1
|
Jelinčić V, Sone M, Cerrahoğlu B, Torta DM, Van Diest I, von Leupoldt A. Conditioned fear selectively increases the perception and neural processing of respiratory stimuli relative to somatosensory stimuli. Int J Psychophysiol 2024; 206:112463. [PMID: 39489433 DOI: 10.1016/j.ijpsycho.2024.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/05/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Interoception is crucial to the experience of bodily complaints in chronic conditions. Fear can distort the perception of sensations like breathlessness and pain, yet few studies investigated the effects of conditioned fear on both self-report and neural processing of these sensations. In the current study, we conditioned fear of neutral female faces in healthy adults, pairing certain faces (CS+) with an aversive scream. In Experiment 1, we delivered paired inspiratory occlusions during the viewing of the faces. We collected self-reported intensity and unpleasantness of occlusions, and measured N1 and P2 amplitudes of the respiratory-related evoked potential (RREP) in the electroencephalogram, as well as neural gating (the ratio of N1 response to the second over the first occlusion, S2/S1). Skin conductance and self-reported fear increased in response to CS+ faces, and perception of occlusions increased during fear conditioning (FC) relative to baseline, with higher unpleasantness and RREP amplitudes during CS+ relative to CS- trials. We found no effects on neural gating. In Experiment 2, we used the same FC protocol, and delivered paired electrocutaneous pulses during the viewing of the faces. We measured intensity/unpleasantness, fear, N1/P2 amplitudes of the somatosensory evoked potential (SEP), and neural gating. While skin conductance and fear increased, no perceptual effects were found. Unexpectedly, SEP amplitudes decreased and neural gating increased during FC, likely due to habituation. The current results indicate that FC increases the perception and neural processing of respiratory stimuli specifically, consistent with previous literature on respiratory psychophysiology and fearful states.
Collapse
Affiliation(s)
- Valentina Jelinčić
- Research Group Health Psychology, Department of Psychology, KU Leuven, Belgium.
| | - Mari Sone
- Department of Public and Occupational Health, Amsterdam UMC, the Netherlands.
| | | | - Diana M Torta
- Research Group Health Psychology, Department of Psychology, KU Leuven, Belgium.
| | - Ilse Van Diest
- Research Group Health Psychology, Department of Psychology, KU Leuven, Belgium.
| | | |
Collapse
|
2
|
Ioakeimidis V, Lennuyeux-Comnene L, Khachatoorian N, Gaigg SB, Haenschel C, Kyriakopoulos M, Dima D. Trait and State Anxiety Effects on Mismatch Negativity and Sensory Gating Event-Related Potentials. Brain Sci 2023; 13:1421. [PMID: 37891790 PMCID: PMC10605251 DOI: 10.3390/brainsci13101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
We used the auditory roving oddball to investigate whether individual differences in self-reported anxiety influence event-related potential (ERP) activity related to sensory gating and mismatch negativity (MMN). The state-trait anxiety inventory (STAI) was used to assess the effects of anxiety on the ERPs for auditory change detection and information filtering in a sample of thirty-six healthy participants. The roving oddball paradigm involves presentation of stimulus trains of auditory tones with certain frequencies followed by trains of tones with different frequencies. Enhanced negative mid-latency response (130-230 ms post-stimulus) was marked at the deviant (first tone) and the standard (six or more repetitions) tone at Fz, indicating successful mismatch negativity (MMN). In turn, the first and second tone in a stimulus train were subject to sensory gating at the Cz electrode site as a response to the second stimulus was suppressed at an earlier latency (40-80 ms). We used partial correlations and analyses of covariance to investigate the influence of state and trait anxiety on these two processes. Higher trait anxiety exhibited enhanced MMN amplitude (more negative) (F(1,33) = 14.259, p = 6.323 × 10-6, ηp2 = 0.302), whereas state anxiety reduced sensory gating (F(1,30) = 13.117, p = 0.001, ηp2 = 0.304). Our findings suggest that high trait-anxious participants demonstrate hypervigilant change detection to deviant tones that appear more salient, whereas increased state anxiety associates with failure to filter out irrelevant stimuli.
