1
|
Daria C, Lancaster G, Murphy AJ, Henderson LA, Dawood T, Macefield VG. Relationship between muscle sympathetic nerve activity and rapid increases in circulating leukocytes during experimental muscle pain. Clin Auton Res 2024; 34:227-231. [PMID: 38227276 DOI: 10.1007/s10286-023-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Affiliation(s)
- Camille Daria
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Graeme Lancaster
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A Henderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Monash University Central Clinical School, Level 6, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Izadi M, Franklin S, Bellafiore M, Franklin DW. Motor Learning in Response to Different Experimental Pain Models Among Healthy Individuals: A Systematic Review. Front Hum Neurosci 2022; 16:863741. [PMID: 35399361 PMCID: PMC8987932 DOI: 10.3389/fnhum.2022.863741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022] Open
Abstract
Learning new movement patterns is a normal part of daily life, but of critical importance in both sport and rehabilitation. A major question is how different sensory signals are integrated together to give rise to motor adaptation and learning. More specifically, there is growing evidence that pain can give rise to alterations in the learning process. Despite a number of studies investigating the role of pain on the learning process, there is still no systematic review to summarize and critically assess investigations regarding this topic in the literature. Here in this systematic review, we summarize and critically evaluate studies that examined the influence of experimental pain on motor learning. Seventeen studies that exclusively assessed the effect of experimental pain models on motor learning among healthy human individuals were included for this systematic review, carried out based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The results of the review revealed there is no consensus regarding the effect of pain on the skill learning acquisition and retention. However, several studies demonstrated that participants who experienced pain continued to express a changed motor strategy to perform a motor task even 1 week after training under the pain condition. The results highlight a need for further studies in this area of research, and specifically to investigate whether pain has different effects on motor learning depending on the type of motor task.
Collapse
Affiliation(s)
- Mohammad Izadi
- Sport and Exercise Research Unit, Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
| | - Sae Franklin
- Institute for Cognitive Systems, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| | - Marianna Bellafiore
- Sport and Exercise Research Unit, Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
| | - David W. Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- Munich School of Robotics and Machine Intelligence, Technical University of Munich, Munich, Germany
- Munich Data Science Institute, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Kobuch S, Henderson LA, Macefield VG, Brown R. The effects of audiovisual distraction on the muscle sympathetic responses to experimental muscle pain. Exp Brain Res 2018; 236:1919-1925. [PMID: 29696315 DOI: 10.1007/s00221-018-5271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 04/20/2018] [Indexed: 11/30/2022]
Abstract
Pain elicited by intramuscular infusion of hypertonic saline solution causes muscle sympathetic nerve activity (MSNA) to increase in some subjects, yet decrease in others. Although the direction of the response is not predictable based on baseline physiological and psychological parameters, we know that it results from sustained functional changes in specific brain regions that are responsible for the behavioral and cardiovascular responses to psychological stressors, as well as those involved in attention. The aim of this study was to investigate whether MSNA responses to experimental muscle pain in humans could be altered with an audiovisual stimulus that served to distract them from the pain. MSNA was recorded from the left common peroneal nerve of 20 young healthy individuals during a 45-min intramuscular infusion of hypertonic saline solution into the ipsilateral tibialis anterior muscle. The distracting stimulus commenced 15 min after the start of the infusion and lasted for 15 min. Fifteen subjects showed an increase in mean burst amplitude of MSNA (to 176.4 ± 7.9% of baseline), while five showed a decrease (to 73.1 ± 5.2% of baseline); distraction had no effect on these profiles. These results indicate that even though the subjects were attending to the audiovisual stimulus, and were presumably distracted from the pain, it failed to alter the MSNA responses to muscle pain.
