1
|
Ikawa H, Koto M, Fugo K, Takiyama H, Isozaki T, Shinoto M, Yamada S, Ishikawa H. Carbon-ion radiotherapy for clear cell odontogenic carcinomas. World J Surg Oncol 2024; 22:191. [PMID: 39054550 PMCID: PMC11270857 DOI: 10.1186/s12957-024-03470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Clear cell odontogenic carcinoma (CCOC) is a rare odontogenic malignant tumor. The standard treatment for CCOC is surgical resection and adjuvant radiotherapy (RT). Radiotherapy is generally considered in inoperable cases. However, there are no reports on definitive RT for CCOC, and the role of RT in patients with inoperable CCOC remains unknown. Therefore, in this report, we present two cases of carbon-ion (C-ion) RT for CCOC. CASE PRESENTATION In case 1, a 73-year-old man with mandibular CCOC presented with recurrence in the inferior temporal fossa after two tumor resections. The tumor was considered inoperable, and C-ion RT (57.6 Gy in 16 fractions) was administered. The tumor remained controlled even after 20 months of C-ion RT; however, the patient died of other causes. In case 2, a 34-year-old man with maxillary CCOC presented with recurrence in the left sinonasal region after two tumor resections. The tumor was considered inoperable, and C-ion RT (64 Gy in 16 fractions) was administered. However, recurrence was observed in the irradiated field 19 months after the treatment. Subsequently, C-ion RT (64 Gy in 16 fractions) was repeated for the recurrent tumors. Seven years and 6 months after the initial irradiation, the tumor remains controlled, and the patient is alive without any unexpected serious adverse events. CONCLUSION C-ion RT may be an effective treatment option for patients with inoperable CCOC.
Collapse
Affiliation(s)
- Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan.
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Kazunori Fugo
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hirotoshi Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Tetsuro Isozaki
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Makoto Shinoto
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Yang D, Zhu XR, Chen M, Ma L, Cheng X, Grosshans DR, Lu W, Shao Y. Investigation of intra-fractionated range guided adaptive proton therapy: I. On-line PET imaging and range measurement. Phys Med Biol 2024; 69:155005. [PMID: 38861997 DOI: 10.1088/1361-6560/ad56f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Develop a prototype on-line positron emission tomography (PET) scanner and evaluate its capability of on-line imaging and intra-fractionated proton-induced radioactivity range measurement.Approach.Each detector consists of 32 × 32 array of 2 × 2 × 30 mm3Lutetium-Yttrium Oxyorthosilicate scintillators with single-scintillator-end readout through a 20 × 20 array of 3 × 3 mm2Silicon Photomultipliers. The PET can be configurated with a full-ring of 20 detectors for conventional PET imaging or a partial-ring of 18 detectors for on-line imaging and range measurement. All detector-level readout and processing electronics are attached to the backside of the system gantry and their output signals are transferred to a field-programable-gate-array based system electronics and data acquisition that can be placed 2 m away from the gantry. The PET imaging performance and radioactivity range measurement capability were evaluated by both the offline study that placed a radioactive source with known intensity and distribution within a phantom and the online study that irradiated a phantom with proton beams under different radiation and imaging conditions.Main results.The PET has 32 cm diameter and 6.5 cm axial length field-of-view (FOV), ∼2.3-5.0 mm spatial resolution within FOV, 3% sensitivity at the FOV center, 18%-30% energy resolution, and ∼9 ns coincidence time resolution. The offline study shows the PET can determine the shift of distal falloff edge position of a known radioactivity distribution with the accuracy of 0.3 ± 0.3 mm even without attenuation and scatter corrections, and online study shows the PET can measure the shift of proton-induced positron radioactive range with the accuracy of 0.6 ± 0.3 mm from the data acquired with a short-acquisition (60 s) and low-dose (5 MU) proton radiation to a human head phantom.Significance.This study demonstrated the capability of intra-fractionated PET imaging and radioactivity range measurement and will enable the investigation on the feasibility of intra-fractionated, range-shift compensated adaptive proton therapy.
Collapse
Affiliation(s)
- Dongxu Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Xiaorong R Zhu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77000, United States of America
| | - Mingli Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Lin Ma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Xinyi Cheng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77000, United States of America
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| | - Yiping Shao
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75057, United States of America
| |
Collapse
|
3
|
Augustin E, Holtzman AL, Dagan R, Bryant CM, Indelicato DJ, Morris CG, Deraniyagala RL, Fernandes RP, Bunnell AM, Nedrud SM, Mendenhall WM. Long-Term Outcomes Following Definitive or Adjuvant Proton Radiotherapy for Adenoid Cystic Carcinoma. Int J Part Ther 2024; 11:100008. [PMID: 38757074 PMCID: PMC11096740 DOI: 10.1016/j.ijpt.2024.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Adenoid cystic carcinoma (ACC) is a rare malignancy accounting for 1% of all head and neck cancers. Treatment for ACC has its challenges and risks, yet few outcomes studies exist. We present long-term outcomes of patients with ACC of the head and neck treated with proton therapy (PT). Materials and Methods Under an institutional review board-approved, single-institutional prospective outcomes registry, we reviewed the records of 56 patients with de novo, nonmetastatic ACC of the head and neck treated with PT with definitive (n = 9) or adjuvant PT (n = 47) from June 2007 to December 2021. The median dose to the primary site was 72.6 gray relative biological equivalent (range, 64-74.4) delivered as either once (n = 19) or twice (n = 37) daily treatments. Thirty patients received concurrent chemotherapy. Thirty-one patients received nodal radiation, 30 electively and 1 for nodal involvement. Results With a median follow-up of 6.2 years (range, 0.9-14.7), the 5-year local-regional control (LRC), disease-free survival, cause-specific survival, and overall survival rates were 88%, 85%, 89%, and 89%, respectively. Intracranial extension (P = .003) and gross residual tumor (P = .0388) were factors associated with LRC rates. While the LRC rate for those with a gross total resection was 96%, those with subtotal resection or biopsy alone were 81% and 76%, respectively. The 5-year cumulative incidence of clinically significant grade ≥3 toxicity was 15%, and the crude incidence at the most recent follow-up was 23% (n = 13). Conclusion This is the largest sample size with the longest median follow-up to date of patients with ACC treated with PT. PT can provide excellent disease control for ACC of the head and neck with acceptable toxicity. T4 disease, intracranial involvement, and gross residual disease at the time of PT following either biopsy or subtotal resection were significant prognostic features for worse outcomes.
Collapse
Affiliation(s)
- Etzer Augustin
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Adam L. Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Roi Dagan
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Curtis M. Bryant
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Daniel J. Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Christopher G. Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Rohan L. Deraniyagala
- Department of Radiation Oncology, Corewell Health/Beaumont Hospital, Royal Oak, Michigan, USA
| | - Rui P. Fernandes
- Department of Oral and Maxillofacial Surgery, University of Florida College of Medicine Jacksonville, Jacksonville, Florida, USA
| | - Anthony M. Bunnell
- Department of Oral and Maxillofacial Surgery, University of Florida College of Medicine Jacksonville, Jacksonville, Florida, USA
| | - Stacey M. Nedrud
- Department of Oral and Maxillofacial Surgery, University of Florida College of Medicine Jacksonville, Jacksonville, Florida, USA
| | - William M. Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| |
Collapse
|
4
|
Kuan EC, Wang EW, Adappa ND, Beswick DM, London NR, Su SY, Wang MB, Abuzeid WM, Alexiev B, Alt JA, Antognoni P, Alonso-Basanta M, Batra PS, Bhayani M, Bell D, Bernal-Sprekelsen M, Betz CS, Blay JY, Bleier BS, Bonilla-Velez J, Callejas C, Carrau RL, Casiano RR, Castelnuovo P, Chandra RK, Chatzinakis V, Chen SB, Chiu AG, Choby G, Chowdhury NI, Citardi MJ, Cohen MA, Dagan R, Dalfino G, Dallan I, Dassi CS, de Almeida J, Dei Tos AP, DelGaudio JM, Ebert CS, El-Sayed IH, Eloy JA, Evans JJ, Fang CH, Farrell NF, Ferrari M, Fischbein N, Folbe A, Fokkens WJ, Fox MG, Lund VJ, Gallia GL, Gardner PA, Geltzeiler M, Georgalas C, Getz AE, Govindaraj S, Gray ST, Grayson JW, Gross BA, Grube JG, Guo R, Ha PK, Halderman AA, Hanna EY, Harvey RJ, Hernandez SC, Holtzman AL, Hopkins C, Huang Z, Huang Z, Humphreys IM, Hwang PH, Iloreta AM, Ishii M, Ivan ME, Jafari A, Kennedy DW, Khan M, Kimple AJ, Kingdom TT, Knisely A, Kuo YJ, Lal D, Lamarre ED, Lan MY, Le H, Lechner M, Lee NY, Lee JK, Lee VH, Levine CG, Lin JC, Lin DT, Lobo BC, Locke T, Luong AU, Magliocca KR, Markovic SN, Matnjani G, et alKuan EC, Wang EW, Adappa ND, Beswick DM, London NR, Su SY, Wang MB, Abuzeid WM, Alexiev B, Alt JA, Antognoni P, Alonso-Basanta M, Batra PS, Bhayani M, Bell D, Bernal-Sprekelsen M, Betz CS, Blay JY, Bleier BS, Bonilla-Velez J, Callejas C, Carrau RL, Casiano RR, Castelnuovo P, Chandra RK, Chatzinakis V, Chen SB, Chiu AG, Choby G, Chowdhury NI, Citardi MJ, Cohen MA, Dagan R, Dalfino G, Dallan I, Dassi CS, de Almeida J, Dei Tos AP, DelGaudio JM, Ebert CS, El-Sayed IH, Eloy JA, Evans JJ, Fang CH, Farrell NF, Ferrari M, Fischbein N, Folbe A, Fokkens WJ, Fox MG, Lund VJ, Gallia GL, Gardner PA, Geltzeiler M, Georgalas C, Getz AE, Govindaraj S, Gray ST, Grayson JW, Gross BA, Grube JG, Guo R, Ha PK, Halderman AA, Hanna EY, Harvey RJ, Hernandez SC, Holtzman AL, Hopkins C, Huang Z, Huang Z, Humphreys IM, Hwang PH, Iloreta AM, Ishii M, Ivan ME, Jafari A, Kennedy DW, Khan M, Kimple AJ, Kingdom TT, Knisely A, Kuo YJ, Lal D, Lamarre ED, Lan MY, Le H, Lechner M, Lee NY, Lee JK, Lee VH, Levine CG, Lin JC, Lin DT, Lobo BC, Locke T, Luong AU, Magliocca KR, Markovic SN, Matnjani G, McKean EL, Meço C, Mendenhall WM, Michel L, Na'ara S, Nicolai P, Nuss DW, Nyquist GG, Oakley GM, Omura K, Orlandi RR, Otori N, Papagiannopoulos P, Patel ZM, Pfister DG, Phan J, Psaltis AJ, Rabinowitz MR, Ramanathan M, Rimmer R, Rosen MR, Sanusi O, Sargi ZB, Schafhausen P, Schlosser RJ, Sedaghat AR, Senior BA, Shrivastava R, Sindwani R, Smith TL, Smith KA, Snyderman CH, Solares CA, Sreenath SB, Stamm A, Stölzel K, Sumer B, Surda P, Tajudeen BA, Thompson LDR, Thorp BD, Tong CCL, Tsang RK, Turner JH, Turri-Zanoni M, Udager AM, van Zele T, VanKoevering K, Welch KC, Wise SK, Witterick IJ, Won TB, Wong SN, Woodworth BA, Wormald PJ, Yao WC, Yeh CF, Zhou B, Palmer JN. International Consensus Statement on Allergy and Rhinology: Sinonasal Tumors. Int Forum Allergy Rhinol 2024; 14:149-608. [PMID: 37658764 DOI: 10.1002/alr.23262] [Show More Authors] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Sinonasal neoplasms, whether benign and malignant, pose a significant challenge to clinicians and represent a model area for multidisciplinary collaboration in order to optimize patient care. The International Consensus Statement on Allergy and Rhinology: Sinonasal Tumors (ICSNT) aims to summarize the best available evidence and presents 48 thematic and histopathology-based topics spanning the field. METHODS In accordance with prior International Consensus Statement on Allergy and Rhinology documents, ICSNT assigned each topic as an Evidence-Based Review with Recommendations, Evidence-Based Review, and Literature Review based on the level of evidence. An international group of multidisciplinary author teams were assembled for the topic reviews using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses format, and completed sections underwent a thorough and iterative consensus-building process. The final document underwent rigorous synthesis and review prior to publication. RESULTS The ICSNT document consists of four major sections: general principles, benign neoplasms and lesions, malignant neoplasms, and quality of life and surveillance. It covers 48 conceptual and/or histopathology-based topics relevant to sinonasal neoplasms and masses. Topics with a high level of evidence provided specific recommendations, while other areas summarized the current state of evidence. A final section highlights research opportunities and future directions, contributing to advancing knowledge and community intervention. CONCLUSION As an embodiment of the multidisciplinary and collaborative model of care in sinonasal neoplasms and masses, ICSNT was designed as a comprehensive, international, and multidisciplinary collaborative endeavor. Its primary objective is to summarize the existing evidence in the field of sinonasal neoplasms and masses.