Collapse
Affiliation(s)
- Vasileios Ioakeimidis
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Laura Lennuyeux-Comnene
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Nareg Khachatoorian
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Sebastian B. Gaigg
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Corinna Haenschel
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
| | - Marinos Kyriakopoulos
- South London and the Maudsley NHS Foundation Trust, London SE5 8AF, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Danai Dima
- Department of Psychology, School of Health and Psychological Sciences, City University of London, 10 Northampton Square, London EC1V 0HB, UK; (V.I.); (L.L.-C.); (S.B.G.); (C.H.)
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
3
|
Jelinčić V, Torta DM, Van Diest I, von Leupoldt A. The effects of unpredictability and negative affect on perception and neural gating in different interoceptive modalities. Biol Psychol 2022; 169:108267. [DOI: 10.1016/j.biopsycho.2022.108267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/18/2022]
|
4
|
Yükselay Ö, Gıca Ş, Yalçın M, Guleç MY, Güleç H. Investigation of auditory P50 sensory gating with sexual visual stimuli in patients with vaginismus. Neurophysiol Clin 2021; 51:251-257. [PMID: 33814257 DOI: 10.1016/j.neucli.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The aim of the study was to investigate sensory information processing induced by visual sexual stimuli and to assess its relationship with sexual behaviors and symptoms in patients with vaginismus. METHODS Twenty-one patients with vaginismus and 20 controls were included in the study. The sociodemographic information and sexual life history of the patients with vaginismus and controls were examined and electrophysiological measurements related to auditory P50 sensory gating were obtained using a double click paradigm during by sexual/horror visual stimulation, which was thought to be related to the pathophysiology of the disease. RESULTS P50 suppression ratios during visual sexual stimuli were lower in vaginismus group compared to the control group. There was no difference in P50 suppression ratios during visual horror stimuli when the two groups were compared. The P50 suppression of the vaginismus group with visual sexual stimuli was found to be lower than P50 suppression with visual horror stimuli. A positive moderate correlation was found between the duration of foreplay and P50 suppression ratio during visual sexual stimuli in vaginismus group. CONCLUSION Our study revealed that patients with vaginismus had sensory gating impairment during visual sexual stimuli. Increase in the duration of foreplay in vaginismus patients may improve sensory gating impairment by affecting sensory gating functions.
Collapse
Affiliation(s)
- Özge Yükselay
- University of Health Sciences, Van Training and Research Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Şakir Gıca
- Necmettin Erbakan University, Meram Medical Faculty, Department of Psychiatry, Konya, Turkey.
| | - Murat Yalçın
- University of Health Sciences, Erenköy Mental and Nervous Diseases Training and Research Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Medine Yazıcı Guleç
- University of Health Sciences, Erenköy Mental and Nervous Diseases Training and Research Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Hüseyin Güleç
- University of Health Sciences, Erenköy Mental and Nervous Diseases Training and Research Hospital, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
5
|
Nobusako S, Osumi M, Hayashida K, Furukawa E, Nakai A, Maeda T, Morioka S. Altered sense of agency in children with developmental coordination disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 107:103794. [PMID: 33086140 DOI: 10.1016/j.ridd.2020.103794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There is increasing evidence that children with developmental coordination disorder (DCD) have deficits in sensory-motor integration, but it is unclear whether the sense of agency (SoA) generated by sensory-motor integration is altered. AIMS To investigate whether there is a difference in the time window for SoA between children with DCD and typically developing (TD) children. METHODS AND PROCEDURES An agency attribution task was used to quantitatively measure and compare the time window for SoA in 15 children with DCD and 46 children in the TD group. Variables that correlated with the time window for SoA were also examined in both groups of children. OUTCOMES AND RESULTS The time window for SoA was significantly extended in children with DCD compared to TD children. The time window for SoA in TD children was significantly associated with manual dexterity, whereas the time window for SoA in children with DCD was significantly associated with depressive tendency. CONCLUSIONS AND IMPLICATIONS The time window for SoA is altered in children with DCD. The present results suggest that there may be a bidirectional relationship between an internal model deficit and depressive tendency and SoA in children with DCD.
