1
|
Newman PP, Schmitt BL, Maurmann RM, Pence BD. Polysaccharides with Arabinose: Key Players in Reducing Chronic Inflammation and Enhancing Immune Health in Aging. Molecules 2025; 30:1178. [PMID: 40076400 PMCID: PMC11901799 DOI: 10.3390/molecules30051178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Aging is associated with a decline in physiological performance leading to increased inflammation and impaired immune function. Polysaccharides (PLs) found in plants, fruits, and fungi are emerging as potential targets for therapeutic intervention, but little is known about their effects on chronic inflammation and aging. This review aims to highlight the current advances related to the use of PLs, with the presence of arabinose, to attenuate oxidative stress and chronic and acute inflammation, and their immunomodulatory effects associated with antioxidant status in monocytes, macrophages, and neutrophil infiltration, and leukocyte rolling adhesion in neutrophils. In addition, recent studies have shown the importance of investigating the 'major' monosaccharide, such as arabinose, present in several of these polysaccharides, and with described effects on gut microbiome, glucose, inflammation, allergy, cancer cell proliferation, neuromodulation, and metabolic stress. Perspectives and opportunities for further investigation are provided. By promoting a balanced immune response and reducing inflammation, PLs with arabinose or even arabinose per se may alleviate the immune dysregulation and inflammation seen in the elderly, therefore providing a promising strategy to mitigate a variety of diseases.
Collapse
Affiliation(s)
- Patricia Pantoja Newman
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (B.L.S.); (R.M.M.)
| | | | | | - Brandt D. Pence
- College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; (B.L.S.); (R.M.M.)
| |
Collapse
|
2
|
Arleevskaya M, Takha E, Petrov S, Kazarian G, Renaudineau Y, Brooks W, Larionova R, Korovina M, Valeeva A, Shuralev E, Mukminov M, Kravtsova O, Novikov A. Interplay of Environmental, Individual and Genetic Factors in Rheumatoid Arthritis Provocation. Int J Mol Sci 2022; 23:ijms23158140. [PMID: 35897715 PMCID: PMC9329780 DOI: 10.3390/ijms23158140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore systemization of knowledge about the triggering effects of non-genetic factors in pathogenic mechanisms that contribute to the development of rheumatoid arthritis (RA). Possible mechanisms involving environmental and individual factors in RA pathogenesis were analyzed, namely, infections, mental stress, sleep deprivation ecology, age, perinatal and gender factors, eating habits, obesity and smoking. The non-genetic factors modulate basic processes in the body with the impact of these factors being non-specific, but these common challenges may be decisive for advancement of the disease in the predisposed body at risk for RA. The provocation of this particular disease is associated with the presence of congenital loci minoris resistentia. The more frequent non-genetic factors form tangles of interdependent relationships and, thereby, several interdependent external factors hit one vulnerable basic process at once, either provoking or reinforcing each other. Understanding the specific mechanisms by which environmental and individual factors impact an individual under RA risk in the preclinical stages can contribute to early disease diagnosis and, if the factor is modifiable, might be useful for the prevention or delay of its development.
Collapse
Affiliation(s)
- Marina Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Correspondence: ; Tel.: +7-89172-886-679; Fax: +7-843-238-5413
| | - Elena Takha
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Sergey Petrov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Gevorg Kazarian
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Yves Renaudineau
- Department of Immunology, CHU Toulouse, INSERM U1291, CNRS U5051, University Toulouse IIII, 31000 Toulouse, France;
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA;
| | - Regina Larionova
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Marina Korovina
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Anna Valeeva
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
| | - Eduard Shuralev
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Malik Mukminov
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (E.T.); (S.P.); (G.K.); (R.L.); (M.K.); (A.V.); (E.S.); (M.M.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Olga Kravtsova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Andrey Novikov
- Mathematical Center, Sobolev Instiute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| |
Collapse
|
3
|
Mamais A, Kaganovich A, Harvey K. Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiol Dis 2022; 169:105721. [PMID: 35405260 DOI: 10.1016/j.nbd.2022.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022] Open
Abstract
In recent years progress in molecular biology and genetics have advanced our understanding of neurological disorders and highlighted synergistic relationships with inflammatory and age-related processes. Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Increasing extensive evidence supports the contribution of genetic risk variants and inflammation in the pathobiology of this disease. Functional and genetic studies demonstrate an overlap between genes linked to increased risk for PD and autoimmune diseases. Variants identified in loci adjacent to LRRK2, GBA, and HLA establish a crosstalk between the pathobiologies of the two disease spectra. Furthermore, common signalling pathways associated with the pathogenesis of genetic PD are also relevant to inflammatory signaling include MAPK, NF-κB, Wnt and inflammasome signaling. Importantly, post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines. In this review we will focus on the principal mechanisms of genetic, inflammatory and age-related risk that intersect in the pathogenesis of PD.
