species. We found that zebra dung density declined with distance from water, Grevy's zebra home ranges (excluding those of territorial males) were farther from water than those of plains zebras, and plains zebra grazing areas had higher dung density than random points while Grevy's zebra grazing areas did not, suggesting a greater exposure risk in plains zebras associated with their water dependence. Fecal egg counts increased with home range proximity to water for both species, but the response was stronger in plains zebras, indicating that this host species may be particularly vulnerable to the elevated exposure risk close to water. We further ran experiments on microclimatic effects on dung infectivity and showed that fewer nematode eggs embryonated in dung in the sun than in the shade. However, only 5% of the zebra dung on the landscape was in shade, indicating that the microclimatic effects of shade on the density of infective larvae is not a major influence on exposure risk dynamics. Ranging constraints based on water requirements appear to be key mediators of nematode parasite exposure in free-ranging equids.
Collapse
Affiliation(s)
- Kaia J. Tombak
- Department of AnthropologyHunter College of the City University of New YorkNew YorkNew YorkUSA
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Laurel A. Easterling
- School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | - Liana F. Wait
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Daniel I. Rubenstein
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|