Collapse
Affiliation(s)
- Satoshi Nobusako
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan; Graduate School of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan.
| | - Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan; Graduate School of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Kazuki Hayashida
- Graduate School of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan; Department of Rehabilitation, Fujiikai Rehabilitation Hospital, 17-6 Yayoi-cho, Higashiosaka-city, Osaka, 579-8026, Japan
| | - Emi Furukawa
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan
| | - Akio Nakai
- Graduate School of Clinical Education & The Center for the Study of Child Development, Institute for Education, Mukogawa Women's University, 6-46 Ikebiraki-cho, Nishinomiya-city, Hyogo, 663-8558, Japan
| | - Takaki Maeda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan; Graduate School of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara, 635-0832, Japan
| |
Collapse
|
6
|
Straube B, van Kemenade BM, Kircher T, Schülke R. Transcranial direct current stimulation improves action-outcome monitoring in schizophrenia spectrum disorder. Brain Commun 2020; 2:fcaa151. [PMID: 33543133 PMCID: PMC7850031 DOI: 10.1093/braincomms/fcaa151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
Patients with schizophrenia spectrum disorder often demonstrate impairments in action-outcome monitoring. Passivity phenomena and hallucinations, in particular, have been related to impairments of efference copy-based predictions which are relevant for the monitoring of outcomes produced by voluntary action. Frontal transcranial direct current stimulation has been shown to improve action-outcome monitoring in healthy subjects. However, whether transcranial direct current stimulation can improve action monitoring in patients with schizophrenia spectrum disorder remains unknown. We investigated whether transcranial direct current stimulation can improve the detection of temporal action-outcome discrepancies in patients with schizophrenia spectrum disorder. On 4 separate days, we applied sham or left cathodal/right anodal transcranial direct current stimulation in a randomized order to frontal (F3/F4), parietal (CP3/CP4) and frontoparietal (F3/CP4) areas of 19 patients with schizophrenia spectrum disorder and 26 healthy control subjects. Action-outcome monitoring was assessed subsequent to 10 min of sham/transcranial direct current stimulation (1.5 mA). After a self-generated (active) or externally generated (passive) key press, subjects were presented with a visual outcome (a dot on the screen), which was presented after various delays (0-417 ms). Participants had to detect delays between the key press and the visual consequence. Symptom subgroups were explored based on the presence or absence of symptoms related to a paranoid-hallucinatory syndrome. In general, delay-detection performance was impaired in the schizophrenia spectrum disorder compared to the healthy control group. Interaction analyses showed group-specific (schizophrenia spectrum disorder versus healthy control group) and symptom-specific (with/without relevant paranoid-hallucinatory symptoms) transcranial direct current stimulation effects. Post hoc tests revealed that frontal transcranial direct current stimulation improved the detection of long delays in active conditions and reduced the proportion of false alarms in undelayed trials of the passive condition in patients. The patients with no or few paranoid-hallucinatory symptoms benefited especially from frontal transcranial direct current stimulation in active conditions, while improvement in the patients with paranoid-hallucinatory symptoms was predominantly reflected in reduced false alarm rates in passive conditions. These data provide some first evidence for the potential utility of transcranial direct current stimulation in improving efference copy mechanisms and action-outcome monitoring in schizophrenia spectrum disorder. Current data indicate that improving efference copy-related processes can be especially effective in patients with no or few positive symptoms, while intersensory matching (i.e. task-relevant in passive conditions) could be more susceptible to improvement in patients with paranoid-hallucinatory symptoms.