Collapse
Affiliation(s)
- Edward C Kuan
- Departments of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Eric W Wang
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel M Beswick
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shirley Y Su
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marilene B Wang
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Waleed M Abuzeid
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Borislav Alexiev
- Department of Pathology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Jeremiah A Alt
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Paolo Antognoni
- Division of Radiation Oncology, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pete S Batra
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Mihir Bhayani
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Manuel Bernal-Sprekelsen
- Otorhinolaryngology Department, Surgery and Medical-Surgical Specialties Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Christian S Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, UNICANCER, Université Claude Bernard Lyon I, Lyon, France
| | - Benjamin S Bleier
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana Bonilla-Velez
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Claudio Callejas
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Ricardo L Carrau
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Roy R Casiano
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paolo Castelnuovo
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Rakesh K Chandra
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Simon B Chen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Alexander G Chiu
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Garret Choby
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Naweed I Chowdhury
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Martin J Citardi
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marc A Cohen
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roi Dagan
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Gianluca Dalfino
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Iacopo Dallan
- Department of Otolaryngology-Head and Neck Surgery, Pisa University Hospital, Pisa, Italy
| | | | - John de Almeida
- Department of Otolaryngology-Head and Neck Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Angelo P Dei Tos
- Section of Pathology, Department of Medicine, University of Padua, Padua, Italy
| | - John M DelGaudio
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Charles S Ebert
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ivan H El-Sayed
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - James J Evans
- Department of Neurological Surgery and Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christina H Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nyssa F Farrell
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marco Ferrari
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Nancy Fischbein
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Adam Folbe
- Department of Otolaryngology-Head and Neck Surgery, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Meha G Fox
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mathew Geltzeiler
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Christos Georgalas
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Nicosia Medical School, Nicosia, Cyprus
| | - Anne E Getz
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, USA
| | - Satish Govindaraj
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stacey T Gray
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jessica W Grayson
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradley A Gross
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jordon G Grube
- Department of Otolaryngology-Head and Neck Surgery, Albany Medical Center, Albany, New York, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Ashleigh A Halderman
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard J Harvey
- Rhinology and Skull Base Research Group, Applied Medical Research Centre, University of South Wales, Sydney, New South Wales, Australia
| | - Stephen C Hernandez
- Department of Otolaryngology-Head and Neck Surgery, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Claire Hopkins
- Department of Otolaryngology-Head and Neck Surgery, Guys and St Thomas' Hospital, London, UK
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Zhenxiao Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ian M Humphreys
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alfred M Iloreta
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Masaru Ishii
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Aria Jafari
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohemmed Khan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam J Kimple
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd T Kingdom
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, USA
| | - Anna Knisely
- Department of Otolaryngology, Head and Neck Surgery, Swedish Medical Center, Seattle, Washington, USA
| | - Ying-Ju Kuo
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Devyani Lal
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric D Lamarre
- Head and Neck Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ming-Ying Lan
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Matt Lechner
- UCL Division of Surgery and Interventional Science and UCL Cancer Institute, University College London, London, UK
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jivianne K Lee
- Department of Head and Neck Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Victor H Lee
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Corinna G Levine
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jin-Ching Lin
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, Taiwan
| | - Derrick T Lin
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Brian C Lobo
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, Florida, USA
| | - Tran Locke
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kelly R Magliocca
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Svetomir N Markovic
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gesa Matnjani
- Department of Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erin L McKean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Cem Meço
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara University Medical School, Ankara, Turkey
- Department of Otorhinolaryngology Head and Neck Surgery, Salzburg Paracelsus Medical University, Salzburg, Austria
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Loren Michel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shorook Na'ara
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Daniel W Nuss
- Department of Otolaryngology-Head and Neck Surgery, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Gurston G Nyquist
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gretchen M Oakley
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Kazuhiro Omura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Richard R Orlandi
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Peter Papagiannopoulos
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David G Pfister
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alkis J Psaltis
- Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Mindy R Rabinowitz
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan Rimmer
- Department of Otolaryngology-Head and Neck Surgery, Yale University, New Haven, Connecticut, USA
| | - Marc R Rosen
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Olabisi Sanusi
- Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Zoukaa B Sargi
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philippe Schafhausen
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ahmad R Sedaghat
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brent A Senior
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raj Shrivastava
- Department of Neurosurgery and Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raj Sindwani
- Head and Neck Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Timothy L Smith
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Kristine A Smith
- Department of Otolaryngology-Head and Neck Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carl H Snyderman
- Departments of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - C Arturo Solares
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Satyan B Sreenath
- Department of Otolaryngology-Head and Neck Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Aldo Stamm
- São Paulo ENT Center (COF), Edmundo Vasconcelos Complex, São Paulo, Brazil
| | - Katharina Stölzel
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Baran Sumer
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pavol Surda
- Department of Otolaryngology-Head and Neck Surgery, Guys and St Thomas' Hospital, London, UK
| | - Bobby A Tajudeen
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Brian D Thorp
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles C L Tong
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymond K Tsang
- Department of Otolaryngology-Head and Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mario Turri-Zanoni
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Aaron M Udager
- Department of Pathology, Michigan Center for Translational Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Thibaut van Zele
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Kyle VanKoevering
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Kevin C Welch
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah K Wise
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ian J Witterick
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tae-Bin Won
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Stephanie N Wong
- Division of Otorhinolaryngology, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - William C Yao
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chien-Fu Yeh
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing Zhou
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Li C, Zhang Q, Luo H, Liu R, Feng S, Geng Y, Wang L, Yang Z, Zhang Y, Wang X. Carbon Ions Suppress Angiogenesis and Lung Metastases in Melanoma by Targeting CXCL10. Radiat Res 2023; 200:307-319. [PMID: 37527364 DOI: 10.1667/rade-22-0086.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Carbon-ion radiotherapy (CIRT) enhanced local control in patients with malignant melanoma. In several in vitro studies, carbon ions (C ions) have been also shown to decrease the metastatic potential of melanoma cells. CXC motif 10 (CXCL10) has been shown to play a crucial role in regulating tumor metastasis and it significantly increase in human embryonic kidney cells after heavy ion irradiations. This study sought to explore the regulatory effect of C ions on melanoma metastasis, emphasizing the role of CXCL10 in this process. To explore the potential regulatory effect of C ions on tumor metastasis in vivo, we developed a lung metastasis mouse model by injecting B16F10 cells into the footpad and subjected all mice to treatment with X rays and C ions. Subsequently, a series of assays, including histopathological analysis, enzyme-linked immunosorbent assay, real-time PCR, and western blotting, were conducted to assess the regulatory effects of C ions on melanoma. Our results showed that mice treated with C ions exhibited significantly less tumor vascularity, enhanced tumor necrosis, alleviated lung metastasis, and experienced longer survival than X-ray irradiated mice. Moreover, VEGF expression in B16F10 cells was significantly reduced by C-ion treatment, which could be alleviated by CXCL10 knockdown in vitro. Further investigations revealed that co-culturing with HUVECs resulted in a significant inhibition of proliferation, migration, and tube formation ability in the C-ion treated group, while the opposite effect was observed in the C-ion treated with si-CXCL10 group. In conclusion, our findings demonstrate that treatment with carbon-ion radiation can suppress angiogenesis and lung metastases in melanoma by specifically targeting CXCL10. These results suggest the potential utility of carbon ions in treating melanoma.
Collapse
Affiliation(s)
- Chengcheng Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Oncology, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shuangwu Feng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yichao Geng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lina Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhen Yang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Laboratory Animal Center of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Oncology, Lanzhou Heavy Ions Hospital, Lanzhou, China
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
6
|
Rutenberg MS, Beltran C. Future Perspective: Carbon Ion Radiotherapy for Head and Neck and Skull Base Malignancies. Oral Maxillofac Surg Clin North Am 2023:S1042-3699(23)00024-9. [PMID: 37117091 DOI: 10.1016/j.coms.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Head and neck and base of skull malignancies are challenging for surgical and radiotherapy treatment due to the density of sensitive tissues. Carbon ion radiotherapy (CIRT) is a form of heavy particle therapy that uses accelerated carbon ions to treat malignancies that may be radioresistant or in challenging anatomic locations. CIRT has an increased biological effectiveness (ie, increased cell killing) at the end of the range of the carbon beam (ie, within the target tissue) but not in the entrance dose. This increased biological effectiveness can overcome the effects of radioresistant tumors, tissue hypoxia, and the need for radiotherapy fractionation.
Collapse
Affiliation(s)
- Michael S Rutenberg
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
7
|
Kumakiri T, Mori S, Mori Y, Hirai R, Hashimoto A, Tachibana Y, Suyari H, Ishikawa H. Real-time deep neural network-based automatic bowel gas segmentation on X-ray images for particle beam treatment. Phys Eng Sci Med 2023; 46:659-668. [PMID: 36944832 DOI: 10.1007/s13246-023-01240-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Since particle beam distribution is vulnerable to change in bowel gas because of its low density, we developed a deep neural network (DNN) for bowel gas segmentation on X-ray images. We used 6688 image datasets from 209 cases as training data, 736 image datasets from 23 cases as validation data and 102 image datasets from 51 cases as test data (total 283 cases). For the training data, we prepared three types of digitally reconstructed radiographic (DRR) images (all-density, bone and gas) by projecting the treatment planning CT image data. However, the real X-ray images acquired in the treatment room showed low contrast that interfered with manual delineation of bowel gas. Therefore, we used synthetic X-ray images converted from DRR images in addition to real X-ray images.We evaluated DNN segmentation accuracy for the synthetic X-ray images using Intersection over Union, recall, precision, and the Dice coefficient, which measured 0.708 ± 0.208, 0.832 ± 0.170, 0.799 ± 0.191, and 0.807 ± 0.178, respectively. The evaluation metrics for the real X-images were less accurate than those for the synthetic X-ray images (0.408 ± 0237, 0.685 ± 0.326, 0.490 ± 0272, and 0.534 ± 0.271, respectively). Computation time was 29.7 ± 1.3 ms/image. Our DNN appears useful in increasing treatment accuracy in particle beam therapy.
Collapse
Affiliation(s)
- Toshio Kumakiri
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage- ku, 263-8555, Chiba, Japan
- Graduate School of Science and Engineering, Chiba University, Inage-ku, 263-8522, Chiba, Japan
| | - Shinichiro Mori
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage- ku, 263-8555, Chiba, Japan.