Collapse
Affiliation(s)
- Adamantios Mamais
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK..
| |
Collapse
|
4
|
Kajdácsi E, Veszeli N, Mező B, Jandrasics Z, Kőhalmi KV, Ferrara AL, Cervenak L, Varga L, Farkas H. Pathways of Neutrophil Granulocyte Activation in Hereditary Angioedema with C1 Inhibitor Deficiency. Clin Rev Allergy Immunol 2021; 60:383-395. [PMID: 33606193 PMCID: PMC8272702 DOI: 10.1007/s12016-021-08847-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/04/2022]
Abstract
Hereditary angioedema (HAE) with C1-inhibitor deficiency belongs to bradykinin-mediated angioedemas. It is characterized by recurrent subcutaneous and/or submucosal swelling episodes (HAE attacks) and erythema marginatum skin rash as a pre-attack (prodromal) phase. HAE attacks were shown to be accompanied by peripheral blood neutrophilia. We aimed to find molecular mechanisms that may explain the distinct role of neutrophil granulocytes in HAE. Plasma levels of blood cells and factors related to neutrophil activation (cytokines, chemokines, chemotactic factors, enzymes, and neutrophil extracellular trap) were measured in plasma samples obtained from patients during symptom-free periods (n = 77), during prodromal phase (n = 8) and attacks (n = 14), during a spontaneously resolved attack (n = 1), and in healthy controls (n = 79). Higher counts of white blood cells, lymphocytes, and neutrophil granulocytes were found in symptom-free patients compared with controls; these cell counts were elevated further during HAE attacks. The level of chemokine (C–C motif) ligand 5, monocyte chemoattractant protein-1, and myeloperoxidase were also higher in the symptom-free patients than in the controls. Levels of monocyte chemoattractant protein-1, leukotriene B4, neutrophil elastase, and myeloperoxidase were elevated during attacks. During erythema marginatum, white blood cells and monocyte count and levels of interleukin 8 were elevated compared with symptom-free period. Similar changes were detected during the attack follow-up. We conclude that the activation of NGs in symptom-free periods and a further increase observed during attacks suggests that NGs may be involved in the pathomechanism of HAE with C1-INH deficiency.
Collapse
Affiliation(s)
- Erika Kajdácsi
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary
| | - Nóra Veszeli
- MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Blanka Mező
- MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Zsófia Jandrasics
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary
| | - Kinga Viktória Kőhalmi
- Hungarian Angioedema Center of Reference and Excellence, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Department of Rheumatology, Hospital of Hospitaller Brothers of St. John of God, Budapest, Hungary
| | - Anne Lise Ferrara
- Center for Basic and Clinical Immunology Research (CISI), Department of Translational Medical Science, University of Naples "Federico II", Napoli, Italy
| | - László Cervenak
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary
| | - Lilian Varga
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary
- Hungarian Angioedema Center of Reference and Excellence, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Henriette Farkas
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi str, 1088, Budapest, Hungary.
- Hungarian Angioedema Center of Reference and Excellence, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Okazaki S, Otsuka I, Horai T, Hirata T, Takahashi M, Ueno Y, Boku S, Sora I, Hishimoto A. Accelerated extrinsic epigenetic aging and increased natural killer cells in blood of suicide completers. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109805. [PMID: 31707091 DOI: 10.1016/j.pnpbp.2019.109805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Studies suggest aberrant DNA methylation in victims of suicide. Recently, DNA methylation profiles have been developed for determining "epigenetic age," which is the most accurate estimate of biological age. Subsequently, two refined measures of epigenetic age acceleration have been expanded for blood samples as intrinsic and extrinsic epigenetic age acceleration (IEAA and EEAA, respectively). IEAA involves pure epigenetic aging independent of blood cell composition, whereas EEAA involves immunosenescence in association with blood cell composition. METHODS We investigated epigenetic age acceleration using two independent DNA methylation datasets: a brain dataset from 16 suicide completers and 15 non-psychiatric controls and a blood dataset compiled using economical DNA pooling technique from 56 suicide completers and 60 living healthy controls. In the blood dataset, we considered IEAA and EEAA, as well as DNA methylation-based blood cell composition. RESULTS There was no significant difference in universal epigenetic age acceleration between suicide completers and controls in both brain and blood datasets. Blood of suicide completers exhibited an increase in EEAA, but not in IEAA. We additionally found that suicide completers had more natural killer cells but fewer granulocytes compared to controls. CONCLUSION This study provides novel evidence for accelerated extrinsic epigenetic aging in suicide completers and for the potential application of natural killer cells as a biomarker for suicidal behavior.