Collapse
Affiliation(s)
- Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Rasmus Schülke
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Nobusako S, Tsujimoto T, Sakai A, Shuto T, Hashimoto Y, Furukawa E, Osumi M, Nakai A, Maeda T, Morioka S. The time window for sense of agency in school-age children is different from that in young adults. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2020.100891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Insensitivity of auditory mismatch negativity to classical fear conditioning and extinction in healthy humans. Neuroreport 2019; 30:468-472. [PMID: 30817683 DOI: 10.1097/wnr.0000000000001221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The relationship between auditory mismatch negativity (MMN) and the neural cognitive processes of fear has been suggested in both healthy participants and patients with fear-related mental disorders such as post-traumatic stress disorder and panic disorder. The present study sought to confirm whether the MMN is affected by classical fear conditioning in healthy participants. MMN amplitude, N1 amplitude, and skin conductance level (SCL) in 20 healthy volunteers during a fear-conditioning paradigm consisting of three phases (habituation, fear acquisition, and fear extinction) were recorded. Red and blue light signals were presented as the conditioned stimuli CS+ (threat cue) and CS- (safety cue), respectively. In addition, an aversive electrical stimulus was delivered as the unconditioned stimulus with CS+ in the fear-acquisition phase. No MMN amplitude changes were observed between the CS types during the three phases. In the acquisition phase, the mean SCL during CS+ was significantly higher than that during CS-. The MMN amplitude and deviant N1 amplitude in the extinction phase were significantly lower than those in the other phases regardless of the CS type. Despite the clear alteration of SCL between CS types in the acquisition phase, no significant differences in MMN were observed. Decreased MMN and deviant N1 in the fear-extinction phase were considered to be mainly due to decreased arousal or attention level. Results indicate that the auditory MMN amplitude was not affected by the cognitive process of fear recognized by other sense modalities.
Collapse
|
9
|
Nobusako S, Osumi M, Matsuo A, Fukuchi T, Nakai A, Zama T, Shimada S, Morioka S. Stochastic resonance improves visuomotor temporal integration in healthy young adults. PLoS One 2018; 13:e0209382. [PMID: 30550570 PMCID: PMC6294379 DOI: 10.1371/journal.pone.0209382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/04/2018] [Indexed: 01/28/2023] Open
Abstract
Mechanical and electrical noise stimulation to the body is known to improve the sensorimotor system. This improvement is related to stochastic resonance (SR), a phenomenon described as a "noise benefit" to various sensory and motor systems. The current study investigated the influence of SR on visuomotor temporal integration and hand motor function under delayed visual feedback in healthy young adults. The purpose of this study was to measure the usefulness of SR as a neurorehabilitation device for disorders of visuomotor temporal integration. Thirty healthy volunteers underwent detection tasks and hand motor function tests under delayed visual feedback, with or without SR. Of the 30 participants, 15 carried out the tasks under delayed visual feedback in the order of SR on-condition, off-condition, off-condition, and on-condition. The remaining 15 participants conducted the experimental tasks in the order of SR off-condition, on-condition, on-condition, and off-condition. Comparisons of the delay detection threshold (DDT), steepness of the delay detection probability curves, box and block test (BBT) scores, and nine-hole peg test (NHPT) scores between the SR on- and off-conditions were performed. The DDT under the SR on-condition was significantly shortened compared with the SR off-condition. There was no significant difference between the SR on- and off-conditions for the steepness of the delay detection probability curves, BBT scores, and NHPT scores. SR improved visuomotor temporal integration in healthy young adults, and may therefore improve movement disorders in patients with impaired visuomotor temporal integration. However, because the current results showed that SR did not improve hand motor function under delayed visual feedback, it may not improve motor function when a large distortion of visuomotor temporal integration is present. Further studies are required considering several limitations of the current study, and future clinical trials are necessary to verify the effects of motor training using SR for the treatment of visuomotor temporal integration disorders.