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Inage-ku, 263-8555, Chiba, Japan.
| | - Yasukuni Mori
- Graduate School of Engineering, Chiba University, Inage-ku, 263-8522, Chiba, Japan
| | - Ryusuke Hirai
- Graduate School of Science and Engineering, Chiba University, Inage-ku, 263-8522, Chiba, Japan
| | - Ayato Hashimoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage- ku, 263-8555, Chiba, Japan
- Graduate School of Science and Engineering, Chiba University, Inage-ku, 263-8522, Chiba, Japan
| | - Yasuhiko Tachibana
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage- ku, 263-8555, Chiba, Japan
| | - Hiroki Suyari
- Graduate School of Engineering, Chiba University, Inage-ku, 263-8522, Chiba, Japan
| | - Hitoshi Ishikawa
- QST hospital, National Institutes for Quantum Science and Technology, Inage-ku, 263-8555, Chiba, Japan
| |
Collapse
|
8
|
Mori S, Bhattacharyya T, Furuichi W, Tohyama N, Nomoto A, Shinoto M, Takiyama H, Yamada S. Comparison of dosimetries of carbon-ion pencil beam scanning, proton pencil beam scanning and volumetric modulated arc therapy for locally recurrent rectal cancer. JOURNAL OF RADIATION RESEARCH 2023; 64:162-170. [PMID: 36403118 PMCID: PMC9855328 DOI: 10.1093/jrr/rrac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/18/2022] [Indexed: 06/16/2023]
Abstract
We compared the dose distributions of carbon-ion pencil beam scanning (C-PBS), proton pencil beam scanning (P-PBS) and Volumetric Modulated Arc Therapy (VMAT) for locally recurrent rectal cancer. The C-PBS treatment planning computed tomography (CT) data sets of 10 locally recurrent rectal cancer cases were randomly selected. Three treatment plans were created using identical prescribed doses. The beam angles for C-PBS and P-PBS were identical. Dosimetry, including the dose received by 95% of the planning target volume (PTV) (D95%), dose to the 2 cc receiving the maximum dose (D2cc), organ at risk (OAR) volume receiving > 15Gy (V15) and > 30Gy (V30), was evaluated. Statistical significance was assessed using the Wilcoxon signed-rank test. Mean PTV-D95% values were > 95% of the volume for P-PBS and C-PBS, whereas that for VMAT was 94.3%. However, PTV-D95% values in P-PBS and VMAT were < 95% in five and two cases, respectively, due to the OAR dose reduction. V30 and V15 to the rectum/intestine for C-PBS (V30 = 4.2 ± 3.2 cc, V15 = 13.8 ± 10.6 cc) and P-PBS (V30 = 7.3 ± 5.6 cc, V15 = 21.3 ± 13.5 cc) were significantly lower than those for VMAT (V30 = 17.1 ± 10.6 cc, V15 = 55.2 ± 28.6 cc). Bladder-V30 values with P-PBS/C-PBS (3.9 ± 4.8 Gy(RBE)/3.0 ± 4.0 Gy(RBE)) were significantly lower than those with VMAT (7.9 ± 8.1 Gy). C-PBS provided superior dose conformation and lower OAR doses compared with P-PBS and VMAT. C-PBS may be the best choice for cases in which VMAT and P-PBS cannot satisfy dose constraints. C-PBS could be another choice for cases in which VMAT and P-PBS cannot satisfy dose constraints, thereby avoiding surgical resection.
Collapse
Affiliation(s)
- Shinichiro Mori
- Corresponding author. National Institutes for Quantum and Radiological Science and Technology, Quantum Life and Medical Science Directorate, Institute for Quantum Medical Science, Inageku, Chiba 263-8555, Japan. Office: 81-43-251-2111; Fax: 81-43-284-0198; e-mail:
| | - Tapesh Bhattacharyya
- Department of Radiation Oncology, Tata Medical Center, 14, MAR(E-W), DH Block (Newtown), Action Area I, Newtown, Kolkata, West Bengal 700160, India
| | - Wataru Furuichi
- Accelerator Engineering Corporation, Inage-Ku, Chiba, 263-0043, Japan
| | - Naoki Tohyama
- Division of Medical Physics, Tokyo Bay Makuhari Clinic for Advanced Imaging, Cancer Screening, and High-Precision Radiotherapy, Mihama-ku, Chiba, 261-0024m Japan
| | - Akihiro Nomoto
- National Institutes for Quantum Science and Technology, QST Hospital, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Shinoto
- National Institutes for Quantum Science and Technology, QST Hospital, Inage-ku, Chiba 263-8555, Japan
| | - Hirotoshi Takiyama
- National Institutes for Quantum Science and Technology, QST Hospital, Inage-ku, Chiba 263-8555, Japan
| | - Shigeru Yamada
- National Institutes for Quantum Science and Technology, QST Hospital, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
9
|
Colombo E, Van Lierde C, Zlate A, Jensen A, Gatta G, Didonè F, Licitra LF, Grégoire V, Vander Poorten V, Locati LD. Salivary gland cancers in elderly patients: challenges and therapeutic strategies. Front Oncol 2022; 12:1032471. [PMID: 36505842 PMCID: PMC9733538 DOI: 10.3389/fonc.2022.1032471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Salivary gland carcinomas (SGCs) are the most heterogeneous subgroup of head and neck malignant tumors, accounting for more than 20 subtypes. The median age of SGC diagnosis is expected to rise in the following decades, leading to crucial clinical challenges in geriatric oncology. Elderly patients, in comparison with patients aged below 65 years, are generally considered less amenable to receiving state-of-the-art curative treatments for localized disease, such as surgery and radiation/particle therapy. In the advanced setting, chemotherapy regimens are often dampened by the consideration of cardiovascular and renal comorbidities. Nevertheless, the elderly population encompasses a broad spectrum of functionalities. In the last decades, some screening tools (e.g. the G8 questionnaire) have been developed to identify those subjects who should receive a multidimensional geriatric assessment, to answer the question about the feasibility of complex treatments. In the present article, we discuss the most frequent SGC histologies diagnosed in the elderly population and the relative 5-years survival outcomes based on the most recent data from the Surveillance, Epidemiology, and End Results (SEER) Program. Moreover, we review the therapeutic strategies currently available for locoregionally advanced and metastatic disease, taking into account the recent advances in precision oncology. The synergy between the Multidisciplinary Tumor Board and the Geriatrician aims to shape the most appropriate treatment pathway for each elderly patient, focusing on global functionality instead of the sole chronological age.
Collapse
Affiliation(s)
- Elena Colombo
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Charlotte Van Lierde
- Otorhinolaryngology-Head and Neck Surgery, Leuven Cancer Institute, University Hospitals Leuven and Department of Oncology, section Head and Neck Oncology, KU Leuven, Leuven, Belgium
| | - Alexandra Zlate
- Department of Radiation Oncology, Centre Leon Berard, Lyon, France
| | - Alexandra Jensen
- Department of Radiation Oncology, University Hospitals Giessen and Marburg (UKGM), Marburg, Germany
| | - Gemma Gatta
- Evaluative Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fabio Didonè
- Evaluative Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lisa F. Licitra
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hematology, University of Milan, Milan, Italy
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Leon Berard, Lyon, France
| | - Vander Vander Poorten
- Otorhinolaryngology-Head and Neck Surgery, Leuven Cancer Institute, University Hospitals Leuven and Department of Oncology, section Head and Neck Oncology, KU Leuven, Leuven, Belgium
| | - Laura D. Locati
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
Balosso J, Febvey-Combes O, Iung A, Lozano H, Alloh AS, Cornu C, Hervé M, Akkal Z, Lièvre M, Plattner V, Valvo F, Bono C, Fiore MR, Vitolo V, Vischioni B, Patin S, Allemand H, Gueyffier F, Margier J, Guerre P, Chabaud S, Orecchia R, Pommier P. A randomized controlled phase III study comparing hadrontherapy with carbon ions versus conventional radiotherapy - including photon and proton therapy - for the treatment of radioresistant tumors: the ETOILE trial. BMC Cancer 2022; 22:575. [PMID: 35606739 PMCID: PMC9128242 DOI: 10.1186/s12885-022-09564-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some cancers such as sarcomas (bone and soft tissue sarcomas) and adenoid cystic carcinomas are considered as radioresistant to low linear energy transfer radiation (including photons and protons) and may therefore beneficiate from a carbon ion therapy. Despite encouraging results obtained in phase I/II trials compared to historical data with photons, the spread of carbon ions has been limited mainly because of the absence of randomized medical data. The French health authorities stressed the importance of having randomized data for carbon ion therapy. METHODS The ETOILE study is a multicenter prospective randomized phase III trial comparing carbon ion therapy to either advanced photon or proton radiotherapy for inoperable or macroscopically incompletely resected (R2) radioresistant cancers including sarcomas and adenoid cystic carcinomas. In the experimental arm, carbon ion therapy will be performed at the National Center for Oncological Hadrontherapy (CNAO) in Pavia, Italy. In the control arm, photon or proton radiotherapy will be carried out in referent centers in France. The primary endpoint is progression-free survival (PFS). Secondary endpoints are overall survival and local control, toxicity profile, and quality of life. In addition, a prospective health-economic study and a radiobiological analysis will be conducted. To demonstrate an absolute improvement in the 5-year PFS rate of 20% in favor of carbon ion therapy, 250 patients have to be included in the study. DISCUSSION So far, no clinical study of phase III has demonstrated the superiority of carbon ion therapy compared to conventional radiotherapy, including proton therapy, for the treatment of radioresistant tumors. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02838602 . Date of registration: July 20, 2016. The posted information will be updated as needed to reflect protocol amendments and study progress.
Collapse
Affiliation(s)
- Jacques Balosso
- Centre François Baclesse, Service de radiothérapie, BP 45026, F-14076, Caen, Cedex 5, France.
| | | | - Annie Iung
- Hospices Civils de Lyon, Direction de la Recherche en Santé, Lyon, France
| | - Hélène Lozano
- Hospices Civils de Lyon, Pôle de Santé Publique, Lyon, France
| | | | - Catherine Cornu
- UMR 5558, Université Claude Bernard Lyon 1, Lyon, France
- INSERM, CIC1407, Hospices Civils de Lyon, Bron, France
| | - Magali Hervé
- Hospices Civils de Lyon, Pôle de Santé Publique, Lyon, France
| | - Zohra Akkal
- Hospices Civils de Lyon, Pôle de Santé Publique, Lyon, France
| | - Michel Lièvre
- UMR 5558, Université Claude Bernard Lyon 1, Lyon, France
| | - Valérie Plattner
- Hospices Civils de Lyon, Direction de la Recherche en Santé, Lyon, France
| | | | - Cristina Bono
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | | | - Viviana Vitolo
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | | | - Stéphanie Patin
- Groupement Coopération Sanitaire Centre Etoile, Lyon, France
| | - Hubert Allemand
- Caisse Nationale d'Assurance Maladie des Travailleurs Salariés, Paris, France
| | - François Gueyffier
- Hospices Civils de Lyon, Pôle de Santé Publique, Lyon, France
- UMR 5558, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Pascale Guerre
- Hospices Civils de Lyon, Pôle de Santé Publique, Lyon, France
- Université de Lyon, Université Claude Bernard Lyon 1, P2S UR4129, Lyon, France
| | - Sylvie Chabaud
- Centre Léon Bérard, Direction de la Recherche Clinique et de l'Innovation, Lyon, France
| | - Roberto Orecchia
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
- European Institute of Oncology IRCCS, Milan, Italy
| | - Pascal Pommier
- Centre Léon Bérard, Service de Radiothérapie, Lyon, France
| |
Collapse
|
11
|
Ding L, Sishc BJ, Polsdofer E, Yordy JS, Facoetti A, Ciocca M, Saha D, Pompos A, Davis AJ, Story MD. Evaluation of the Response of HNSCC Cell Lines to γ-Rays and 12C Ions: Can Radioresistant Tumors Be Identified and Selected for 12C Ion Radiotherapy? Front Oncol 2022; 12:812961. [PMID: 35280731 PMCID: PMC8914432 DOI: 10.3389/fonc.2022.812961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Thirty percent of patients will experience locoregional recurrence for which median survival is less than 1 year. Factors contributing to treatment failure include inherent resistance to X-rays and chemotherapy, hypoxia, epithelial to mesenchymal transition, and immune suppression. The unique properties of 12C radiotherapy including enhanced cell killing, a decreased oxygen enhancement ratio, generation of complex DNA damage, and the potential to overcome immune suppression make its application well suited to the treatment of HNSCC. We examined the 12C radioresponse of five HNSCC cell lines, whose surviving fraction at 3.5 Gy ranged from average to resistant when compared with a larger panel of 38 cell lines to determine if 12C irradiation can overcome X-ray radioresistance and to identify biomarkers predictive of 12C radioresponse. Cells were irradiated with 12C using a SOBP with an average LET of 80 keV/μm (CNAO: Pavia, Italy). RBE values varied depending upon endpoint used. A 37 gene signature was able to place cells in their respective radiosensitivity cohort with an accuracy of 86%. Radioresistant cells were characterized by an enrichment of genes associated with radioresistance and survival mechanisms including but not limited to G2/M Checkpoint MTORC1, HIF1α, and PI3K/AKT/MTOR signaling. These data were used in conjunction with an in silico-based modeling approach to evaluate tumor control probability after 12C irradiation that compared clinically used treatment schedules with fixed RBE values vs. the RBEs determined for each cell line. Based on the above analysis, we present the framework of a strategy to utilize biological markers to predict which HNSCC patients would benefit the most from 12C radiotherapy.