Collapse
Affiliation(s)
- Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tadasu Horai
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Hirata
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Motonori Takahashi
- Division of Legal Medicine, Department of Community Medicine and Social Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuhiro Ueno
- Division of Legal Medicine, Department of Community Medicine and Social Health Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuken Boku
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Sora
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
7
|
Le Page A, Lamoureux J, Bourgade K, Frost EH, Pawelec G, Witkowski JM, Larbi A, Dupuis G, Fülöp T. Polymorphonuclear Neutrophil Functions are Differentially Altered in Amnestic Mild Cognitive Impairment and Mild Alzheimer's Disease Patients. J Alzheimers Dis 2018; 60:23-42. [PMID: 28777750 DOI: 10.3233/jad-170124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms of neurodegeneration in Alzheimer's disease (AD) remain under investigation. Alterations in the blood-brain barrier facilitate exchange of inflammatory mediators and immune cells between the brain and the periphery in AD. Here, we report analysis of phenotype and functions of polymorphonuclear neutrophils (PMN) in peripheral blood from patients with amnestic mild cognitive impairment (aMCI, n = 13), patients with mild AD (mAD, n = 15), and healthy elderly controls (n = 13). Results showed an increased expression of CD177 in mAD but not in healthy or aMCI patients. IL-8 stimulated increased expression of the CD11b integrin in PMN of healthy subjects in vitro but PMN of aMCI and mAD patients failed to respond. CD14 and CD16 expression was lower in PMN of mAD but not in aMCI individuals relative to controls. Only PMN of aMCI subjects expressed lower levels of CD88. Phagocytosis toward opsonized E. coli was differentially impaired in PMN of aMCI and mAD subjects whereas the capacity to ingest Dextran particles was absent only in mAD subjects. Killing activity was severely impaired in aMCI and mAD subjects whereas free radical production was only impaired in mAD patients. Inflammatory cytokine (TNFα, IL-6, IL-1β, IL-12p70) and chemokine (MIP-1α, MIP-1β, IL-8) production in response to LPS stimulation was very low in aMCI and nearly absent in mAD subjects. TLR2 expression was low only in aMCI. Our data showed a differentially altered capacity of PMN of aMCI and mAD subjects to respond to pathological aggression that may impact impaired responses associated with AD development.
Collapse
Affiliation(s)
- Aurélie Le Page
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Julie Lamoureux
- Graduate Program in Physiology-Biophysics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Bourgade
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric H Frost
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tamàs Fülöp
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Brindle RC, Ginty AT, Phillips AC, Fisher JP, McIntyre D, Carroll D. Heart rate complexity: A novel approach to assessing cardiac stress reactivity. Psychophysiology 2015; 53:465-72. [PMID: 26585809 DOI: 10.1111/psyp.12576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
Correlation dimension (D2), a measure of heart rate (HR) complexity, has been shown to decrease in response to acute mental stress and relate to adverse cardiovascular health. However, the relationship between stress-induced changes in D2 and HR has yet to be established. The present studies aimed to assess this relationship systematically while controlling for changes in respiration and autonomic activity. In Study 1 (N = 25) D2 decreased during stress and predicted HR reactivity even after adjusting for changes in respiration rate, and cardiac vagal tone. This result was replicated in Study 2 (N = 162) and extended by including a measure of cardiac sympathetic activity; correlation dimension remained an independent predictor of HR reactivity in a hierarchical linear model containing measures of cardiac parasympathetic and sympathetic activity and their interaction. These results suggest that correlation dimension may provide additional information regarding cardiac stress reactivity above that provided by traditional measures of cardiac autonomic function.