Collapse
Affiliation(s)
- Satoshi Nobusako
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
- * E-mail:
| | - Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Atsushi Matsuo
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kio University, Nara, Japan
| | | | - Akio Nakai
- Graduate School of Clinical Education & The Center for the Study of Child Development, Institute for Education, Mukogawa Women’s University, Hyogo, Japan
| | - Takuro Zama
- Rhythm-Based Brain Information Processing Unit, RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Saitama, Japan
| | - Sotaro Shimada
- Department of Electronics and Bioinformatics School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan
- Graduate School of Health Science, Kio University, Nara, Japan
- Department of Physical Therapy, Faculty of Health Sciences, Kio University, Nara, Japan
| |
Collapse
|
10
|
Nobusako S, Ishibashi R, Takamura Y, Oda E, Tanigashira Y, Kouno M, Tominaga T, Ishibashi Y, Okuno H, Nobusako K, Zama T, Osumi M, Shimada S, Morioka S. Distortion of Visuo-Motor Temporal Integration in Apraxia: Evidence From Delayed Visual Feedback Detection Tasks and Voxel-Based Lesion-Symptom Mapping. Front Neurol 2018; 9:709. [PMID: 30210434 PMCID: PMC6119712 DOI: 10.3389/fneur.2018.00709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/06/2018] [Indexed: 12/30/2022] Open
Abstract
Limb apraxia is a higher brain dysfunction that typically occurs after left hemispheric stroke and its cause cannot be explained by sensory disturbance or motor paralysis. The comparison of motor signals and visual feedback to generate errors, i.e., visuo-motor integration, is important in motor control and motor learning, which may be impaired in apraxia. However, in apraxia after stroke, it is unknown whether there is a specific deficit in visuo-motor temporal integration compared to visuo-tactile and visuo-proprioceptive temporal integration. We examined the precision of visuo-motor temporal integration and sensory-sensory (visuo-tactile and visuo-proprioception) temporal integration in apraxia after stroke by using a delayed visual feedback detection task with three different conditions (tactile, passive movement, and active movement). The delay detection threshold and the probability curve for delay detection obtained in this task were quantitative indicators of the respective temporal integration functions. In addition, we performed subtraction and voxel-based lesion-symptom mapping to identify the brain lesions responsible for apraxia and deficits in visuo-motor temporal integration. The behavioral experiments showed that the delay detection threshold was extended and that the probability curve for delay detection was less steep in apraxic patients compared to controls (pseudo-apraxic patients and unaffected patients), only for the active movement condition, and not for the tactile and passive movement conditions. Furthermore, the severity of apraxia was significantly correlated with the delay detection threshold and the steepness of the probability curve in the active movement condition. These results indicated that multisensory (i.e., visual, tactile, and proprioception) feedback was normally temporally integrated, but motor prediction and visual feedback were not correctly temporally integrated in apraxic patients. That is, apraxic patients had difficulties with visuo-motor temporal integration. Lesion analyses revealed that both apraxia and the distortion of visuo-motor temporal integration were associated with lesions in the fronto-parietal motor network, including the left inferior parietal lobule and left inferior frontal gyrus. We suppose that damage to the left inferior fronto-parietal network could cause deficits in motor prediction for visuo-motor temporal integration, but not for sensory-sensory (visuo-tactile and visuo-proprioception) temporal integration, leading to the distortion of visuo-motor temporal integration in patients with apraxia.