Collapse
Affiliation(s)
- Lianghao Ding
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Brock J Sishc
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Elizabeth Polsdofer
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - John S Yordy
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Angelica Facoetti
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Debabrata Saha
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Arnold Pompos
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Anthony J Davis
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Michael D Story
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| |
Collapse
|
12
|
Li Y, Li X, Yang J, Wang S, Tang M, Xia J, Gao Y. Flourish of Proton and Carbon Ion Radiotherapy in China. Front Oncol 2022; 12:819905. [PMID: 35237518 PMCID: PMC8882681 DOI: 10.3389/fonc.2022.819905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Proton and heavy ion therapy offer superior relative biological effectiveness (RBE) in the treatment of deep-seated tumors compared with conventional photon radiotherapy due to its Bragg-peak feature of energy deposition in organs. Many proton and carbon ion therapy centers are active all over the world. At present, five particle radiotherapy institutes have been built and are receiving patient in China, mainly including Wanjie Proton Therapy Center (WPTC), Shanghai Proton Heavy Ion Center (SPHIC), Heavy Ion Cancer Treatment Center (HIMM), Chang Gung Memorial Hospital (CGMH), and Ruijin Hospital affiliated with Jiao Tong University. Many cancer patients have benefited from ion therapy, showing unique advantages over surgery and chemotherapy. By the end of 2020, nearly 8,000 patients had been treated with proton, carbon ion or carbon ion combined with proton therapy. So far, there is no systemic review for proton and carbon ion therapy facility and clinical outcome in China. We reviewed the development of proton and heavy ion therapy, as well as providing the representative clinical data and future directions for particle therapy in China. It has important guiding significance for the design and construction of new particle therapy center and patients’ choice of treatment equipment.
Collapse
Affiliation(s)
- Yue Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Yue Li,
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiancheng Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Sicheng Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Meitang Tang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiawen Xia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Huizhou Research Center of Ion Science, Chinese Academy of Sciences, Huizhou, China
| | - Yunzhe Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Bey A, Ma J, Furutani KM, Herman MG, Johnson JE, Foote RL, Beltran CJ. Nuclear Fragmentation Imaging for Carbon-Ion Radiation Therapy Monitoring: an In Silico Study. Int J Part Ther 2021; 8:25-36. [PMID: 35530183 PMCID: PMC9009459 DOI: 10.14338/ijpt-20-00040.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose This article presents an in vivo imaging technique based on nuclear fragmentation of carbon ions in irradiated tissues for potential real-time monitoring of carbon-ion radiation therapy (CIRT) treatment delivery and quality assurance purposes in clinical settings. Materials and Methods A proof-of-concept imaging and monitoring system (IMS) was devised to implement the technique. Monte Carlo simulations were performed for a prospective pencil-beam scanning CIRT nozzle. The development IMS benchmark considered a 5×5-cm2 pixelated charged-particle detector stack positioned downstream from a target phantom and list-mode data acquisition. The abundance and production origins, that is, vertices, of the detected fragments were studied. Fragment trajectories were approximated by straight lines and a beam back-projection algorithm was built to reconstruct the vertices. The spatial distribution of the vertices was then used to determine plan relevant markers. Results The IMS technique was applied for a simulated CIRT case, a primary brain tumor. Four treatment plan monitoring markers were conclusively recovered: a depth dose distribution correlated profile, ion beam range, treatment target boundaries, and the beam spot position. Promising millimeter-scale (3-mm, ≤10% uncertainty) beam range and submillimeter (≤0.6-mm precision for shifts <3 cm) beam spot position verification accuracies were obtained for typical therapeutic energies between 150 and 290 MeV/u. Conclusions This work demonstrated a viable online monitoring technique for CIRT treatment delivery. The method's strong advantage is that it requires few signal inputs (position and timing), which can be simultaneously acquired with readily available technology. Future investigations will probe the technique's applicability to motion-sensitive organ sites and patient tissue heterogeneities. In-beam measurements with candidate detector-acquisition systems are ultimately essential to validate the IMS benchmark performance and subsequent deployment in the clinic.
Collapse
Affiliation(s)
- Anissa Bey
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Jiasen Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
14
|
Lang K, Adeberg S, Harrabi S, Held T, Kieser M, Debus J, Herfarth K. Adenoid cystic Carcinoma and Carbon ion Only irradiation (ACCO): Study protocol for a prospective, open, randomized, two-armed, phase II study. BMC Cancer 2021; 21:812. [PMID: 34266402 PMCID: PMC8281682 DOI: 10.1186/s12885-021-08473-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background Adenoid cystic carcinoma is a rare form of head and neck cancer with a slow, but aggressive growth pattern which remains a challenge for local tumor control. Based on phase II data, radiation treatment using partially high LET radiation results in a prolonged PFS and OS. There is a paucity of randomized clinical data examining the role of the use of high LET radiation only. Therefore, the purpose of this prospective clinical trial is to analyze local control rates in patients with node negative ACC treated with carbon ion radiotherapy alone compared to a combined modality approach. Methods This trial is conducted as a prospective, open-label, phase II, two-armed, investigator-initiated study comparing the local control rates in node negative ACCs of the head and neck treated either with sole carbon ion radiotherapy or a combination of carbon ions and photons. Secondary outcomes investigated are progression-free survival, overall survival, acute and late toxicity, and quality of life. A total of 314 patients will be randomly assigned to C12 treatment alone or bimodal treatment: Patients in the experimental group will receive a dose of 51 Gy (RBE) in 17 fractions and a boost of 15 Gy (RBE) in 5 fractions. Patients in the control group will receive 25 fractions photon IMRT 50Gy and a boost using 8 × 3 Gy (RBE) carbon ions. Local control will be assessed in regular follow up examinations until 5 years after the completion of treatment. Discussion The present trial aims to evaluate local control rates to compare sole carbon ion radiotherapy to bimodal radiotherapy with carbon ions and photons in patients with node negative ACCs of the head and neck region. Local control is selected as the primary endpoint due to its major clinical relevance because of slow but aggressive growth patterns. Trial registration The study was prospectively registered on 2nd January 2020: ClinicalTrials.gov, NCT04214366. “Adenoid Cystic Carcinoma and Carbon Ion Only Irradiation (ACCO)”. Study status Under recruitment, participant recruitment is not completed. Start of recruitment was January 2020. There are no results been published or submitted to any journal. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08473-5.
Collapse
Affiliation(s)
- Kristin Lang
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Meinhard Kieser
- Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Ebner DK, Malouff TD, Frank SJ, Koto M. The Role of Particle Therapy in Adenoid Cystic Carcinoma and Mucosal Melanoma of the Head and Neck. Int J Part Ther 2021; 8:273-284. [PMID: 34285953 PMCID: PMC8270088 DOI: 10.14338/ijpt-d-20-00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Particle irradiation is suitable for resistant histologies owing to a combination of improved dose delivery with potential radiobiologic advantages in high linear energy transfer radiation. Within the head and neck, adenoid cystic carcinoma and mucosal melanoma are two such histologies, being radioresistant and lying closely proximal to critical structures. Here, we review the use of particle irradiation for adenoid cystic carcinoma and mucosal melanoma of the head and neck.
Collapse
Affiliation(s)
- Daniel K Ebner
- Hospital of the National Institutes of Quantum and Radiological Science and Technology (QST Hospital), Chiba, Japan
| | - Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masashi Koto
- Hospital of the National Institutes of Quantum and Radiological Science and Technology (QST Hospital), Chiba, Japan
| |
Collapse
|
16
|
Kurimoto M, Maruyama Y, Tsukada Y, Yamamoto H, Takagawa K. Cerebral radiation necrosis and brain abscess as delayed complications after carbon ion radiotherapy against nasal carcinoma. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Zhong Y, Lu W, Chen M, Xiong Z, Cheng X, Hu K, Shao Y. Novel On-line PET Imaging for Intra-Beam Range Verification and Delivery Optimization: A Simulation Feasibility Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 4:212-217. [PMID: 33778233 DOI: 10.1109/trpms.2019.2950231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
On-line PET image-based method uses an initial particle beam to measure the particle beam range (BR) within the same fraction so that any measured range-shift with respect to the predicted BR can be compensated before the rest therapeutic beam deliveries. However, the method requires to use a low-dose initial beam to minimize the risk of beam overshooting, which leads to low image count and inaccurate BR measurement. In this in-silico study, we evaluated the feasibility of a new on-line PET imaging method that measures BR at the mid-plane of a target volume with part of the high-dose therapy beams to verify BR and guide adaptive treatment re-planning. Simulations included various processes of proton beam radiations to a tumor inside a human brain phantom, positron and PET image generation at the mid-plane with initial beams, activity range measurement, and range-shift compensated beam delivery. The results demonstrated that the new method, under the simulated conditions, can achieve ~1.1 mm mid-plane BR measurement accuracy and closely match the delivered range-shift compensated dose distribution with the planned one. Overall, it is promising that this new method may significantly improve particle therapy accuracy.
Collapse
Affiliation(s)
- Yuncheng Zhong
- Division of Medical Physics and Engineering Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas, Texas 75390 USA
| | - Weiguo Lu
- Division of Medical Physics and Engineering Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas, Texas 75390 USA
| | - Mingli Chen
- Division of Medical Physics and Engineering Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas, Texas 75390 USA
| | - Zhenyu Xiong
- Division of Medical Physics and Engineering Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas, Texas 75390 USA
| | - Xinyi Cheng
- Division of Medical Physics and Engineering Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas, Texas 75390 USA
| | - Kun Hu
- Division of Medical Physics and Engineering Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas, Texas 75390 USA
| | - Yiping Shao
- Division of Medical Physics and Engineering Department of Radiation Oncology University of Texas Southwestern Medical Center Dallas, Texas 75390 USA
| |
Collapse
|
18
|
Li C, Zhang Q, Li Z, Feng S, Luo H, Liu R, Wang L, Geng Y, Zhao X, Yang Z, Li Q, Yang K, Wang X. Efficacy and safety of carbon-ion radiotherapy for the malignant melanoma: A systematic review. Cancer Med 2020; 9:5293-5305. [PMID: 32524777 PMCID: PMC7402834 DOI: 10.1002/cam4.3134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant melanomas (MMs) were the fifth most common cancer in men and the sixth most common cancer in women in 2018, respectively. These are characterized by high metastatic rates and poor prognoses. We systematically reviewed safety and efficacy of carbon-ion radiotherapy (CIRT) for treating MMs. Eleven studies were eligible for review, and the data showed that MM patients showed better local control with low recurrence and mild toxicities after CIRT. Survival rates were slightly higher in patients with cutaneous or uveal MMs than in those with mucosal MMs. CIRT in combination with chemotherapy produced higher progression-free survival rates than CIRT only. In younger patients, higher rates of distant metastases of gynecological MMs were observed. The data indicated that CIRT is effective and safe for treating MMs; however, a combination with systemic therapy is recommended to ensure the best possible prognosis for MMs.
Collapse
Affiliation(s)
- Chengcheng Li
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Qiuning Zhang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Lanzhou Heavy Ions HospitalLanzhouChina
| | - Zheng Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Shuangwu Feng
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Hongtao Luo
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Ruifeng Liu
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Lina Wang
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Yichao Geng
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Xueshan Zhao
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
| | - Zhen Yang
- Basic Medical CollegeLanzhou UniversityLanzhouChina
| | - Qiang Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Kehu Yang
- Evidence‐Based Medicine CenterSchool of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Xiaohu Wang
- The First School of Clinical MedicineLanzhou UniversityLanzhouChina
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Lanzhou Heavy Ions HospitalLanzhouChina
| |
Collapse
|
19
|
Barcellini A, Gadducci A, Laliscia C, Imparato S, Vitolo V, Preda L, Valvo F. Adenoid Cystic Carcinoma of Bartholin's Gland: What Is the Best Approach? Oncology 2020; 98:513-519. [PMID: 32408297 DOI: 10.1159/000506485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/13/2020] [Indexed: 11/19/2022]
Abstract
Background and summary: Among all vulvar cancers, primary adenoid cystic carcinoma (ACC) of Bartholin's gland is a very rare tumor characterized by a slow growth, a high local aggressiveness, and a remarkable recurrence rate. Due to its rarity, treatment remains a challenge for oncologists and gynecological surgeons. Key message: The present paper reports clinical, radiological, and histological features of ACC of Bartholin's gland and reviews the literature data on the treatment options with a particular focus on the potential role of particle radiation therapy.