Collapse
Affiliation(s)
- Ryan C Brindle
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Annie T Ginty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna C Phillips
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - James P Fisher
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - David McIntyre
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Douglas Carroll
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Chuang SY, Lin CH, Fang JY. Natural compounds and aging: between autophagy and inflammasome. BIOMED RESEARCH INTERNATIONAL 2014; 2014:297293. [PMID: 25298963 PMCID: PMC4179937 DOI: 10.1155/2014/297293] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022]
Abstract
Aging, a natural physiological process, is characterized by a progressive loss of physiological integrity. Loss of cellular homeostasis in the aging process results from different sources, including changes in genes, cell imbalance, and dysregulation of the host-defense systems. Innate immunity dysfunctions during aging are connected with several human pathologies, including metabolic disorders and cardiovascular diseases. Recent studies have clearly indicated that the decline in autophagic capacity that accompanies aging results in the accumulation of dysfunctional mitochondria, reactive oxygen species (ROS) production, and further process dysfunction of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation in the macrophages, which produce the proinflammatory cytokines. These factors impair cellular housekeeping and expose cells to higher risk in many age-related diseases, such as atherosclerosis and type 2 diabetes. In this review, we investigated the relationship between dysregulation of the inflammasome activation and perturbed autophagy with aging as well as the possible molecular mechanisms. We also summarized the natural compounds from food intake, which have potential to reduce the inflammasome activation and enhance autophagy and can further improve the age-related diseases discussed in this paper.
Collapse
Affiliation(s)
- Shih-Yi Chuang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 333, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
| | - Chih-Hung Lin
- Center for General Education, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 333, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Cellular signaling in the aging immune system. Curr Opin Immunol 2014; 29:105-11. [PMID: 24934647 DOI: 10.1016/j.coi.2014.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022]
Abstract
Causes for immunosenescence and inflamm-aging have to be established. Efficient function of the immune system requires homeostatic regulation from receptor recognition of antigenic challenge to cell responses and adaptation to its changing environment. It is reasonable to assume that one of the most important molecular causes of immunosenescence is alteration in the regulation of signaling pathways. Indeed, alterations in feed-forward and negative feedback (inhibitory) signaling have been highlighted in all cells involved in the immune response including short-lived (neutrophils) and long-lived (T lymphocytes) cells. These dysregulations tip the balance in favor of altered (less efficient) function of the immune system. In this review, we summarize our knowledge on signal transduction changes in the aging immune system and propose a unifying mechanism as one of the causes of immunosenescence. Modulation of these pathways with aging represents a major challenge to restore the immune response to functional levels.
Collapse
|
11
|
Vitlic A, Lord JM, Phillips AC. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9631. [PMID: 24562499 PMCID: PMC4082590 DOI: 10.1007/s11357-014-9631-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/11/2014] [Indexed: 05/29/2023]
Abstract
The immune response is essential for keeping an organism healthy and for defending it from different types of pathogens. It is a complex system that consists of a large number of components performing different functions. The adequate and controlled interaction between these components is necessary for a robust and strong immune response. There are, however, many factors that interfere with the way the immune response functions. Stress and ageing now consistently appear in the literature as factors that act upon the immune system in the way that is often damaging. This review focuses on the role of stress and ageing in altering the robustness of the immune response first separately, and then simultaneously, discussing the effects that emerge from their interplay. The special focus is on the psychological stress and the impact that it has at different levels, from the whole system to the individual molecules, resulting in consequences for physical health.
Collapse
Affiliation(s)
- Ana Vitlic
- />School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT England UK
- />MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, England UK
| | - Janet M. Lord
- />MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, England UK
- />School of Immunity and Infection, University of Birmingham, Birmingham, England UK
| | - Anna C. Phillips
- />School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT England UK
- />MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, England UK
| |
Collapse
|
12
|
Tsukamoto K, Machida K. Effects of psychological stress on neutrophil phagocytosis and bactericidal activity in humans — a meta-analysis. Int J Psychophysiol 2014; 91:67-72. [DOI: 10.1016/j.ijpsycho.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/11/2013] [Accepted: 12/02/2013] [Indexed: 11/25/2022]
|
13
|
Brindle RC, Ginty AT, Conklin SM. Is the association between depression and blunted cardiovascular stress reactions mediated by perceptions of stress? Int J Psychophysiol 2013; 90:66-72. [DOI: 10.1016/j.ijpsycho.2013.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 12/15/2022]
|