Collapse
Affiliation(s)
- Satoshi Nobusako
- Neurorehabilitation Research Center, Kio University, Nara, Japan.,Graduate School of Health Science, Kio University, Nara, Japan
| | | | - Yusaku Takamura
- Graduate School of Health Science, Kio University, Nara, Japan.,Department of Rehabilitation, Murata Hospital, Osaka, Japan
| | - Emika Oda
- Department of Rehabilitation, Murata Hospital, Osaka, Japan
| | | | - Masashi Kouno
- Department of Rehabilitation, Murata Hospital, Osaka, Japan
| | | | - Yurie Ishibashi
- Cognitive-Neurorehabilitation Center, Setsunan General Hospital, Osaka, Japan
| | - Hiroyuki Okuno
- Cognitive-Neurorehabilitation Center, Setsunan General Hospital, Osaka, Japan
| | - Kaori Nobusako
- Cognitive-Neurorehabilitation Center, Setsunan General Hospital, Osaka, Japan
| | - Takuro Zama
- Rhythm-Based Brain Information Processing Unit, RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Saitama, Japan
| | - Michihiro Osumi
- Neurorehabilitation Research Center, Kio University, Nara, Japan.,Graduate School of Health Science, Kio University, Nara, Japan
| | - Sotaro Shimada
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, Japan.,Graduate School of Health Science, Kio University, Nara, Japan
| |
Collapse
|
11
|
Parasympathetic activation enhanced by slow respiration modulates early auditory sensory gating. Neuroreport 2017; 28:1150-1156. [PMID: 28926474 DOI: 10.1097/wnr.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sensory gating is a preattentional mechanism to filter irrelevant information from the environment. It is typically reflected as a suppression of the event-related P50 component for successive sounds in the auditory modality. Although stress-induced sympathetic activation has been reported to disrupt P50 suppression, little is known about the modulatory effect of parasympathetic activation on early auditory sensory gating. We determined the parasympathetic effect on the magnetic P50 (P50m) suppression by controlling the respiratory rhythm and recording data simultaneously with magnetoencephalography and electrocardiography, using three successive click sounds as stimulus and ten normal individuals as study participants. The respiratory rhythm was guided by visual cues and set at 0.3, 0.25, or 0.2 Hz for distinct auditory stimulus sequence blocks. Heart rate variability analysis showed that slow respiration leads to significantly large high-frequency power, which is known as the parasympathetic index, whereas low-frequency/high-frequency ratio, known as the sympathetic index, did not differ with the respiratory rhythm. Although P50m suppression was observed in the left and right primary auditory areas for every respiratory condition, the left P50m intensity for the first sound was significantly decreased in the case of slow respiration, thereby indicating disruption of the left P50m suppression. Since background alpha oscillatory power, reflecting the arousal level, was similar for every respiratory rhythm, it is concluded that parasympathetic activation enhanced by slow respiration modulates P50m gating by reducing the initial neural sensitivity for an auditory input. Not only sympathetic but also parasympathetic effects should be considered in the evaluation of P50/P50m biomarkers.
Collapse
|
12
|
Hemispheric differences in the processing of visual consequences of active vs. passive movements: a transcranial direct current stimulation study. Exp Brain Res 2017; 235:3207-3216. [PMID: 28762054 DOI: 10.1007/s00221-017-5053-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Perceiving the sensory consequences of one's own actions is essential to successfully interact with the environment. Previous studies compared self- (active) and externally generated (passive) movements to investigate the processing of voluntary action-outcomes. Increased temporal binding (intentional binding) as well as increased detection of delays between action and outcome have been observed for active compared to passive movements. Using transcranial direct stimulation (tDCS) it has been shown that left hemispheric anodal stimulation decreased the intentional binding effect. However, whether the left hemisphere contributes to delay detection performance between action and outcome is unknown. We investigated polarization-dependent effects of left and right frontoparietal tDCS on detecting temporal action-outcome discrepancies. We applied anodal and cathodal stimulation to frontal (F3/F4), parietal (CP3/CP4) and frontoparietal (F3/CP4) areas. After stimulation, participants were presented with visual feedback with various delays after a key press. They had to report whether they detected a delay between the key press and the feedback. In half of the trials the key press was self-initiated, in the other half it was externally generated. A main effect of electrode location indicated highest detection performance after frontal stimulation. Furthermore, we found that the advantage for active versus passive conditions was larger for left hemispheric anodal stimulation as compared to cathodal stimulation. Whereas the frontal cortex is related to delay detection performance in general, hemispheric differences seem to support the differentiation of self-initiated versus externally generated movement consequences.
