1
|
Mohamed EM, Dharani S, Khuroo T, Nutan MTH, Cook P, Arunagiri R, Khan MA, Rahman Z. Oral Bioavailability Enhancement of Poorly Soluble Drug by Amorphous Solid Dispersion Using Sucrose Acetate Isobutyrate. AAPS PharmSciTech 2024; 25:202. [PMID: 39237685 DOI: 10.1208/s12249-024-02924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
The focus of the present work was to develop amorphous solid dispersion (ASD) formulation of aprepitant (APT) using sucrose acetate isobutyrate (SAIB) excipient, evaluate for physicochemical attributes, stability, and bioavailability, and compared with hydroxypropyl methylcellulose (HPMC) based formulation. Various formulations of APT were prepared by solvent evaporation method and characterized for physiochemical and in-vivo performance attributes such as dissolution, drug phase, stability, and bioavailability. X-ray powder diffraction indicated crystalline drug conversion into amorphous phase. Dissolution varied as a function of drug:SAIB:excipient proportion. The dissolution was more than 80% in the optimized formulation (F10) and comparable to HPMC based formulation (F13). Stability of F10 and F13 formulations stored at 25 C/60% and 40°C/75% RH for three months were comparable. Both ASD formulations (F10 and F13) were bioequivalent as indicated by the pharmacokinetic parameters Cmax and AUC0-∞. Cmax and AUC0-∞ of F10 and F13 formulations were 2.52 ± 0.39, and 2.74 ± 0.32 μg/ml, and 26.59 ± 0.39, and 24.79 ± 6.02 μg/ml.h, respectively. Furthermore, the bioavailability of ASD formulation was more than twofold of the formulation containing crystalline phase of the drug. In conclusion, stability and oral bioavailability of SAIB based ASD formulation is comparable to HPMC-based formulation of poorly soluble drugs.
Collapse
Affiliation(s)
- Eman M Mohamed
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Sathish Dharani
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A
| | - Tahir Khuroo
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A
| | - Mohammad T H Nutan
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Kingsville, Texas, 78363, U.S.A
| | - Phillip Cook
- Eastman Chemical Company, Kingsport, Tennessee, 37662, U.S.A
| | | | - Mansoor A Khan
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A
| | - Ziyaur Rahman
- Irma Lerma Rangel School of Pharmacy, Texas A&M Health Science Center, Texas A&M University, 310 Reynolds Medical Sciences Building, College Station, Texas, 77843-1114, U.S.A..
| |
Collapse
|
2
|
Bonhoeffer B, Kordikowski A, John E, Juhnke M. Numerical modeling of the dissolution of drug nanocrystals and its application to industrial product development. ADMET & DMPK 2022; 10:253-287. [PMID: 36578561 PMCID: PMC9793462 DOI: 10.5599/admet.1437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The apparent solubility of drug nanocrystals in equilibrium was experimentally determined for a drug-stabilizer system with different particle size distributions. True supersaturation was identified for ultrafine drug nanocrystals with an almost 2-fold increase compared to the thermodynamic solubility of related coarse drug crystals, highlighting their enabling potential to enhance bioavailability. The experimental results were applied to investigate in silico the associated dissolution behavior in a closed system by numerical modeling according to the Ostwald-Freundlich and Noyes-Whitney / Nernst-Brunner equations. Calculated results were found to be in agreement with the experimental results only when the entire particle size distribution of drug nanocrystals was considered. In silico dissolution, studies were conducted to simulate the complex interplay between drug nanocrystals, dissolution conditions and resulting temporal progression during dissolution up to the equilibrium state. Calculations were performed for selected in vivo and in vitro scenarios considering different drug nanocrystal particle size distributions, drug amount, dissolution media and volume. The achieved results demonstrated the importance of ultrafine drug nanocrystals for potential bioavailability improvement and the functional applicability of the modeling approach to investigate their dissolution behavior for configurable formulation variables in product development in terms of in vivo and in vitro relevant conditions.
Collapse
|
3
|
Ijardar SP, Singh V, Gardas RL. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules 2022; 27:1368. [PMID: 35209161 PMCID: PMC8877072 DOI: 10.3390/molecules27041368] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 01/31/2023] Open
Abstract
Recently, deep eutectic solvent (DES) or ionic liquid (IL) analogues have been considered as the newest green solvent, demonstrating the potential to replace harsh volatile organic solvents. DESs are mainly a combination of two compounds: hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), which have the ability to interact through extensive hydrogen bonds. A thorough understanding of their physicochemical properties is essential, given their successful applications on an industrial scale. The appropriate blend of HBA to HBD can easily fine-tune DES properties for desired applications. In this context, we have reviewed the basic information related to DESs, the two most studied physicochemical properties (density and viscosity), and their performance as a solvent in (i) drug delivery and (ii) extraction of biomolecules. A broader approach of various factors affecting their performance has been considered, giving a detailed picture of the current status of DESs in research and development.
Collapse
Affiliation(s)
- Sushma P. Ijardar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Vickramjeet Singh
- Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India;
| | - Ramesh L. Gardas
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|