Collapse
Affiliation(s)
- Amelia Barcellini
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy,
| | - Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| | - Concetta Laliscia
- Department of Translational Medicine, Division of Radiation Oncology, University of Pisa, Pisa, Italy
| | - Sara Imparato
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Viviana Vitolo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Lorenzo Preda
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Francesca Valvo
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| |
Collapse
|
20
|
Reirradiation of salivary gland tumors with carbon ion radiotherapy at CNAO. Radiother Oncol 2020; 145:172-177. [PMID: 32044529 DOI: 10.1016/j.radonc.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/21/2022]
Abstract
AIMS To report oncologic and functional outcomes in terms of tumor control and toxicity of carbon ion radiotherapy (CIRT) in reirradiation setting for recurrent salivary gland tumors at CNAO. METHODS From November 2013 to September 2016, 51 consecutive patients with inoperable recurrent salivary gland tumors were retreated with CIRT in the frame of the phase II protocol CNAO S14/2012C for recurrent head and neck tumors. RESULTS Majority of pts (74.5%) had adenoid cystic carcinoma, mainly rcT4a (51%) and rcT4b (37%). Median dose of prior photon based radiotherapy was 60 Gy. Median dose of CIRT was 60 Gy [RBE] at a mean of 3 Gy [RBE] per fraction. During reirradiation, 19 patients (37.3%) experienced grade G1 toxicity, 19 pts (37.3%) had G2 and 2 pts (3.9%) had G3. Median follow up time was 19 months. Twenty one (41.2%) patients had stable disease and 30 (58.8%) tumor progression at the time of last follow up. Furthermore, 9 (18%) patients had G1 late toxicity, 19 (37%) had G2 and 9 (17. 5%) had G3. Using the Kaplan Meier method, progression free survival (actuarial) at one and two years were 71.7% and 52.2% respectively. Estimated overall survival (actuarial) at one and two years were 90.2% and 64%, respectively. CONCLUSIONS CIRT is a good option for retreatment of inoperable recurrent salivary gland tumors with acceptable rates of acute and late toxicity. Longer follow up time is needed to assess the effectiveness of CIRT in reirradiation setting of salivary gland tumors.
Collapse
|
21
|
Jensen AD, Debus J. Cost-effectiveness analysis (CEA) of IMRT plus C12 boost vs IMRT only in adenoid cystic carcinoma (ACC) of the head and neck. Radiat Oncol 2019; 14:194. [PMID: 31694720 PMCID: PMC6836331 DOI: 10.1186/s13014-019-1395-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Background Particle therapy provides steep dose gradients to facilitate dose escalation in challenging anatomical sites which has been shown not only to improve local control but also overall survival in patients with ACC. Cost-effectiveness of intensity-modulated radiotherapy (IMRT) plus carbon ion (C12) boost vs IMRT alone was performed in order to objectivise and substantiate more widespread use of this technology in ACC. Methods Patients with pathologically confirmed ACC received a combination regimen of IMRT plus C12 boost. Patients presenting outside C12 treatment slots received IMRT only. Clinical results were published; economic analysis on patient-level data was carried out from a healthcare purchaser’s perspective based on costs of healthcare utilization. Cost histories were generated from resource use recorded in individual patient charts and adjusted for censoring using the Lin I method. Cost-effectiveness was measured as incremental cost-effectiveness ratio (ICER). Sensitivity analysis was performed regarding potentially differing management of recurrent disease. Results The experimental treatment increased overall costs by € 18,076 (€13,416 – €22,922) at a mean survival benefit of 0.86 years. Despite improved local control, following costs were also increased in the experimental treatment. The ICER was estimated to 26,863 €/LY. After accounting for different management of recurrent disease in the two cohorts, the ICER was calculated to 20,638 €/LY. Conclusion The combined treatment (IMRT+C12 boost) substantially increased initial and overall treatment cost. In view of limited treatment options in ACC, costs may be acceptable though. Investigations into quality of life measures may support further decisions in the future.
Collapse
|
22
|
Treatment Outcome of 227 Patients with Sinonasal Adenoid Cystic Carcinoma (ACC) after Intensity Modulated Radiotherapy and Active Raster-Scanning Carbon Ion Boost: A 10-Year Single-Center Experience. Cancers (Basel) 2019; 11:cancers11111705. [PMID: 31683896 PMCID: PMC6895865 DOI: 10.3390/cancers11111705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/25/2023] Open
Abstract
We aimed to evaluate the treatment outcome of primary and postoperative bimodal radiotherapy (RT) including intensity modulated photon radiotherapy (IMRT) and carbon ion radiotherapy (CIRT) for sinonasal adenoid cystic carcinoma (ACC) patients. Medical records of 227 consecutive patients who received either a primary (n = 90, 40%) or postoperative (n = 137, 60%; R2, n = 86, 63%) IMRT with doses between 48 and 56 Gy in 1.8 or 2 Gy fractions and active raster-scanning carbon ion boost with 18 to 24 Gy (RBE, relative biological effectiveness) in 3 Gy (RBE) fractions between 2009 and 2019 up to a median total dose of 80 Gy (EQD2, equivalent dose in 2 Gy single dose fractions, range 71–80 Gy) were reviewed. Results: Median follow-up was 50 months. In univariate and multivariate analysis, no significant difference in local control (LC) could be shown between the two treatment groups (p = 0.33). Corresponding 3-year LC rates were 79% for primary bimodal RT and 82% for postoperative bimodal RT, respectively. T4 stage (p = 0.002) and solid histology (p = 0.005) were identified as independent prognostic factors for decreased LC. Significant worse long-term treatment tolerance was observed for postoperatively irradiated patients with 17% vs. 6% late grade 3 toxicity (p < 0.001). Primary radiotherapy including IMRT and carbon ion boost for dose-escalation results in adequate LC with less long-term grade 3 toxicity compared to postoperative bimodal radiotherapy in sinonasal ACC patients. The high rate of macroscopic tumor disease in the postoperative group makes the interpretation of the beneficial results in LC for primary RT difficult.
Collapse
|
23
|
Akbaba S, Lang K, Held T, Herfarth K, Rieber J, Plinkert P, Auffarth GU, Rieken S, Debus J, Adeberg S. Carbon-ion radiotherapy in accelerated hypofractionated active raster-scanning technique for malignant lacrimal gland tumors: feasibility and safety. Cancer Manag Res 2019; 11:1155-1166. [PMID: 30774443 PMCID: PMC6362930 DOI: 10.2147/cmar.s190051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction We evaluated treatment outcomes of CIRT in an active raster-scanning technique alone or in combination with IMRT for lacrimal gland tumors. Methods A total of 24 patients who received CIRT for a malignant lacrimal gland tumor at the HIT between 2009 and 2018 were analyzed retrospectively for LC, OS, and distant progression-free survival (DPFS) using Kaplan-Meier estimates. Toxicity was assessed according to the CTCAE version 5. Results Median follow-up was 30 months and overall median LC, OS, and DPFS 24 months, 36 months, and 31 months, respectively. Two-year LC, OS, and DPFS of 93%, 96%, and 87% with CIRT was achieved for all patients. Local failure occurred only in patients with ACC and after a median follow-up of 30 months after the completion of RT (n=5, 21%; P=0.09). We identified a significant negative impact of a macroscopic tumor disease, which was diagnosed on planning CT or MRI before RT, on LC (P=0.026). In contrast, perineural spread (P=0.661), T stage (P=0.552), and resection margins in operated patients (P=0.069) had no significant impact on LC. No grade ≥3 acute or grade >3 chronic toxicity occurred. Late grade 3 side effects were identified in form of a wound-healing disorder 3 months after RT in one patient and temporal lobe necrosis 6 months after RT in another (n=2, 8%). Conclusion Accelerated hypofractionated active raster-scanning CIRT for relative radio-resistant malignant lacrimal gland tumors results in adequate LC rates and moderate acute and late toxicity. Nevertheless, LC for ACC histology remains challenging and risk factors for local recurrence are still unclear. Further follow-up is necessary to evaluate long-term clinical outcome.
Collapse
Affiliation(s)
- Sati Akbaba
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg 69120, Germany,
| | - Kristin Lang
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg 69120, Germany,
| | - Thomas Held
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg 69120, Germany,
| | - Klaus Herfarth
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg 69120, Germany,
| | - Juliane Rieber
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg 69120, Germany,
| | - Peter Plinkert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Gerd U Auffarth
- Department of Ophthalmology, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg 69120, Germany,
| | - Juergen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg 69120, Germany,
| | - Sebastian Adeberg
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University Hospital Heidelberg, Heidelberg 69120, Germany, .,Heidelberg Ion-Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg 69120, Germany,
| |
Collapse
|
24
|
Okumura Y, Murase T, Saida K, Fujii K, Takino H, Masaki A, Ijichi K, Shimozato K, Tada Y, Nibu KI, Inagaki H. Postoperative radiotherapy for T1/2N0M0 mucoepidermoid carcinoma positive for CRTC1/3-MAML2 fusions. Head Neck 2018; 40:2565-2573. [PMID: 30475407 DOI: 10.1002/hed.24856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The National Comprehensive Cancer Network (NCCN) guidelines recommend considering postoperative radiotherapy (PORT) for completely resected T1/2N0M0 salivary mucoepidermoid carcinomas when they show tumor spillage, perineural invasion, or intermediate/high-grade histology. CRTC1/3-MAML2 fusions have been associated with a favorable clinical outcome. METHODS Forty-seven T1/2N0M0 mucoepidermoid carcinoma cases positive for CRTC1/3-MAML2 fusions were completely resected and were not treated with PORT. RESULTS Pathologically, none of the cases showed tumor spillage or perineural invasion. Cases with intermediate/high-grade histology numbered 9 (19%) to 26 (55%) with the currently used 3 different grading systems. During the follow-up (median 60 months), locoregional tumor recurrence occurred in 4 cases, which were treated with surgery alone. At the last follow-up (median 60 months; 7-160), all patients were alive with no evidence of disease. CONCLUSION An excellent prognosis may be achieved without PORT in T1/2N0M0 mucoepidermoid carcinoma patients positive for CRTC1/3-MAML2 fusions when the tumors are completely resected without tumor spillage.
Collapse
Affiliation(s)
- Yoshihide Okumura
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Takayuki Murase
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kosuke Saida
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.,Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Kana Fujii
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisashi Takino
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ayako Masaki
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kei Ijichi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuo Shimozato
- Department of Maxillofacial Surgery, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology - Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
25
|
Prevost V, Sichel F, Pottier I, Leduc A, Lagadu S, Laurent C. Production of early and late nuclear DNA damage and extracellular 8-oxodG in normal human skin fibroblasts after carbon ion irradiation compared to X-rays. Toxicol In Vitro 2018; 52:116-121. [PMID: 29879454 DOI: 10.1016/j.tiv.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Virginie Prevost
- Normandie Univ, UNICAEN, INSERM U 1086, ANTICIPE, 14000 Caen, France; CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France
| | - François Sichel
- CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France; Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Ivannah Pottier
- CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France; Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Alexandre Leduc
- SAPHYN (ARCHADE Program), 3 avenue du Général Harris, 14076 Caen, France
| | - Stéphanie Lagadu
- CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France; Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Carine Laurent
- CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France; Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; SAPHYN (ARCHADE Program), 3 avenue du Général Harris, 14076 Caen, France.
| |
Collapse
|
26
|
Multicenter Study of Carbon-Ion Radiation Therapy for Adenoid Cystic Carcinoma of the Head and Neck: Subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN). Int J Radiat Oncol Biol Phys 2018; 100:639-646. [DOI: 10.1016/j.ijrobp.2017.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
|
27
|
Efficacy and safety of carbon-ion radiotherapy for lacrimal gland carcinomas with extraorbital extension: a retrospective cohort study. Oncotarget 2018; 9:12932-12940. [PMID: 29560121 PMCID: PMC5849185 DOI: 10.18632/oncotarget.24390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/30/2018] [Indexed: 11/25/2022] Open
Abstract
Purpose To evaluate the efficacy and safety of carbon-ion radiotherapy (CIRT) for patients with lacrimal gland carcinomas (LGCs) with extraorbital extension. Results The median follow-up period was 53.7 months. The 5-year local control and overall survival rates were 62% and 65%, respectively. Regarding late toxicities, 12 patients (36.4%) developed Grade 4 optic nerve disorders, including visual losses of the diseased side (N = 8; 66.7%), and 1 patient (3.0%) developed a Grade 3 optic nerve disorder. Three patients (9.0%) developed Grade 3 cataracts, 3 (9.0%) developed glaucoma, and 1 (3.0%) developed retinopathy. Two patients (6.1%) had Grade 4 central nervous system necrosis. No Grade 5 late toxicities were observed. The 5-year preservation rate of the ipsilateral eyeball was 86%. Conclusion Definitive CIRT is effective for LGCs with extraorbital extension with acceptable toxicity. Methods Thirty-three patients treated with CIRT at our institution were analyzed. Sixteen patients (48.5%) had adenoid cystic carcinoma, 8 (24.2%) had adenocarcinoma not otherwise specified, and 9 (27.3%) had other types of the disease. Thirty patients (90.9%) had T4c tumors. The prescribed doses were 57.6 Gy (relative biological effectiveness [RBE]) (N = 18; 54.5%) and 64.0 Gy (RBE) (N = 15; 45.5%) in 16 fractions.