Collapse
|
13
|
Predicting the Multisensory Consequences of One's Own Action: BOLD Suppression in Auditory and Visual Cortices. PLoS One 2017; 12:e0169131. [PMID: 28060861 PMCID: PMC5218407 DOI: 10.1371/journal.pone.0169131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022] Open
Abstract
Predictive mechanisms are essential to successfully interact with the environment and to compensate for delays in the transmission of neural signals. However, whether and how we predict multisensory action outcomes remains largely unknown. Here we investigated the existence of multisensory predictive mechanisms in a context where actions have outcomes in different modalities. During fMRI data acquisition auditory, visual and auditory-visual stimuli were presented in active and passive conditions. In the active condition, a self-initiated button press elicited the stimuli with variable short delays (0-417ms) between action and outcome, and participants had to detect the presence of a delay for auditory or visual outcome (task modality). In the passive condition, stimuli appeared automatically, and participants had to detect the number of stimulus modalities (unimodal/bimodal). For action consequences compared to identical but unpredictable control stimuli we observed suppression of the blood oxygen level depended (BOLD) response in a broad network including bilateral auditory and visual cortices. This effect was independent of task modality or stimulus modality and strongest for trials where no delay was detected (undetected<detected). In bimodal vs. unimodal conditions we found activation differences in the left cerebellum for detected vs. undetected trials and an increased cerebellar-sensory cortex connectivity. Thus, action-related predictive mechanisms lead to BOLD suppression in multiple sensory brain regions. These findings support the hypothesis of multisensory predictive mechanisms, which are probably conducted in the left cerebellum.
Collapse
|
14
|
Hill JL, Hardy NF, Jimenez DV, Maynard KR, Kardian AS, Pollock CJ, Schloesser RJ, Martinowich K. Loss of promoter IV-driven BDNF expression impacts oscillatory activity during sleep, sensory information processing and fear regulation. Transl Psychiatry 2016; 6:e873. [PMID: 27552586 PMCID: PMC5022093 DOI: 10.1038/tp.2016.153] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 11/09/2022] Open
Abstract
Posttraumatic stress disorder is characterized by hyperarousal, sensory processing impairments, sleep disturbances and altered fear regulation; phenotypes associated with changes in brain oscillatory activity. Molecules associated with activity-dependent plasticity, including brain-derived neurotrophic factor (BDNF), may regulate neural oscillations by controlling synaptic activity. BDNF synthesis includes production of multiple Bdnf transcripts, which contain distinct 5' noncoding exons. We assessed arousal, sensory processing, fear regulation and sleep in animals where BDNF expression from activity-dependent promoter IV is disrupted (Bdnf-e4 mice). Bdnf-e4 mice display sensory hyper-reactivity and impaired electrophysiological correlates of sensory information processing as measured by event-related potentials (ERP). Utilizing electroencephalogram, we identified a decrease in slow-wave activity during non-rapid eye movement sleep, suggesting impaired sleep homeostasis. Fear extinction is controlled by hippocampal-prefrontal cortical BDNF signaling, and neurophysiological communication patterns between the hippocampus (HPC) and medial prefrontal cortex (mPFC) correlate with behavioral performance during extinction. Impaired fear extinction in Bdnf-e4 mice is accompanied by increased HPC activation and decreased HPC-mPFC theta phase synchrony during early extinction, as well as increased mPFC activation during extinction recall. These results suggest that activity-dependent BDNF signaling is critical for regulating oscillatory activity, which may contribute to altered behavior.
Collapse
Affiliation(s)
- J L Hill
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - N F Hardy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - D V Jimenez
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - K R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - A S Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - C J Pollock
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - R J Schloesser
- Sheppard Pratt-Lieber Research Institute, Inc., Baltimore, MD, USA
| | - K Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Lieber Institute for Brain Development, 855 North Wolfe Street, 347B, Suite 300, Baltimore, MD 21205, USA. E-mail:
| |
Collapse
|