Collapse
Affiliation(s)
- Sophie Kobuch
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Luke A Henderson
- Department of Anatomy and Histology, University of Sydney, Sydney, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Neuroscience Research Australia, Sydney, Australia.,Baker Heart and Diabetes Institute, Melbourne, Australia
| | - R Brown
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.,Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
4
|
Kobuch S, Fazalbhoy A, Brown R, Macefield VG, Henderson LA. Muscle sympathetic nerve activity-coupled changes in brain activity during sustained muscle pain. Brain Behav 2018; 8:e00888. [PMID: 29541532 PMCID: PMC5840447 DOI: 10.1002/brb3.888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Long-lasting experimental muscle pain elicits divergent muscle sympathetic responses, with some individuals exhibiting a persistent increase in muscle sympathetic nerve activity (MSNA), and others a decrease. These divergent responses are thought to result from sustained functional changes in specific brain regions that modulate the cardiovascular responses to pain. AIM The aim of this study was to investigate brain regions that are functionally coupled to the generation of an MSNA burst at rest and to determine their behavior during tonic muscle pain. METHODS Functional magnetic resonance imaging of the brain was performed concurrently with microelectrode recording of MSNA from the common peroneal nerve during a 40 min infusion of hypertonic saline into the ipsilateral tibialis anterior muscle of 37 healthy human subjects. RESULTS At rest, blood oxygen level-dependent signal intensity coupled to bursts of MSNA increased in the rostral ventrolateral medulla, insula, dorsolateral prefrontal cortex, posterior cingulate cortex, and precuneus and decreased in the region of the midbrain periaqueductal gray. During pain, MSNA-coupled signal intensity was greater in the region of the nucleus tractus solitarius, midbrain periaqueductal gray, dorsolateral prefrontal, medial prefrontal, and anterior cingulate cortices, than at rest. Conversely, MSNA-coupled signal intensity decreased during pain in parts of the prefrontal cortex. CONCLUSIONS These results suggest that multiple brain regions are recruited in a burst-to-burst manner, and the magnitude of these signal changes is correlated to the overall change in MSNA amplitude during tonic muscle pain.
Collapse
Affiliation(s)
- Sophie Kobuch
- School of Medicine Western Sydney University Sydney NSW Australia
| | - Azharuddin Fazalbhoy
- Neuroscience Research Australia Sydney NSW Australia.,School of Health Sciences RMIT University Melbourne Vic Australia
| | - Rachael Brown
- School of Medicine Western Sydney University Sydney NSW Australia.,Neuroscience Research Australia Sydney NSW Australia
| | - Vaughan G Macefield
- School of Medicine Western Sydney University Sydney NSW Australia.,Neuroscience Research Australia Sydney NSW Australia.,College of Medicine Mohammed Bin Rashid University of Medicine & Health Sciences Dubai UAE
| | - Luke A Henderson
- Department of Anatomy and Histology University of Sydney Sydney NSW Australia
| |
Collapse
|
5
|
Kobuch S, Fazalbhoy A, Brown R, Henderson LA, Macefield VG. Central circuitry responsible for the divergent sympathetic responses to tonic muscle pain in humans. Hum Brain Mapp 2016; 38:869-881. [PMID: 27696604 DOI: 10.1002/hbm.23424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
Experimentally induced tonic muscle pain evokes divergent muscle vasoconstrictor responses, with some individuals exhibiting a sustained increase in muscle sympathetic nerve activity (MSNA), and others a sustained decrease. These patterns cannot be predicted from an individual's baseline physiological or psychological measures. The aim of this study was to investigate whether the different muscle sympathetic responses to tonic muscle pain were associated with differential changes in regional brain activity. Functional magnetic resonance imaging (fMRI) of the brain was performed concurrently with microelectrode recording of MSNA from the peroneal nerve during a 40-min infusion of hypertonic saline into the ipsilateral tibialis anterior muscle. MSNA increased in 26 and decreased in 11 of 37 subjects during tonic muscle pain. Within the prefrontal and cingulate cortices, precuneus, nucleus accumbens, caudate nucleus, and dorsomedial hypothalamus, blood oxygen level dependent (BOLD) signal intensity increased in the increasing-MSNA group and remained at baseline or decreased in the decreasing-MSNA group. Similar responses occurred in the dorsolateral pons and in the region of the rostral ventrolateral medulla. By contrast, within the region of the dorsolateral periaqueductal gray (dlPAG) signal intensity initially increased in both groups but returned to baseline levels only in the increasing-MSNA group. These results suggest that the divergent sympathetic responses to muscle pain result from activation of a neural pathway that includes the dlPAG, an area thought to be responsible for the behavioral and cardiovascular responses to psychological rather than physical stressors. Hum Brain Mapp 38:869-881, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sophie Kobuch
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Azharuddin Fazalbhoy
- Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Rachael Brown
- School of Medicine, Western Sydney University, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - Luke A Henderson
- Discipline of Anatomy and Histology, University of Sydney, Sydney, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, Australia
- Neuroscience Research Australia, Sydney, Australia
| |
Collapse
|
6
|
Burton AR, Fazalbhoy A, Macefield VG. Sympathetic Responses to Noxious Stimulation of Muscle and Skin. Front Neurol 2016; 7:109. [PMID: 27445972 PMCID: PMC4927631 DOI: 10.3389/fneur.2016.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022] Open
Abstract
Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological – reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation.
Collapse
Affiliation(s)
| | - Azharuddin Fazalbhoy
- School of Health and Biomedical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|