Collapse
|
28
|
A Multicenter Study of Carbon-Ion Radiation Therapy for Head and Neck Adenocarcinoma. Int J Radiat Oncol Biol Phys 2017; 99:442-449. [DOI: 10.1016/j.ijrobp.2017.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/30/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
|
29
|
Shirai K, Saitoh JI, Musha A, Abe T, Kobayashi D, Takahashi T, Tamaki T, Kawamura H, Takayasu Y, Shino M, Toyoda M, Takahashi K, Hirato J, Yokoo S, Chikamatsu K, Ohno T, Nakano T. Prospective observational study of carbon-ion radiotherapy for non-squamous cell carcinoma of the head and neck. Cancer Sci 2017; 108:2039-2044. [PMID: 28730646 PMCID: PMC5623744 DOI: 10.1111/cas.13325] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022] Open
Abstract
To evaluate the efficacy and safety of carbon-ion radiotherapy for non-squamous cell carcinoma of the head and neck, 35 patients were enrolled in this prospective study. The primary end-point was the 3-year local control rate, and the secondary end-points included the 3-year overall survival rate and adverse events. Acute and late adverse events were evaluated according to the Common Terminology Criteria for Adverse Events, version 4.0. The median follow-up time for all patients was 39 months. Thirty-two and three patients received 64.0 Gy (relative biological effectiveness) and 57.6 Gy (relative biological effectiveness) in 16 fractions, respectively. Adenoid cystic carcinoma was dominant (60%). Four patients had local recurrence and five patients died. The 3-year local control and overall survival rates were 93% and 88%, respectively. Acute grade 2-3 radiation mucositis (65%) and dermatitis (31%) was common, which improved immediately with conservative therapy. Late mucositis of grade 2, grade 3, and grade 4 were observed in 11, one, and no patients, respectively. There were no adverse events of grade 5. Carbon-ion radiotherapy achieved excellent local control and overall survival rates for non-squamous cell carcinoma. However, the late mucosal adverse events were not rare, and meticulous treatment planning is required. Trial registration no. UMIN000007886.
Collapse
Affiliation(s)
| | | | - Atsushi Musha
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Oral and Maxillofacial Surgery, Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takanori Abe
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | | - Takeo Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Tomoaki Tamaki
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Radiation Oncology, Fukushima Medical University, Fukushima, Japan
| | | | - Yukihiro Takayasu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masato Shino
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Minoru Toyoda
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Katsumasa Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Junko Hirato
- Department of Pathology, Gunma University Hospital, Maebashi, Japan
| | - Satoshi Yokoo
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Tatsuya Nakano
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | | |
Collapse
|
30
|
Ikawa H, Koto M, Takagi R, Ebner DK, Hasegawa A, Naganawa K, Takenouchi T, Nagao T, Nomura T, Shibahara T, Tsuji H, Kamada T. Prognostic factors of adenoid cystic carcinoma of the head and neck in carbon-ion radiotherapy: The impact of histological subtypes. Radiother Oncol 2017; 123:387-393. [PMID: 28528680 DOI: 10.1016/j.radonc.2017.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 11/18/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effect of histological subtypes of head and neck adenoid cystic carcinoma (ACC) on the results of carbon-ion radiotherapy (CIRT). MATERIAL AND METHODS Of the 113 patients with ACC who were treated with CIRT between December 2006 and July 2013, 100 patients with identified histological subtypes were enrolled in this study. CIRT at a total dose of 57.6 or 64.0Gy (RBE) was administered in 16 fractions. Histological grading was defined as the presence or absence of a solid growth pattern. RESULTS Median follow-up was 60 months. 5-Year local control (LC), overall survival (OS) and distant metastasis free survival (DMFS) of all patients were 68.6%, 74.8% and 65.7%, respectively. On multivariate analysis, the prescribed dose (p=0.001) and gross tumor volume (p=0.002) were significant independent risk factors for LC. No significant difference for local control of solid/non-solid growth patterns was found (p=0.093). Solid growth pattern was an independent risk factor for both OS (p=0.033) and DMFS (p=0.024). CONCLUSIONS CIRT appears able to locally control solid growth pattern ACC in the head and neck. Improved intervention is needed to extend DMFS and OS.
Collapse
Affiliation(s)
- Hiroaki Ikawa
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan; Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, Japan.
| | - Masashi Koto
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Ryo Takagi
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Daniel K Ebner
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan; Brown University Alpert Medical School, Providence, USA
| | - Azusa Hasegawa
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Kensuke Naganawa
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Toshinao Takenouchi
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Japan
| | - Takeshi Nomura
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, Japan
| | - Takahiko Shibahara
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Japan
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| |
Collapse
|
31
|
Holtzman A, Morris CG, Amdur RJ, Dziegielewski PT, Boyce B, Mendenhall WM. Outcomes after primary or adjuvant radiotherapy for salivary gland carcinoma. Acta Oncol 2017; 56:484-489. [PMID: 27846763 DOI: 10.1080/0284186x.2016.1253863] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND We report long-term outcomes of patients treated with primary radiotherapy (RT) or surgery and adjuvant RT for salivary gland malignancies. MATERIALS AND METHODS From 1964 to 2012, 291 patients received primary RT (n = 67) or RT combined with surgery (n = 224). RESULTS The 5-, 10-, and 15-year local control, local-regional control, distant metastasis-free survival, cause-specific survival and overall survival rates were 82%, 77% and 73%; 77%, 72% and 67%; 74%, 70% and 70%; 70%, 59% and 54%; and 63%, 47% and 38%, respectively. Per multivariate analysis, combined surgery and RT and T stage impacted local control; overall stage and combined surgery and RT impacted local-regional control; overall stage impacted distant metastasis-free survival; and overall stage, node positivity, clinical nerve invasion, and surgery and RT impacted cause-specific and overall survival. Five percent of patients experienced grade 3 or worse toxicity. CONCLUSION Combined surgery and RT improves local control, local-regional control, and cause-specific survival compared with primary RT for salivary tumors.
Collapse
Affiliation(s)
- Adam Holtzman
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christopher G. Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Robert J. Amdur
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Peter T. Dziegielewski
- Department of Otolaryngology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Brian Boyce
- Department of Otolaryngology, University of Florida College of Medicine, Gainesville, FL, USA
| | - William M. Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
32
|
|
33
|
Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems. Radiother Oncol 2016; 120:307-12. [DOI: 10.1016/j.radonc.2016.05.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 02/03/2023]
|
34
|
Orlandi E, Iacovelli NA, Bonora M, Cavallo A, Fossati P. Salivary Gland. Photon beam and particle radiotherapy: Present and future. Oral Oncol 2016; 60:146-56. [PMID: 27394087 DOI: 10.1016/j.oraloncology.2016.06.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
Salivary gland cancers (SGCs) are rare diseases and their treatment depends upon histology, stage and site of origin. Radical surgery is the mainstay of treatment but radiotherapy (RT) plays a key role in both the postoperative and the inoperable setting, as well as in recurrent disease. In the absence of prospective randomized trials, a wide retrospective literature suggests postoperative RT (PORT) in patients with high risk pathological features. SGCs, and adenoid cystic carcinoma (ACC) in particular, are known to be radio-resistant tumors and should therefore respond well to particle beam therapy. Recently, excellent outcome has been reported with radical carbon ion RT (CIRT) in particular for ACC. Both modern photon- and hadron-based treatments are effective and are characterized by a favourable toxicity profile. But it is not clear whether one modality is superior to the other for disease control, due to the differences in patients' selection, techniques, fractionation schedules and outcome measurements among clinical experiences. In this paper, we review the role of photon and particle RT for malignant SGCs, discussing the difference between modalities in terms of biological and technical characteristics. RT dose and target volumes for different histologies (ACC versus non-ACC) have also been taken into consideration.
Collapse
Affiliation(s)
- Ester Orlandi
- Radiotherapy 2 Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | | | - Maria Bonora
- Clinical Department, CNAO (National Center for Oncological Hadrontherapy), Pavia, Italy
| | - Anna Cavallo
- Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Piero Fossati
- Clinical Department, CNAO (National Center for Oncological Hadrontherapy), Pavia, Italy; Radiotherapy Division, European Institute of Oncology, Milan, Italy
| |
Collapse
|
35
|
Treatment outcome of ion beam therapy in eight patients with head and neck cancers. Eur Arch Otorhinolaryngol 2016; 273:4397-4402. [PMID: 27168403 DOI: 10.1007/s00405-016-4086-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/05/2016] [Indexed: 12/24/2022]
Abstract
Ion beam therapy has enabled us to treat formerly untreatable malignant tumors. The aim of the present study was to investigate the long-term follow-up course of patients with head and neck cancers who received ion beam therapy. The subjects were 8 patients (3 men and 5 women aged 43-78 years) with head and neck cancers who visited our department from 2006 to 2015 and received ion beam therapy. Six patients received carbon ion beam therapy, and the other two patients received proton beam therapy. The medical records of the patients were retrospectively analyzed. The primary site was the nasal and paranasal sinuses in six cases, nasopharynx in one case, and external auditory canal in one case. The histological type was olfactory neuroblastoma, malignant melanoma, and adenoid cystic carcinoma in two cases each, and chondrosarcoma and squamous cell carcinoma in one case each. The exposure dose ranged from 64 to 70.4 GyE. The average follow-up period was 42.0 months. Early adverse events were generally mild, and complete therapeutic response was obtained in all cases. However, five patients developed severe late complications including craniospinal dissemination, osteoradionecrosis of the maxilla and skull base, brain necrosis, and loss of eyesight. Three patients died of distant metastasis, local recurrence and/or brain necrosis within 2 years, and four patients have been surviving with distant metastasis or severe late complications. Ion beam therapy exhibits outstanding antitumor effects, but the severe late complications of the therapy must also be recognized.
Collapse
|
36
|
Yamada S, Kamada T, Ebner DK, Shinoto M, Terashima K, Isozaki Y, Yasuda S, Makishima H, Tsuji H, Tsujii H, Isozaki T, Endo S, Takahashi K, Sekimoto M, Saito N, Matsubara H. Carbon-Ion Radiation Therapy for Pelvic Recurrence of Rectal Cancer. Int J Radiat Oncol Biol Phys 2016; 96:93-101. [PMID: 27375166 DOI: 10.1016/j.ijrobp.2016.04.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/24/2016] [Accepted: 04/17/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Investigation of the treatment potential of carbon-ion radiation therapy in pelvic recurrence of rectal cancer. METHODS AND MATERIALS A phase 1/2 dose escalation study was performed. One hundred eighty patients (186 lesions) with locally recurrent rectal cancer were treated with carbon-ion radiation therapy (CIRT) (phase 1/2: 37 and 143 patients, respectively). The relapse locations were 71 in the presacral region, 82 in the pelvic sidewalls, 28 in the perineum, and 5 near the colorectal anastomosis. A 16-fraction in 4 weeks dose regimen was used, with total dose ranging from 67.2 to 73.6 Gy(RBE); RBE-weighted absorbed dose: 4.2 to 4.6 Gy(RBE)/fraction. RESULTS During phase 1, the highest total dose, 73.6 Gy(RBE), resulted in no grade >3 acute reactions in the 13 patients treated at that dose. Dose escalation was halted at this level, and this dose was used for phase 2, with no other grade >3 acute reactions observed. At 5 years, the local control and survival rates at 73.6 Gy(RBE) were 88% (95% confidence interval [CI], 80%-93%) and 59% (95% CI, 50%-68%), respectively. CONCLUSION Carbon-ion radiation therapy may be a safe and effective treatment option for locally recurrent rectal cancer and may serve as an alternative to surgery.
Collapse
Affiliation(s)
- Shigeru Yamada
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan.
| | - Tadashi Kamada
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Daniel K Ebner
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan; Brown University Alpert Medical School, Providence, Rhode Island
| | - Makoto Shinoto
- Ion Beam Therapy Center, SAGA HIMAT Foundation, Saga, Japan
| | - Kotaro Terashima
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Isozaki
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Shigeo Yasuda
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Hirokazu Makishima
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Tsuji
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Hirohiko Tsujii
- Research Center Hospital for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | | | - Satoshi Endo
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keiichi Takahashi
- Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome, Tokyo, Japan
| | - Mitsugu Sekimoto
- National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Norio Saito
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | | | |
Collapse
|
37
|
Jensen AD, Poulakis M, Nikoghosyan AV, Welzel T, Uhl M, Federspil PA, Freier K, Krauss J, Höss A, Haberer T, Jäkel O, Münter MW, Schulz-Ertner D, Huber PE, Debus J. High-LET radiotherapy for adenoid cystic carcinoma of the head and neck: 15 years’ experience with raster-scanned carbon ion therapy. Radiother Oncol 2016; 118:272-80. [DOI: 10.1016/j.radonc.2015.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022]
|
38
|
Taleei R, Guan F, Peeler C, Bronk L, Patel D, Mirkovic D, Grosshans DR, Mohan R, Titt U. Monte Carlo simulations of3He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness. Med Phys 2016; 43:761-76. [DOI: 10.1118/1.4939440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
39
|
Mohr A, Chaudhri N, Hassel JC, Federspil PA, Vanoni V, Debus J, Jensen AD. Raster-scanned intensity-controlled carbon ion therapy for mucosal melanoma of the paranasal sinus. Head Neck 2015; 38 Suppl 1:E1445-51. [DOI: 10.1002/hed.24256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 01/18/2023] Open
Affiliation(s)
- Angela Mohr
- Department of Radiation Oncology; University of Heidelberg; INF 400 Heidelberg Germany
| | - Naved Chaudhri
- Department of Medical Physics; Heidelberg Ion Beam Therapy Center, University of Heidelberg; INF 400 Heidelberg Germany
| | - Jessica C. Hassel
- Department of Dermatology; University of Heidelberg; INF 400 Heidelberg Germany
| | - Philippe A. Federspil
- Department of Otorhinolaryngology, Department of Radiation Oncology; University of Heidelberg; INF 400 Heidelberg Germany
| | - Valentina Vanoni
- Department of Radiation Oncology; University of Heidelberg; INF 400 Heidelberg Germany
| | - Jürgen Debus
- Department of Radiation Oncology; University of Heidelberg; INF 400 Heidelberg Germany
| | - Alexandra D. Jensen
- Department of Radiation Oncology; University of Heidelberg; INF 400 Heidelberg Germany
| |
Collapse
|
40
|
Demizu Y, Fujii O, Nagano F, Terashima K, Jin D, Mima M, Oda N, Takeuchi K, Takeda M, Ito K, Fuwa N, Okimoto T. Unexpected radiation laryngeal necrosis after carbon ion therapy using conventional dose fractionation for laryngeal cancer. Jpn J Clin Oncol 2015; 45:1076-81. [PMID: 26355161 DOI: 10.1093/jjco/hyv121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/14/2015] [Indexed: 02/03/2023] Open
Abstract
Carbon ion therapy is a type of radiotherapy that can deliver high-dose radiation to a tumor while minimizing the dose delivered to organs at risk. Moreover, carbon ions are classified as high linear energy transfer radiation and are expected to be effective for even photon-resistant tumors. A 73-year-old man with glottic squamous cell carcinoma, T3N0M0, refused laryngectomy and received carbon ion therapy of 70 Gy (relative biological effectiveness) in 35 fractions. Three months after the therapy, the patient had an upper airway inflammation, and then laryngeal edema and pain occurred. Five months after the therapy, the airway stenosis was severe and computed tomography showed lack of the left arytenoid cartilage and exacerbation of laryngeal necrosis. Despite the treatment, 5 and a half months after the therapy, the laryngeal edema and necrosis had become even worse and the surrounding mucosa was edematous and pale. Six months after the therapy, pharyngolaryngoesophagectomy and reconstruction with free jejunal autograft were performed. The surgical specimen pathologically showed massive necrosis and no residual tumor. Three years after the carbon ion therapy, he is alive without recurrence. The first reported laryngeal squamous cell carcinoma case treated with carbon ion therapy resulted in an unexpected radiation laryngeal necrosis. Tissue damage caused by carbon ion therapy may be difficult to repair even for radioresistant cartilage; therefore, hollow organs reinforced by cartilage, such as the larynx, may be vulnerable to carbon ion therapy. Caution should be exercised when treating tumors in or adjacent to such organs with carbon ion therapy.
Collapse
Affiliation(s)
- Yusuke Demizu
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo
| | - Osamu Fujii
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo
| | - Fumiko Nagano
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo
| | - Dongcun Jin
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo
| | - Masayuki Mima
- Department of Radiology, Nishikobe Medical Center, Kobe, Hyogo
| | - Naoharu Oda
- Department of Otorhinolaryngology-Head and Neck Surgery, Matsue Red Cross Hospital, Matsue, Shimane
| | - Kaoru Takeuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Matsue Red Cross Hospital, Matsue, Shimane
| | - Makiko Takeda
- Department of Otorhinolaryngology-Head and Neck Surgery, Matsue Red Cross Hospital, Matsue, Shimane
| | - Kazuyuki Ito
- Department of Otorhinolaryngology-Head and Neck Surgery, Matsue Red Cross Hospital, Matsue, Shimane
| | - Nobukazu Fuwa
- Department of Radiation Oncology, Ise Red Cross Hospital, Ise, Mie, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo
| |
Collapse
|
41
|
Wang TJC, Wu CC, Chai Y, Lam RKK, Hamada N, Kakinuma S, Uchihori Y, Yu PKN, Hei TK. Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions. PLoS One 2015; 10:e0136307. [PMID: 26317641 PMCID: PMC4552651 DOI: 10.1371/journal.pone.0136307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/02/2015] [Indexed: 11/17/2022] Open
Abstract
Purpose Side effects related to radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in directly irradiated cells. However, several studies have reported over the years of radiation-induced non-targeted/ abscopal effects in vivo that challenge this paradigm. There is evidence that Cyclooxygenase-2 (COX2) plays an important role in modulating non-targeted effects, including DNA damages in vitro and mutagenesis in vivo. While most reports on radiation-induced non-targeted response utilize x-rays, there is little information available for heavy ions. Methods and Materials Adult female transgenic gpt delta mice were exposed to an equitoxic dose of either carbon or argon particles using the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) in Japan. The mice were stratified into 4 groups of 5 animals each: Control; animals irradiated under full shielding (Sham-irradiated); animals receiving whole body irradiation (WBIR); and animals receiving partial body irradiation (PBIR) to the lower abdomen with a 1 x 1 cm2 field. The doses used in the carbon ion group (4.5 Gy) and in argon particle group (1.5 Gy) have a relative biological effectiveness equivalent to a 5 Gy dose of x-rays. 24 hours after irradiation, breast tissues in and out of the irradiated field were harvested for analysis. Induction of COX2, 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated histone H2AX (γ-H2AX), and apoptosis-related cysteine protease-3 (Caspase-3) antibodies were examined in the four categories of breast tissues using immunohistochemical techniques. Analysis was performed by measuring the intensity of more than 20 individual microscopic fields and comparing the relative fold difference. Results In the carbon ion group, the relative fold increase in COX2 expression was 1.01 in sham-irradiated group (p > 0.05), 3.07 in PBIR (p < 0.05) and 2.50 in WBIR (p < 0.05), respectively, when compared with controls. The relative fold increase in 8-OHdG expression was 1.29 in sham-irradiated (p > 0.05), 11.31 in PBIR (p < 0.05) and 11.79 in WBIR (p < 0.05), respectively, when compared with controls. A similar increase in γ-H2AX expression was found in that, compared to controls, the increase was 1.41 fold in sham-irradiated (p > 0.05), 8.41 in PBIR (p < 0.05) and 10.59 in WBIR (p < 0.05). Results for the argon particle therapy group showed a similar magnitude of changes in the various biological endpoints examined. There was no statistical significance observed in Caspase-3 expression among the 4 groups. Conclusions Our data show that both carbon and argon ions induced non-targeted, out of field induction of COX2 and DNA damages in breast tissues. These effects may pose new challenges to evaluate the risks associated with radiation exposure and understanding radiation-induced side effects.
Collapse
Affiliation(s)
- Tony J C Wang
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America
| | - Cheng-Chia Wu
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America
| | - Yunfei Chai
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America
| | - Roy K K Lam
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America; Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Nobuyuki Hamada
- National Institute of Radiological Sciences, Chiba, Japan; Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | | | - Yukio Uchihori
- National Institute of Radiological Sciences, Chiba, Japan
| | - Peter K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Tom K Hei
- Center for Radiological Research, Department of Radiation Oncology, Columbia University, New York, NY, United States of America
| |
Collapse
|
42
|
Pfister DG, Spencer S, Brizel DM, Burtness B, Busse PM, Caudell JJ, Cmelak AJ, Colevas AD, Dunphy F, Eisele DW, Foote RL, Gilbert J, Gillison ML, Haddad RI, Haughey BH, Hicks WL, Hitchcock YJ, Jimeno A, Kies MS, Lydiatt WM, Maghami E, McCaffrey T, Mell LK, Mittal BB, Pinto HA, Ridge JA, Rodriguez CP, Samant S, Shah JP, Weber RS, Wolf GT, Worden F, Yom SS, McMillian N, Hughes M. Head and Neck Cancers, Version 1.2015. J Natl Compr Canc Netw 2015; 13:847-55; quiz 856. [PMID: 26150579 PMCID: PMC4976490 DOI: 10.6004/jnccn.2015.0102] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
These NCCN Guidelines Insights focus on recent updates to the 2015 NCCN Guidelines for Head and Neck (H&N) Cancers. These Insights describe the different types of particle therapy that may be used to treat H&N cancers, in contrast to traditional radiation therapy (RT) with photons (x-ray). Research is ongoing regarding the different types of particle therapy, including protons and carbon ions, with the goals of reducing the long-term side effects from RT and improving the therapeutic index. For the 2015 update, the NCCN H&N Cancers Panel agreed to delete recommendations for neutron therapy for salivary gland cancers, because of its limited availability, which has decreased over the past 2 decades; the small number of patients in the United States who currently receive this treatment; and concerns that the toxicity of neutron therapy may offset potential disease control advantages.
Collapse
|
43
|
Jensen AD, Nikoghosyan AV, Poulakis M, Höss A, Haberer T, Jäkel O, Münter MW, Schulz-Ertner D, Huber PE, Debus J. Combined intensity-modulated radiotherapy plus raster-scanned carbon ion boost for advanced adenoid cystic carcinoma of the head and neck results in superior locoregional control and overall survival. Cancer 2015; 121:3001-9. [DOI: 10.1002/cncr.29443] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/15/2015] [Accepted: 03/31/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Alexandra D. Jensen
- Department of Radiation Oncology; University of Heidelberg; Heidelberg Germany
| | - Anna V. Nikoghosyan
- Department of Radiation Oncology; University of Heidelberg; Heidelberg Germany
| | - Melanie Poulakis
- Department of Radiation Oncology; University of Heidelberg; Heidelberg Germany
| | - Angelika Höss
- Medical Informatics and Regulatory Affairs; Heidelberg Ion Beam Therapy Center; Heidelberg Germany
| | | | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center; Heidelberg Germany
| | - Marc W. Münter
- Department of Radiation Oncology; University of Heidelberg; Heidelberg Germany
| | | | - Peter E. Huber
- Molecular Radiation Oncology; German Cancer Research Center; Heidelberg Germany
| | - Jürgen Debus
- Department of Radiation Oncology; University of Heidelberg; Heidelberg Germany
| |
Collapse
|
44
|
Targeting head and neck cancer stem cells to overcome resistance to photon and carbon ion radiation. Stem Cell Rev Rep 2015; 10:114-26. [PMID: 23955575 DOI: 10.1007/s12015-013-9467-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although promising new radiation therapy techniques such as hadrontherapy are currently being evaluated in the treatment of head and neck malignancies, local control of head and neck squamous cell carcinoma (HNSCC) remains low. Here, we investigated the involvement of cancer stem-like cells (CSCs) in a radioresistant HNSCC cell line (SQ20B). Stem-like cells SQ20B/SidePopulation(SP)/CD44(+)/ALDH(high) were more resistant to both photon and carbon ion irradiation compared with non-CSCs. This was confirmed by a BrdU labeling experiment, which suggests that CSCs were able to proliferate and to induce tumorigenicity after irradiation. SQ20B/SP/CD44(+)/ALDH(high) were capable of an extended G2/M arrest phase in response to photon or carbon ion irradiation compared with non-CSCs. Moreover, our data strongly suggest that resistance of CSCs may result from an imbalance between exacerbated self-renewal and proliferative capacities and the decrease in apoptotic cell death triggering. In order to modulate these processes, two targeted pharmacological strategies were tested. Firstly, UCN-01, a checkpoint kinase (Chk1) inhibitor, induced the relapse of G2/M arrest and radiosensitization of SQ20B-CSCs. Secondly, all-trans retinoic acid (ATRA) resulted in an inhibition of ALDH activity, and induction of the differentiation and radiosensitization of SQ20B/SP/CD44(+)/ALDH(high) cells. The combination of ATRA and UCN-01 treatments with irradiation drastically decreased the surviving fraction at 2Gy of SQ20B-CSCs from 0.85 to 0.38 after photon irradiation, and from 0.45 to 0.21 in response to carbon ions. Taken together, our results suggest that the combination of UCN-01 and ATRA represent a promising pharmacological-targeted strategy that significantly sensitizes CSCs to photon or carbon ion radiation.
Collapse
|
45
|
Yonekura Y, Tsujii H, Hopewell JW, López PO, Cosset JM, Paganetti H, Montelius A, Schardt D, Jones B, Nakamura T. ICRP Publication 127: Radiological Protection in Ion Beam Radiotherapy. Ann ICRP 2014; 43:5-113. [PMID: 25915952 DOI: 10.1177/0146645314559144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The goal of external-beam radiotherapy is to provide precise dose localisation in the treatment volume of the target with minimal damage to the surrounding normal tissue. Ion beams, such as protons and carbon ions, provide excellent dose distributions due primarily to their finite range, allowing a significant reduction of undesired exposure of normal tissue. Careful treatment planning is required for the given type and localisation of the tumour to be treated in order to maximise treatment efficiency and minimise the dose to normal tissue. Radiation exposure in out-of-field volumes arises from secondary neutrons and photons, particle fragments, and photons from activated materials. These unavoidable doses should be considered from the standpoint of radiological protection of the patient. Radiological protection of medical staff at ion beam radiotherapy facilities requires special attention. Appropriate management and control are required for the therapeutic equipment and the air in the treatment room that can be activated by the particle beam and its secondaries. Radiological protection and safety management should always conform with regulatory requirements. The current regulations for occupational exposures in photon radiotherapy are applicable to ion beam radiotherapy with protons or carbon ions. However, ion beam radiotherapy requires a more complex treatment system than conventional radiotherapy, and appropriate training of staff and suitable quality assurance programmes are recommended to avoid possible accidental exposure of patients, to minimise unnecessary doses to normal tissue, and to minimise radiation exposure of staff.
Collapse
|
46
|
Karam SD, Rashid A, Snider JW, Wooster M, Bhatia S, Jay AK, Newkirk K, Davidson B, Harter WK. IMRT with Stereotactic Body Radiotherapy Boost for High Risk Malignant Salivary Gland Malignancies: A Case Series. Front Oncol 2014; 4:268. [PMID: 25374840 PMCID: PMC4204450 DOI: 10.3389/fonc.2014.00268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/12/2014] [Indexed: 12/31/2022] Open
Abstract
Patients with high risk salivary gland malignancies are at increased risk of local failure. We present our institutional experience with dose escalation using hypofractionated stereotactic body radiotherapy (SBRT) in a subset of this rare disease. Over the course of 9 years, 10 patients presenting with skull base invasion, gross disease with one or more adverse features, or those treated with adjuvant radiation with three or more pathologic features were treated with intensity-modulated radiation therapy followed by hypofractionated SBRT boost. Patients presented with variable tumor histologies, and in all but one, the tumors were classified as poorly differentiated high grade. Four patients had gross disease, three had gross residual disease, three had skull base invasion, and two patients had rapidly recurrent disease (≤6 months) that had been previously treated with surgical resection. The median stereotactic radiosurgery boost dose was 17.5 Gy (range 10–30 Gy) given in a median of five fractions (range 3–6 fractions) for a total median cumulative dose of 81.2 Gy (range 73.2–95.6 Gy). The majority of the patients received platinum based concurrent chemotherapy with their radiation. At a median follow-up of 32 months (range 12–120) for all patients and 43 months for surviving patients (range 12–120), actuarial 3-year locoregional control, distant control, progression-free survival, and overall survival were 88, 81, 68, and 79%, respectively. Only one patient failed locally and two failed distantly. Serious late toxicity included graft ulceration in one patient and osteoradionecrosis in another patient, both of which underwent surgical reconstruction. Six patients developed fibrosis. In a subset of patients with salivary gland malignancies with skull base invasion, gross disease, or those treated adjuvantly with three or more adverse pathologic features, hypofractionated SBRT boost to intensity-modulated radiotherapy yields good local control rates and acceptable toxicity.
Collapse
Affiliation(s)
- Sana D Karam
- Department of Radiation Oncology, The University of Colorado Denver , Aurora, CO , USA
| | - Abdul Rashid
- Department of Radiation Oncology, Georgetown University Hospital , Washington, DC , USA
| | - James W Snider
- Department of Radiation Oncology, University of Maryland , Baltimore, MD , USA
| | - Margaux Wooster
- Department of Radiation Oncology, The University of Colorado Denver , Aurora, CO , USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, The University of Colorado Denver , Aurora, CO , USA
| | - Ann K Jay
- Department of Radiology, Georgetown University Hospital , Washington, DC , USA
| | - Kenneth Newkirk
- Department of Otolaryngology, Georgetown University Hospital , Washington, DC , USA
| | - Bruce Davidson
- Department of Otolaryngology, Georgetown University Hospital , Washington, DC , USA
| | - William K Harter
- Department of Radiation Oncology, Georgetown University Hospital , Washington, DC , USA
| |
Collapse
|
47
|
Koto M, Hasegawa A, Takagi R, Sasahara G, Ikawa H, Mizoe JE, Jingu K, Tsujii H, Kamada T, Okamoto Y. Feasibility of carbon ion radiotherapy for locally advanced sinonasal adenocarcinoma. Radiother Oncol 2014; 113:60-5. [DOI: 10.1016/j.radonc.2014.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/09/2014] [Accepted: 09/20/2014] [Indexed: 11/28/2022]
|
48
|
Fukumitsu N, Ishikawa H, Ohnishi K, Terunuma T, Mizumoto M, Numajiri H, Aihara T, Okumura T, Tsuboi K, Sakae T, Sakurai H. Dose distribution resulting from changes in aeration of nasal cavity or paranasal sinus cancer in the proton therapy. Radiother Oncol 2014; 113:72-6. [DOI: 10.1016/j.radonc.2014.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
49
|
Sasahara G, Koto M, Ikawa H, Hasegawa A, Takagi R, Okamoto Y, Kamada T. Effects of the dose-volume relationship on and risk factors for maxillary osteoradionecrosis after carbon ion radiotherapy. Radiat Oncol 2014; 9:92. [PMID: 24708583 PMCID: PMC3992144 DOI: 10.1186/1748-717x-9-92] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/29/2014] [Indexed: 11/26/2022] Open
Abstract
Background Osteoradionecrosis (ORN) is a critical complication after carbon ion (C-ion) or photon radiotherapy (RT) for head and neck tumors. However, the risk factors for ORN after C-ion RT remain unclear. Therefore, the present study aimed to investigate the effects of the dose-volume relationship on and risk factors for ORN development after C-ion RT. We, however, focused on the maxillary bone because most tumors treated with C-ion RT were primarily located in the sinonasal cavity. Methods The patients enrolled in this study received more than 10% of the prescribed total dose of 57.6 Gy equivalent (GyE) in 16 fractions to their maxilla. All patients were followed up for more than 2 years after C-ion RT. Those with tumor invasion to the maxilla before C-ion RT or local recurrence after the treatment were excluded from the study to accurately evaluate the effects of irradiation on the bone. Sixty-three patients were finally selected. The severity of ORN was assessed according to the Common Terminology Criteria for Adverse Events version 4.0. The correlation between clinical and dosimetric parameters and ORN incidence was retrospectively analyzed. Results The median follow-up period was 79 months. Of the 63 enrolled patients, 26 developed ORN of grade ≥1. Multivariate analysis revealed that the maxilla volume receiving more than 50 GyE (V50) and the presence of teeth within the planning target volume were significant risk factors for ORN. Dose-volume histogram analysis revealed that V10 to V50 parameters were significantly higher in patients with ORN than in those without ORN. Conclusions V50 and the presence of teeth within the planning target volume were independent risk factors for the development of ORN after C-ion RT using a 16-fraction protocol.
Collapse
Affiliation(s)
| | - Masashi Koto
- Research Center for Charged Particle Therapy Hospital, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Morimoto K, Demizu Y, Hashimoto N, Mima M, Terashima K, Fujii O, Otsuki N, Murakami M, Fuwa N, Nibu KI. Particle radiotherapy using protons or carbon ions for unresectable locally advanced head and neck cancers with skull base invasion. Jpn J Clin Oncol 2014; 44:428-34. [PMID: 24620027 DOI: 10.1093/jjco/hyu010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To study the oncological outcome of the patients with unresectable locally advanced primary head and neck cancers invading the skull base, treated with particle radiotherapy. METHODS Fifty-seven patients with unresectable primary head and neck cancers invading the skull base received proton or carbon ion radiotherapy as definitive treatment at Hyogo Ion Beam Medical Center between 2003 and 2009. Forty-seven patients were treated with proton radiotherapy and 10 patients were treated with carbon ion radiotherapy. A retrospective review was performed with clinical charts and recorded imagings. RESULTS With a median follow-up of 32 months, the 3-year actual survival and local progression-free rates of all the patients were 61 and 56%, respectively. The 3-year actual survival rates of adenoid cystic carcinoma, squamous cell carcinoma, olfactory neuroblastoma, adenocarcinoma and malignant melanoma were 83, 44, 75, 0 and 38%, respectively. The 3-year actual local control rates of adenoid cystic carcinoma, squamous cell carcinoma, olfactory neuroblastoma, adenocarcinoma and malignant melanoma were 63, 31, 83, 50 and 0%, respectively. Distant metastasis was observed in 13 of 25 patients in adenoid cystic carcinoma, two of 14 patients in squamous cell carcinoma, one of six patients with olfactory neuroblastoma, two of four patients with adenocarcinoma, three of four patients with malignant melanoma and two of three patients with undifferentiated carcinoma. Mucositis and dermatitis were seen as acute toxicities. The most common late toxicity was visual disorder. Grades 2, 3 and 4 visual disorders were observed in seven, five and two patients, respectively. CONCLUSIONS Proton and carbon ion radiotherapy resulted in satisfactory local control in patients with locally advanced unresectable primary head and neck cancers invading the skull base.
Collapse
Affiliation(s)
- Koichi Morimoto
- *Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kobe University, 7-5-2 Kusunoki-Cho, Chuo-Ku, Kobe 650-0017, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|